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image matching

• so far, we have a representation that is very robust in matching
different views of the same object or scene—same instance—to be
used e.g. for retrieval

• the same representation can be used in matching views of different
instances of the same category—same class—to be used e.g. for
classification or detection

• main differences

instance class

features sparse dense
descriptors same
vocabulary fine coarse
geometry rigid flexible
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spatial matching—same instance

• now robust to scale, viewpoint, occlusion, clutter, lighting

• and very fast
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spatial matching—same class

Figure 3. An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and
the feature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar
with all its feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature
points mapped by a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right).
See Figure 7 for more examples
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∑
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where da penalizes the change in direction, and dl penal-
izes change in length. A correspondence σ resulting from
pure scale and translation will result in da(σ) = 0, while
σ resulting from pure translation and rotation will result in
dl(σ) = 0. The constants αd, βd, µd, are all terms allowing
slightly more flexibility for nearby points in order to deal
with local “noise” factors such as sampling, localization,
etc. They should be set relative to the scale of these lo-
cal phenomena. The constant γ weighs the angle distortion
term against the length distortion term.

Outliers Each point pi, in P , is mapped to a qσ(i), in Q.
This mapping automatically allows outliers in Q as it is not
necessarily surjective – points qj may not be the image any
point pi under σ. We introduce an additional point qnull and
use σ(i) = null to allow a point pi to be an outlier. We limit
the number of points pi which can be assigned to qnull, thus
allowing for outliers in both P and Q.

5. Correspondence Algorithm
Finding an assignment to minimize a cost function de-

scribed by the terms in Equations 3 and 2 above can be
written as an Integer Quadratic Programming (IQP) prob-
lem.

cost(x) =
∑

a,b

H(a, b)xaxb +
∑

a

c(a)xa (7)

Where the binary indicator variable x has entries xa, that
if 1, indicate σ(ai) = aj . We then have H(a, b) =
H(ai, aj , bi, bj), and c(a) = c(ai, aj) from Equations 3
and 2.

We constrain x to represent an assignment. Write xij in
place of xaiaj . We require

∑
j xij = 1 for each i. Futher-

more if we allow outliers as discussed in Section 4, then we

require
∑

i xinull ≤ k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost
in our problems, so this is equivalent to

∑
i xinull = k.

Each of these linear constraints are encoded in one row of
A and an entry of b. Replacing H with a matrix having
entries Hab = H(a, b) and c with a vector having entries
ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (8)
Ax = b, x ∈ {0, 1}n

5.1. Approximation

Integer Quadratic Programming is NP-Complete, how-
ever specific instances may be easy to solve. We follow a
two step process that results in good solutions to our prob-
lem. We first find the minimum of a linear bounding prob-
lem, an approximation to the quadratic problem, then follow
local gradient descent to find a locally minimal assignment.
Although we do not necessarily find global minima of the
cost function in practice the results are quite good.

We define a linear objective function over assignments
that is a lower bound for our cost function in two steps. First
compute qa = min

∑
b Habxb. Note that from here on we

will omit writing the constraints Ax = b and x ∈ {0, 1}n

for brevity.
If xa represents σ(i) = j then qa is a lower bound for

the cost contributed to any assignment by using σ(i) = j.
Now we have L(x) =

∑
a(qa + ca)xa as a lower bound for

cost(x) from Equation 8. This construction follows [19],
and is a standard bound for a quadratic program. Of note is
the operational similarity to geometric hashing.

The equations for qa and L are both integer linear pro-
gramming problems, but since the vertices of the constraint
polytopes lie only on integer coordinates, they can be re-
laxed to linear programming problems without changing the
optima, and solved easily. In fact due to the structure of the
problems in our setup they can be solved explicitly by con-
struction. If n is the length of x, each problem takes O(n)
operations with a very small constant. Computing qa for
a = 1 . . . n requires O(n2) time.

• solve for feature correspondence, flexible transformation and outliers
on all possible correspondence pairs by joint optimization

• very expensive

Berg, Berg and Malik. CVPR 2005. Shape Matching and Object Recognition Using Low Distortion Correspondences.



spatial matching—same class
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Figure 7. Each row shows a correspondence found using our technique described in section 5. Leftmost is an exemplar with
some feature points marked. Left center is a probe image with the correspondences found indicated by matching colors (all possible
feature matches are shown with white dots). All of the feature points on the exemplar are shown center right, and their image using
a thin plate spline warp based on the correspondence are shown in the right most image of the probe. Note the ability to deal
with clutter (1,6), scale variation(3), intraclass variation all, also the whimsical shape matching (2), and the semiotic difficulty of
matching a bank note to the image of a bank note painted on another object (5).

• solve for feature correspondence, flexible transformation and outliers
on all possible correspondence pairs by joint optimization

• very expensive and error prone

Berg, Berg and Malik. CVPR 2005. Shape Matching and Object Recognition Using Low Distortion Correspondences.



geometry

• spatial matching on same instance is robust, but expensive

• we can

• encode position, e.g. with dense features; easier to match, but
we loose invariance

• discard geometry altogether and use a global representation; even
easier, we maintain invariance, but loose discriminative power

• discard geometry as a first step, then bring it back
• make it more efficient?

• rigid transformations won’t work for classification, and matching is
even more expensive

• make it more flexible?
• make it more efficient?
• maintain invariance?
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matching discriminative local features
[Lowe, ICCV 1999]Do these images match?

1

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



matching discriminative local features
[Lowe, ICCV 1999]Local features (interest regions, patches, ...)

features

1

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



matching discriminative local features
[Lowe, ICCV 1999]Local feature normalization

features

normalized features

1

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



appearance

• matching appearance via descriptors should be easier than geometry

• but

• if we have positions e.g. with dense features, we know what to
match (but we loose invariance)

• otherwise, we need to find correspondences (expensive)
• we can apply some pooling in image space or in descriptor space;

more efficient; it may help or not
• global pooling is the most efficient (but is not as discriminative)
• local descriptors take up a lot of space; with pooling or not, we

can compress them



forget about geometry: bag-of-words
[Sivic and Zisserman 2003]

Forget about geometry: BoW

Object Bag of ‘words’

2

• in fact, discarding geometry (bag) is one thing and quantizing
descriptors (words) is another

Image credit: Fei-Fei, Fergus and Torralba. CVPR 2007 Tutorial. Recognizing and Learning Object Categories.



vector quantization → visual words... back to image retrieval

15query

2

• query vs. dataset image

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsFeature correspondences with image #15

15query

2

• pairwise descriptor matching

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsFeature correspondences with image #19

19

15query

2

• pairwise descriptor matching for every dataset image

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsMatching in descriptor space

19

15query

2

• similar descriptors should all be nearby in the descriptor space

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsVector quantization → visual words

54

67

72

19

15query

2

• let’s quantize them into visual words

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization → visual wordsVocabulary

54

67

72

query

19

15

2

• now visual words act as a proxy; no pairwise matching needed

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag-of-words and “cosine” similarity

• each image is represented by a single vector z ∈ Rk, where k is the
size of the codebook

• each element zi = wini where wi fixed weight per visual word (e.g.
inverse document frequency) and ni the number of occurrences of this
word in the image

• this vector then typically normalized, e.g. ‖z‖1 = 1 or ‖z‖2 = 1

• given two images represented by z,y, similarity is usually measured by
dot product

sBoW(z,y) : = z>y

• with `2 normalization, this is equivalent to measuring Euclidean
distance ‖z− y‖ because ‖z− y‖2 = 2(1− z>y)

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.
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bag-of-words for retrieval

• given a set of n images represented by matrix Z ∈ Rk×n (each image
as a column) and query image q, we need a vector of similarities

s = SBoW(Z,q) : = Z>q

and then sort s by descending order

• when k � p, where p is the number of features per image on average,
Z and q are sparse

• rather than whether a word is contained in an image, ask which
images contain a given word

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.
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inverted file indexingIndex
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Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



inverted file indexingInverted file
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inverted file indexingInverted file
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inverted file indexingRanking
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Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



back to geometry: re-ranking

• dot product similarity is fast but quantized descriptors are not
discriminative enough; performs poorly in the presence of distractors

• perform spatial matching only on top-ranking images, and re-ranking
according to a score based on geometry, e.g. number of inliers

• but to save space, descriptors are not available: tentative
correspondences are based on visual words, and there are too many
(too features are in correspondence if they are assigned to the same
visual word)



back to geometry: re-ranking

original images

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

local features

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

tentative correspondences: too many

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

inliers: now more expensive to find

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



bag of words for classification

• each image represented by z ∈ Rk; each element zi the number of
occurrences of visual word ci in the image

• Näıve Bayes: chose maximum posterior probability of class C given
image z assuming features are independent → linear classifier with
parameters estimated by visual word statistics on training set

• support vector machine (SVM): images z,y compared by kernel
function κ(z,y); if κ(z,y) = z>y, this is again a linear classifier and
is a standard choice at large scale

Csurka, Dance, Fan, Willamowski and Bray. SLCV 2004. Visual Categorization With Bags of Keypoints.
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codebooks



vector quantization: k-means clustering
[MacQueen 1967]

dataset

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]

initial centroids

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]

Voronoi cells

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]

points assigned to nearest centroids

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]

centroids move to mean per cell

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]

iterate until convergence

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.
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vector quantization: k-means clustering

• objective: given dataset X ⊂ Rd, find codebook C ⊂ Rd, with
|C| = k, and quantizer function q : Rd → C, minimizing distortion

E(C, q) : =
∑

x∈X
‖x− q(x)‖2

• regardless of C, q should map vector x to its nearest centroid

q(x) = arg min
c∈C
‖x− c‖

• algorithm: at each iteration, given the set Xc = {x ∈ X : q(x) = c}
of points assigned to centroid c, (assignment step), c moves to their
mean (update step)

c← 1

|Xc|
∑

x∈Xc

x

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.
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Fig. 9. Classification performance results of various types of codeword ambiguity for the Scene-15 dataset, trained on 5 images per class. This figures
illustrates the effect of relatively large vocabulary sizes compared to the total number of image features.

a stable, optimal kernel size. In contrast, the best kernel sizes for
codeword plausibility fluctuate heavily over the 10 repetitions.
Analyzing the scores, we found that increasing the kernel size of
codeword plausibility beyond a sufficiently large value does not
change the classification scores much. I.e., for large kernel sizes
there are no implausible features left in the finite feature space.
Therefore, sufficiently large kernels lead to similar classification
performance without a clear optimum, resulting in high kernel
size variance for codeword plausibility. In analyzing the kernel
size over the number of vocabulary elements shows that a
larger vocabulary leads to slightly smaller kernels. This may be
expected, since a larger vocabulary is formed by a smaller radius
between codewords. When considering the dimensionality of the
descriptor, it shows that lower dimensional features use a smaller
kernel. This is the case because low-dimensional features typically
have a smaller Euclidean distance than high-dimensional features.
In summary, the kernel size depends on the type of ambiguity,
feature dimensionality and the number of codewords. Therefore,
the optimal kernel size cannot be easily inferred from the data and
should be found in a discriminative manner, linking it directly to
classification performance as achieved with cross-validation.

As illustrated in figure 6, increasing the vocabulary size in-
creases the classification performance and the performance of the
four ambiguity types seems to converge. In figure 6, however,
the vocabulary sizes are relatively small. The largest vocabulary
in figure 6 has 3200 elements and comprises only 0.23% of all
features. The behavior of relatively small vocabularies may not
be identical to relatively large vocabularies. With vocabulary sizes
that are relatively large compared to the total number of training
image features, ambiguity type performance may diverge again.
To evaluate this, we compared ambiguity type performance on
the Scene-15 dataset over relatively large vocabularies.

To make the computation of relatively large vocabularies
practically feasible, we reduced the total number of features in
the training set. The number of features may be reduced by
only extracting features on detected interest points in an image.
However, interest point detection would deviate too much from
our uniform experimental setup for the Scene-15 dataset. Hence,
we keep extracting image features on a regular grid yet constrain
the total number of image features by reducing the number of
images per class as is also done by [4], [8], [40]. For this

experiment, we randomly select 5 images for each of the 15
classes, using the remaining images for the test set. The average
number of training feature over the 10 random repetitions amounts
to a total of 67, 408±348 unique SIFT descriptors. Our experiment
is not as much concerned with the total number of features per
se, but with the ratio between the number of features and the size
of the vocabulary. We want to measure the effect of relatively
large vocabularies. We evaluated vocabulary sizes ranging from
12 (0.02%) to 25,600 (38%) unique visual words. The underlying
assumption is that the results in this experiment trend will hold
for various feature and vocabulary sizes, however with similar
ratios.

The results for relatively large vocabularies are given in fig-
ure 9. Note that the performance for relatively small vocabularies
show a similar trend as in figure 6. Hence, the results in figure 6
and figure 9 are in agreement. The main difference is the lower
performance in figure 9 because only 5 images per class are
used for training. In figure 9 it can be seen that for vocabulary
sizes larger than 800 visual words (1.2%), the performance of
all methods decreases. We attribute this performance decrease to
the curse of dimensionality, albeit that we use a discriminative
SVM classifier. In analyzing ambiguity types, it can be seen that
for vocabulary sizes of 6,400 and higher, the performance of hard
assignment and visual word plausibility severely deteriorates. This
may be expected, since both of these ambiguity types can not
select multiple suitable visual words. For example, in the extreme
case of a vocabulary size equal to the number of image features,
codeword plausibility and hard assignment map each training
image feature to it’s own unique visual word, reverting to exact
feature matching. In contrast, the kernel codebook and codeword
uncertainty methods both allow selecting multiple relevant visual
words. When increasing the vocabulary size, the performance
of these two types remains relatively stable, where codeword
uncertainty is the better performer. As shown by this experiment,
a larger vocabulary does not necessarily yield better results. Actu-
ally, a too large vocabulary severely deteriorates performance for
codeword plausibility and hard-assignment. A kernel codebook
and codeword uncertainty, however, only decrease slightly. Hence,
for relatively large vocabularies visual word ambiguity modeling
makes a significant difference.

To show the modularity of our approach and improve results

• classification: thousands

• depends on a lot of factors e.g. the number of features in the image
representation and size and variability of the dataset

van Gemert, Veenman, Smeulders and Geusebroek PAMI 2010. Visual Word Ambiguity.



codebook size

Vocab Bag of
Size words Spatial
50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
750K 0.609 0.630
1M 0.618 0.645

1.25M 0.602 0.625
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Table 5. Examining the effect of vocabulary size on performance
for the 5K dataset. Each vocabulary is trained using AKM on
all 16.7M descriptors. There is a performance peak at 1 mil-
lion words. The spatial verification consistently improves perfor-
mance.

Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.

Transformation dof Matrix
translation +
isotropic scale 3

»

a 0 tx
0 a ty

–

translation +
anisotropic scale 4

»

a 0 tx
0 b ty

–

translation +
vertical shear

5
»

a 0 tx
b c ty

–

(a)

H1

I

H2

H

C1 C2

(b)
Table 6. (a) The three affine sub-groups compared in the spatial
re-ranking. (b) Computing H as H−1

2 H1, preserving “upness” for
the 5 dof case.

Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

• instance retrieval: millions

• depends on a lot of factors e.g. the number of features in the image
representation and size and variability of the dataset

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



hierarchical k-means (HKM)
[Fukunaga and Narendra 1975]

• partition data into b clusters using k-means

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means (HKM)
[Fukunaga and Narendra 1975]

• within each cluster, partition data into b clusters

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means (HKM)
[Fukunaga and Narendra 1975]

• and repeat; b is called the branching factor

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means (HKM)
[Fukunaga and Narendra 1975]

• at ` levels, there are b` total clusters

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means

b = 2 b = 4 b = 8

b = 16 b = 32 b = 128

• intensity: ratio of first to second neighbor distance

Muja and Lowe. ICCV 2009. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration.



vocabulary tree
[Nister and Stewenius. CVPR 2006]

• apply k-means hierarchically and
build a fine partition tree

• descriptors descend from root to
leaves by finding nearest node at
each level

• image represented by xi = wini
as in BoW, but now there is one
element per node including
internal nodes

• dataset searched by inverted files
at leaves

Nister and Stewenius. CVPR 2006. Scalable Recognition With a Vocabulary Tree.
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vocabulary tree
[Nister and Stewenius. CVPR 2006]

however:

• no principled way of defining wi
across levels

• distortion minimized only locally;
points get assigned to leaves
that are not globally nearest

Nister and Stewenius. CVPR 2006. Scalable Recognition With a Vocabulary Tree.
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points get assigned to leaves
that are not globally nearest
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approximate k-means (AKM)
[Philbin et al. 2007]

• with branching factor b = 10 and ` = 6 levels, HKM yields k = 106

visual words; complexity is O(nb`)

• search through multiple randomized trees (comparison to HKM in
color)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



approximate k-means (AKM)
[Philbin et al. 2007]

• flat k-means with e.g. n = 107 points and k = 106 centroids is
prohibitive; complexity is O(nk), because each assignment is O(k)

• search through multiple randomized trees (comparison to HKM in
color)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



approximate k-means (AKM)
[Philbin et al. 2007]

• approximate nearest neighbor search to find the nearest centroid: each
assignment is now O(log k), and complexity drops to O(n log k)

• search through multiple randomized trees (comparison to HKM in
color)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
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approximate k-means (AKM)

• if the sole purpose of the hierarchy is to accelerate assignment, both
at learning and at search, it is better to use a flat vocabulary
combined with a more principled nearest neighbor search method

• however, with appropriate node weighting, a hierarchical structure can
help (see pyramid matching later on)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



pipeline, again

• given codebook C = {c1, . . . , ck} ⊂ Rd

• given image with descriptors xi ∈ Rd at positions yi ∈ R2,
i = 1, . . . , n into ai ∈ Rk

• encode each descriptor xi into ai ∈ Rk

ai : = F (xi;C) : = (f(xi, c1;C), . . . , f(xi, ck;C))

• pool each spatial region Rj , j = 1, . . . ,m into zj ∈ Rk

zj : = g({ai : yi ∈ Rj})

• concatenate into z ∈ Rkm

z : = (z1; . . . ; zm)

• global pooling is just m = 1

Boureau, Bach, Lecun and Ponce. CVPR 2010. Learning Mid-Level Features for Recognition.
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Fig. 2. (a) An example of the weight distribution of a kernel codebook with a Gaussian
kernel, where the data and the codewords are taken from Fig. 1. (b) Various codeword
distributions, according to Table 1, corresponding to different types of codeword am-
biguity. These distributions are based on the kernels shown in Fig. 2(a), where the
square, diamond and triangle represent the image features.

kernel codebook and codeword uncertainty adds weight to the two relevant code-
words. In the latter two methods, the uncertainty between the two codewords
is not assigned solely to the best fitting word, but divided over both codewords.
Hence, the kernel codebook approach can be used to introduce various forms of
ambiguity in the tradition codebook model. We will experimentally investigate
the effects of all forms of codeword ambiguity in Sect. 4.

The ambiguity between codewords will likely be influenced by the number
of words in the vocabulary. When the vocabulary is small, essentially different
image parts will be represented by the same vocabulary element. On the other
hand, a large vocabulary allows more expressive power, which will likely benefit
the hard assignment of the traditional codebook. Therefore, we speculate that
codeword ambiguity will benefit smaller vocabularies more than larger vocabu-
laries. We will experimentally investigate the vocabulary size in Sect 4.

Since codewords are image descriptors in a high-dimensional feature space,
we envision a relation between codeword ambiguity and feature dimensionality.
With a high-dimensional image descriptor, codeword ambiguity will probably be-
come more significant. If we consider a codeword as a high-dimensional sphere
in feature space, then most feature points in this sphere will lay on a thin shell
near the surface. Hence, in a high-dimensional space, most feature points will
be close to the boundary between codewords and thus introduces ambiguity be-
tween codewords. See Bishop’s textbook on pattern recognition and machine
learning [14, Chapter 1, pages 33–38] for a thorough explanation and illustra-
tion of the curse of dimensionality. Consequently, increasing the dimensionality
of the image descriptor may increase the level of codeword ambiguity. Therefore,
our improvement over the traditional codebook model should become more pro-
nounced in a high-dimensional feature space. We will experimentally investigate
the effects of the dimensionality of the image descriptor in the next section.
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kernel codebook and codeword uncertainty adds weight to the two relevant code-
words. In the latter two methods, the uncertainty between the two codewords
is not assigned solely to the best fitting word, but divided over both codewords.
Hence, the kernel codebook approach can be used to introduce various forms of
ambiguity in the tradition codebook model. We will experimentally investigate
the effects of all forms of codeword ambiguity in Sect. 4.

The ambiguity between codewords will likely be influenced by the number
of words in the vocabulary. When the vocabulary is small, essentially different
image parts will be represented by the same vocabulary element. On the other
hand, a large vocabulary allows more expressive power, which will likely benefit
the hard assignment of the traditional codebook. Therefore, we speculate that
codeword ambiguity will benefit smaller vocabularies more than larger vocabu-
laries. We will experimentally investigate the vocabulary size in Sect 4.

Since codewords are image descriptors in a high-dimensional feature space,
we envision a relation between codeword ambiguity and feature dimensionality.
With a high-dimensional image descriptor, codeword ambiguity will probably be-
come more significant. If we consider a codeword as a high-dimensional sphere
in feature space, then most feature points in this sphere will lay on a thin shell
near the surface. Hence, in a high-dimensional space, most feature points will
be close to the boundary between codewords and thus introduces ambiguity be-
tween codewords. See Bishop’s textbook on pattern recognition and machine
learning [14, Chapter 1, pages 33–38] for a thorough explanation and illustra-
tion of the curse of dimensionality. Consequently, increasing the dimensionality
of the image descriptor may increase the level of codeword ambiguity. Therefore,
our improvement over the traditional codebook model should become more pro-
nounced in a high-dimensional feature space. We will experimentally investigate
the effects of the dimensionality of the image descriptor in the next section.

• : ok; : ambiguous; : not represented

• left: assigned to nearest neighbor; right: to all visual words with
different weights

• top: total weight normalized to one; bottom: depends on distance

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.
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kernel codebook and codeword uncertainty adds weight to the two relevant code-
words. In the latter two methods, the uncertainty between the two codewords
is not assigned solely to the best fitting word, but divided over both codewords.
Hence, the kernel codebook approach can be used to introduce various forms of
ambiguity in the tradition codebook model. We will experimentally investigate
the effects of all forms of codeword ambiguity in Sect. 4.

The ambiguity between codewords will likely be influenced by the number
of words in the vocabulary. When the vocabulary is small, essentially different
image parts will be represented by the same vocabulary element. On the other
hand, a large vocabulary allows more expressive power, which will likely benefit
the hard assignment of the traditional codebook. Therefore, we speculate that
codeword ambiguity will benefit smaller vocabularies more than larger vocabu-
laries. We will experimentally investigate the vocabulary size in Sect 4.

Since codewords are image descriptors in a high-dimensional feature space,
we envision a relation between codeword ambiguity and feature dimensionality.
With a high-dimensional image descriptor, codeword ambiguity will probably be-
come more significant. If we consider a codeword as a high-dimensional sphere
in feature space, then most feature points in this sphere will lay on a thin shell
near the surface. Hence, in a high-dimensional space, most feature points will
be close to the boundary between codewords and thus introduces ambiguity be-
tween codewords. See Bishop’s textbook on pattern recognition and machine
learning [14, Chapter 1, pages 33–38] for a thorough explanation and illustra-
tion of the curse of dimensionality. Consequently, increasing the dimensionality
of the image descriptor may increase the level of codeword ambiguity. Therefore,
our improvement over the traditional codebook model should become more pro-
nounced in a high-dimensional feature space. We will experimentally investigate
the effects of the dimensionality of the image descriptor in the next section.
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kernel codebook and codeword uncertainty adds weight to the two relevant code-
words. In the latter two methods, the uncertainty between the two codewords
is not assigned solely to the best fitting word, but divided over both codewords.
Hence, the kernel codebook approach can be used to introduce various forms of
ambiguity in the tradition codebook model. We will experimentally investigate
the effects of all forms of codeword ambiguity in Sect. 4.

The ambiguity between codewords will likely be influenced by the number
of words in the vocabulary. When the vocabulary is small, essentially different
image parts will be represented by the same vocabulary element. On the other
hand, a large vocabulary allows more expressive power, which will likely benefit
the hard assignment of the traditional codebook. Therefore, we speculate that
codeword ambiguity will benefit smaller vocabularies more than larger vocabu-
laries. We will experimentally investigate the vocabulary size in Sect 4.

Since codewords are image descriptors in a high-dimensional feature space,
we envision a relation between codeword ambiguity and feature dimensionality.
With a high-dimensional image descriptor, codeword ambiguity will probably be-
come more significant. If we consider a codeword as a high-dimensional sphere
in feature space, then most feature points in this sphere will lay on a thin shell
near the surface. Hence, in a high-dimensional space, most feature points will
be close to the boundary between codewords and thus introduces ambiguity be-
tween codewords. See Bishop’s textbook on pattern recognition and machine
learning [14, Chapter 1, pages 33–38] for a thorough explanation and illustra-
tion of the curse of dimensionality. Consequently, increasing the dimensionality
of the image descriptor may increase the level of codeword ambiguity. Therefore,
our improvement over the traditional codebook model should become more pro-
nounced in a high-dimensional feature space. We will experimentally investigate
the effects of the dimensionality of the image descriptor in the next section.

• : ok; : ambiguous; : not represented

• left: assigned to nearest neighbor; right: to all visual words with
different weights

• top: total weight normalized to one; bottom: depends on distance

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment

• r-nearest neighbors of x in C: NNr
C(x)

• kernel function

h(x) = hG(x;σ) : = N (0, σ2I)(x) ∝ exp

(
−‖x‖

2

2σ2

)

• encoding descriptor x into visual word c

f(x, c;C)
visual word

nearest all

fixed weight
1[c ∈ NN1

C(x)] h(x−c)∑
j h(x−cj)

“BoW” “uncertainty”

variable weight
1[c ∈ NN1

C(x)]h(x− c) h(x− c)
“plausibility” “kernel”

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.
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soft assignment

• on classification: best model is “uncertainty”

f(x, c;C) =
h(x− c)∑
j h(x− cj)

• it is better to contribute to visual words even if all are far away

• we shall see this is the softmax of negative distances −‖x− c‖2
• it is also the responsibility of visual word c for descriptor x in a

Gaussian mixture model with C as components

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.
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soft assignment
[Liu et al. 2011]

• on classification: it turns out, it is better to limit contributions to r
nearest neighbors

f(x, c;C) = 1[c ∈ NNr
C(x)]

h(x− c)∑
j h(x− cj)

• this is attributed to respecting the manifold structure of the data, and
it superior to more expensive sparse coding that have been proposed
in the meantime

Liu, Wang and Liu. ICCV 2011. In Defense of Soft-assignment Coding.



soft assignment
[Philbin et al. 2008]

• on retrieval: “kernel” is followed on r nearest neighbors

f(x, c;C) = 1[c ∈ NNr
C(x)]h(x− c)

• it is better to discard descriptors if they are not well represented

• r should be small: this applies to dataset images and increases the
required index space and query time (including spatial matching) by r

Philbin, Chum, Sivic, Isard and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large
Scale Image Databases.
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multiple assignment
[Jégou et al. 2010]

• on retrieval: same as before, but now applies only to query images

• f(x, c;C) further limited to visual words at distance ≤ αd1 from x,
where d1 is the distance of NN1

C(x)

• index space maintained as in standard hard assignment, but query
time is still increased by r

Jegou, Douze and Schmid. IJCV 2010. Improving Bag-of-Features for Large Scale Image Search.



max pooling vs. average pooling
[Boureau et al. 2010]

erage pooling generalizes to many combinations of cod-

ing schemes and classifiers. Several authors have already

stressed the efficiency of max pooling [10, 31], but they

have not given theoretical explanations to their findings. In

this section, we study max pooling in more details theoreti-

cally and experimentally.

5.1. A Theoretical Comparison of Pooling Strategies

With the same notation as before, consider a binary lin-

ear classification task over cluttered images. Pooling is per-

formed over the whole image, so that the pooled feature

h is the global image representation. Linear classification

requires distributions of h over examples from positive and

negative classes (henceforth denoted by + and −) to be well

separated.

We model the distribution of image patches of a given

class as a mixture of two distributions [21]: patches are

taken from the actual class distribution (foreground) with

probability (1 − w), and from a clutter distribution (back-

ground) with probability w, with clutter patches being

present in both classes (+ or −). Crucially, we model the

amount of clutter w as varying between images (while being

fixed for a given image).

There are then two sources of variance for the distribu-

tion p(h): the intrinsic variance caused by sampling from a

finite pool for each image (which causes the actual value of

h over foreground patches to deviate from its expectation),

and the variance of w (which causes the expectation of h
itself to fluctuate from image to image depending on their

clutter level). If the pool cardinality N is large, average

pooling is robust to intrinsic foreground variability, since

the variance of the average decreases in 1
N . This is usually

not the case with max pooling, where the variance can in-

crease with pool cardinality depending on the foreground

distribution.

However, if the amount of clutter w has a high variance,

it causes the distribution of the average over the image to

spread, as the expectation of h for each image depends on

w. Even if the foreground distributions are well separated,

variance in the amount of clutter creates overlap between

the mixture distributions if the mean of the background dis-

tribution is much lower than that of the foreground distri-

butions. Conversely, max pooling can be robust to clutter

if the mean of the background distribution is sufficiently

low. This is illustrated on Fig. 2, where we have plotted the

empirical distributions of the average of 10 pooled features

sharing the same parameters. Simulations are run using

1000 images of each class, composed of N = 500 patches.

For each image, the clutter level w is drawn from a truncated

normal distribution with either low (top) or high (bottom)

variance. Local feature values at each patch are drawn from

a mixture of exponential distributions, with a lower mean

for background patches than foreground patches of either
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Figure 2. Empirical probability densities of x = 1
K

PK
j=1 hj ,

simulated for two classes classes of images forming pools of car-

dinality N = 500. The local features are drawn from one of three

exponential distributions. When the clutter is homogeneous across

images (top), the distributions are well separated for average pool-

ing and max pooling. When the clutter level has higher variance

(bottom), the max pooling distributions (dashed lines) are still well

separated while the average pooling distributions (solid lines) start

overlapping.

class. When the clutter has high variance (Fig. 2, bottom),

distributions remain well separated with max pooling, but

have significant overlap with average pooling.

We now refine our analysis in two cases: sparse codes

and vector quantized codes.

5.1.1 Sparse Codes.

In the case of a positive decomposition over a dictionary,

we model the distribution of the value of feature j for each

patch by an exponential distribution with mean µj , variance

µ2
j , and density f(x) = 1

µ j
exp

− x
µj . The choice of an expo-

nential distribution (or a Laplace distribution when decom-

positions are not constrained to be positive) to model sparse

codes seems appropriate because it is highly kurtotic and

sparse codes have heavy tails.

The corresponding cumulative distribution function is

F (x) = 1 − e
− x

µj . The cumulative distribution function of

the max-pooled feature is FN(x) = (1−e
− x

µj )N for a pool

of size N . Clutter patches are sampled from a distribution

of mean µb. Let Nf and Nb denote respectively the num-

ber of foreground and background patches, N = Nf + Nb.

Assuming Nf and Nb are large, Taylor expansions of the

cumulative distribution functions of the maxima yield that

95% of the probability mass of the maximum over the back-

ground patches will be below 95% of the probability mass

of the maximum over the foreground patches provided that

• on classification: max-pooling superior to average pooling

gmax(A) =

(
max
a∈A

a1, . . . ,max
a∈A

ak

)
gavg(A) =

1

|A|
∑

a∈A
a

• with max-pooling, SVM with linear and nonlinear kernel perform
nearly the same

Boureau, Bach, Lecun and Ponce. CVPR 2010. Learning Mid-Level Features for Recognition.



burstiness
[Jégou et al. 2009]

On the burstiness of visual elements

Hervé Jégou Matthijs Douze
INRIA Grenoble, LJK

firstname.lastname@inria.fr

Cordelia Schmid

Figure 1. Illustration of burstiness. Features assigned to the most “bursty” visual word of each image are displayed.

Abstract

Burstiness, a phenomenon initially observed in text re-
trieval, is the property that a given visual element appears
more times in an image than a statistically independent
model would predict. In the context of image search, bursti-
ness corrupts the visual similarity measure, i.e., the scores
used to rank the images. In this paper, we propose a strat-
egy to handle visual bursts for bag-of-features based im-
age search systems. Experimental results on three reference
datasets show that our method significantly and consistently
outperforms the state of the art.

1. Introduction

Image search has received increasing interest in recent
years. Most of the state-of-the-art approaches [1, 5, 14, 16]
build upon the seminal paper by Sivic and Zisserman [20].
The idea is to describe an image by a bag-of-features (BOF)
representation, in the spirit of the bag-of-words representa-
tion used in text retrieval.

This representation is obtained by first computing local
descriptors, such as SIFT [9], for regions of interest ex-
tracted with an invariant detector [13]. A codebook is then
constructed offline by unsupervised clustering, typically a
k-means algorithm [20]. Several other construction meth-
ods, such as hierarchical k-means [14] or approximate k-

1
1169978-1-4244-3991-1/09/$25.00 ©2009 IEEE

• burstiness: descriptors appear more frequently than a statistically
independent model predicts; it hurts performance because bursty
features dominate the image similarity

• on retrieval: the situation is more complex here; max-pooling would
be like keeping only one representative per cell, average pooling like
keeping all, but none is the best choice

Jegou, Douze and Schmid. CVPR 2009. On the burstiness of visual elements.
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learning cell shapes
[Mikulik et al. 2010]

2 A. Mikulı́k et al.

Fig. 1. An example of corresponding patches. A 2D PCA projection of the SIFT descriptors (left);
two most distant patches in the SIFT space and the images where they were detected (right); a set
of sample patches (bottom). The average SIFT distance within the cluster is 278, the maximum
distance is 591.

When combined with a 16 million word vocabulary (one or two orders of magnitude
larger than commonly used), the PR similarity has the following desirable properties:

(i) it is more accurate, i.e. it is more discriminative, than both standard 0–∞ metric
and Hamming embedding.

(ii) the memory footprint of the image representation for PR similarity calculation
is roughly identical to the standard method and smaller than that of Hamming
embedding.

(iii) search with PR similarity is faster than the standard bag-of-words.

As a main contribution of the paper, we present a novel similarity measure that is
learned in an unsupervised manner, requires no extra space (only O(1)) in compari-
son with the bag-of-words and is more discriminative than both 0–∞ and L2-based soft
assignment.

2 Related Work

In this section, approaches to vocabulary construction and soft assignment suitable for
large-scale image search are reviewed and compared.

In [4], the ‘bag of words’ approach to image retrieval was introduced. The vocabulary
(the number of visual words ≈ 104) is constructed using a standard k-means algorithm.
Adopting methodology from text retrieval applications, the image score is efficiently
computed by traversing inverted files related to visual words present in the query. The
inverted file related to a visual word W is a list of image ids that contain the visual
word W . It follows that the time required for scoring the documents is proportional to
the number of different visual words in a query and the average length of an inverted
file.

Hierarchical clustering. The hierarchical k-means and scoring of Nistér and Stewenius
[5] is the first image retrieval approach that scales up. The vocabulary has a hierarchical

• on retrieval: matched across images in an entire dataset, features are
connected into feature tracks

• feature tracks have curved shape in descriptor space, contrary to the
Gaussian assumption—an example of manifold structure

• even if such structure cannot be captured by k-means, cells can still
be connected via feature tracks → vocabulary of 16M words

Mikulik, Perdoch, Chum and Matas. ECCV 2010. Learning a Fine Vocabulary.
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HKM soft assignment

Learning a Fine Vocabulary 3

(a) (b) (c) (d)

Fig. 2. Different approaches to the soft assignment (saturation encodes the relevance): (a) hierar-
chical scoring [5] – the soft assignment is given by the hierarchical structure; (b) soft clustering
[11] assigns features to r nearest cluster centers; (c) hamming embedding [12] – each cell is di-
vided into orthants by a number of hyperplanes, the distance of the orthants is measured by the
number of separating hyperplanes; (d) the set of alternative words in the proposed PR similarity
measure.

structure which allows efficient construction of large and discriminative vocabularies.
The quantization effect are alleviated by the so called hierarchical scoring. In such a
type of scoring, the scoring visual words are not only located in the leafs of the vo-
cabulary tree. The non-leaf nodes can be thought of as virtual or generic visual words.
These virtual words naturally score with lower idf weights as more features are as-
signed to them (all features in their sub-tree). The advantage of the hierarchical scoring
approach is that the soft assignment is given by the structure of the tree and no addi-
tional information needs to be stored for each feature. On the downside, experiments
in [11] show that the quantization artifacts of the hierarchical k-means are not fully
removed by hierarchical scoring, the problems are only shifted up a few levels in the
hierarchy. An illustrative example of the soft assignment performed by the hierarchical
clustering is shown in Fig. 2(a).

Lost in quantization. In [11], an approximate soft assignment is exploited. Each fea-
ture is assigned to n = 3 (approximately) nearest visual words. Each assignment is

weighted by e− d2

2σ2 where d is the distance of the feature descriptor to the cluster
center.

The soft assignment is performed on features in the database as well as the query
features. This results in n times higher memory requirements and n2 times longer run-
ning time – the average length of the inverted file is n times longer and there are up to
n times more visual words associated with the query features. For an illustration of the
soft assignment, see Fig. 2(b).

Hamming embedding. Jégou et al. [12] have proposed to combine k-means quantiza-
tion and binary vector signatures. First, the feature space is divided into relatively small
number of Voronoi cells (20K) using k-means. Each cell is then divided by n inde-
pendent hyper-planes into 2n subcells. Each subcell is described by a binary vector of
length n. Results reported in [12] suggest that the hamming embedding provides good
quantization. The good results are traded off with higher running time requirements and
high memory requirements.

Hamming learned

Mikulik, Perdoch, Chum and Matas. ECCV 2010. Learning a Fine Vocabulary.



descriptor matching

• on retrieval: given two images with descriptors X,Y ⊂ Rd, and
recalling Xc = {x ∈ X : q(x) = c}, bag-of-words similarity on C is

sBoW(X,Y ) ∝
∑

c∈C
wc|Xc||Yc|

=
∑

c∈C
wc
∑

x∈Xc

∑

y∈Yc

1

• if descriptors are available in some form (more space), it is better to
use a more general function of the form

K(X,Y ) : = γ(X)γ(Y )
∑

c∈C
wcM(Xc, Yc)

where M is a within-cell matching function and γ(X) serves for
normalization

Tolias, Avrithis and Jegou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.
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Hamming embedding (HE)
[Jégou et al. 2008]
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are computed very efficiently using an inverted file, which exploits the sparsity
of the BOF, i.e., the fact that δq(xi,j),q(yi′ ) = 0 for most of the (i, j, i′) tuples.

At this point, these scores do not take into account the tf-idf weighting scheme
(see [4] for details), which weights the visual words according to their frequency:
rare visual words are assumed to be more discriminative and are assigned higher
weights. In this case the matching function f can be defined as

ftf-idf(x, y) = (tf-idf (q(y)))2 δq(x),q(y), (7)

such that the tf-idf weight associated with the visual word considered is applied
to both the query and the dataset image in the BOF inner product. Using
this new matching function, the image scores sj become identical to the BOF
similarity measure used in [4]. This voting scheme normalizes the number of votes
by the number of descriptors (L1 normalization). In what follows, we will use the
L2 normalization instead. For large vocabularies, the L2 norm of a BOF is very
close to the square root of the L1 norm. In the context of a voting system, the
division of the score by the L2 norm is very similar to s∗

j = sj/
√

mj , which is a
compromise between measuring the number and the rate of descriptor matches.

2.3 Weakness of Quantization-Based Approaches

Image search based on BOF combines the advantages of local features and of
efficient image comparison using inverted files. However, the quantizer reduces
significantly the discriminative power of the local descriptors. Two descriptors
are assumed to match if they are assigned the same quantization index, i.e.,
if they lie in the same Voronoi cell. Choosing the number of centroids k is a
compromise between the quantization noise and the descriptor noise.

Fig. 1(b) shows that a low value of k leads to large Voronoi cells: the prob-
ability that a noisy version of a descriptor belongs to the correct cell is high.

01
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00

(a) k = 40 (b) k = 10

Fig. 1. Illustration of k-means clustering and our binary signature. (a) Fine clustering.
(b) Low k and binary signature: the similarity search within a Voronoi cell is based
on the Hamming distance. Legend: ·=centroids, �=descriptor, ×=noisy versions of the
descriptor.
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fine vocabulary Hamming embedding

• each descriptor x is binarized into b(x) ∈ {0, 1}d
• pairs within cells are kept only if Hamming distance is at most τ

MHE(Xc, Yc) : =
∑

x∈Xc

∑

y∈Yc

1[dH(b(x), b(y)) ≤ τ ]

Jegou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.



aggregated selective match kernel (ASMK)
[Tolias et al. 2013]

• borrow from HE the idea that descriptor pairs are selected by a
nonlinear function

MHE(Xc, Yc) : =
∑

x∈Xc

∑

y∈Yc

1[dH(b(x), b(y)) ≤ τ ]

• borrow from VLAD the idea that residuals are pooled per cell

MVLAD(Xc, Yc) : = V (Xc)
>V (Yc) =

∑

x∈Xc

∑

y∈Yc

r(x)>r(y)

• combine pooling within cells with selectivity between cells

MASMK(Xc, Yc) : = σα(V̂ (Xc)
>V̂ (Yc))

where x̂ : = x/‖x‖ and σα a nonlinear function

Tolias, Avrithis and Jegou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.
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aggregated selective match kernel (ASMK)

Figure 2. Examples of features mapped to the same visual word, finally being aggregated. Each visual word is drawn with a different color.
Top 25 visual words are drawn, based on the number of features mapped to them.

resembles binary BOW [25] or max pooling [4] which both
tackle burstiness by accounting at most one vote per visual
word. Aggregating without normalizing still allows bursty
features to dominate the total similarity score.

3.4. Binarization SMK� and ASMK�

HE relies on the binary vector bx instead of residual
r(x) = x − q(x). Although the choice of binarization
was adopted for the sake of compactness, a question arises:
What is the performance of the kernel if the full vector are
employed instead? This is what has motivated us to develop
the SMK and ASMK match kernels, which rely on full d-
dimensional descriptors. However, these kernels are costly
in terms of memory. That is why we also develop their bi-
nary versions (denoted with an additional ∗) in this section.

SMK� and ASMK�. The approximated version SMK� of
SMK is similar to HE, the only difference is the inner prod-
uct formulation and the choice of the selectivity function σα

in Equation (18):

SMK�(Xc,Yc) =
∑

x∈Xc

∑

y∈Yc

σα

(
b̂�x b̂y

)
. (23)

It is an approximation of the full descriptor model of Equa-
tion (20), which uses the binary vector b̂ instead of r̂.

Similarly, the approximation ASMK� of the aggregated
version ASMK is obtained by binarizing V (Xc) before ap-
plying the selectivity function:

ASMK�(Xc,Yc) = σα

⎧
⎨
⎩b̂
(∑

x∈Xc

r(x)

)�
b̂

⎛
⎝∑

y∈Yc

r(y)

⎞
⎠
⎫
⎬
⎭ ,

(24)

where b is an element-wise binarization function b(x) =
+1 if x ≥ 0,−1 otherwise. Note that the residual is here

computed with respect to the median as in HE, and not the
centroid. Moreover, in SMK� and ASMK� all descriptors
are projected using the same projection matrix as in HE.

Remark: In LSH, the Hamming distance gives an esti-
mate of the cosine similarity [5] between original vectors
(through arccos function). The differences with HE are that
(i) LSH is based on a set of random projections, whereas HE
uses a randomly oriented orthogonal basis; (ii) HE binarizes
the vectors according to their projected median values.

4. Experiments
This section describes some implementation details and

introduces the datasets and evaluation protocol used in our
experiments. We further present experiments for measuring
the impact of the kernel parameters, and finally compare
our methods against state-of-the-art methods. Most of our
results are presented without spatial verification or query
expansion (QE) to focus on the quality of the initial ranking,
before re-ranking by these complementary methods.

4.1. Implementation and experimental setup

Datasets. We evaluate the proposed methods on 3 publicly
available datasets, namely Holidays [12], Oxford Build-
ings [22] and Paris [23]. Evaluation measure is the mean
Average Precision (mAP). Due to the randomness intro-
duced to the binarized methods (SMK� and ASMK�) by
the random projection matrix, the same as the one used in
the original Hamming Embedding, we create 3 independent
inverted files and measure the average performance.

Features. We have used the Hessian-Affine detector to ex-
tract local features. For Oxford and Paris datasets, we have
used the modified Hessian-Affine detector of Perdoch et
al. [18], which includes the gravity vector assumption and

1405

• apart from saving space, pooling and normalizing per cell helps fight
burstiness

• still, unlike VLAD, due to the nonlinearity we cannot have a low
dimensional embedding

• it is targeting large vocabularies, which, together with compressed
descriptors (as in HE), takes up a lot of space

Jegou, Douze and Schmid. CVPR 2009. On the burstiness of visual elements.



efficient match kernels (EMK)
[Bo and Sminchisescu. NIPS 2009]

• on classification: given two images with descriptors X,Y ⊂ Rd,
bag-of-words similarity on C is

sBoW(X,Y ) ∝
∑

c∈C
|Xc||Yc| =

∑

x∈X

∑

y∈Y
1[q(x) = q(y)]

• use a continuous function κ(x, y) instead, with no codebook

K(X,Y ) : = γ(X)γ(Y )
∑

x∈X

∑

y∈Y
κ(x, y)

• derive an approximate finite-dimensional feature map φ such that
κ(x, y) = φ(x)>φ(y), and

K(X,Y ) =

(
γ(X)

∑

x∈X
φ(x)

)
γ(Y )

∑

y∈Y
φ(y)


 = Φ(X)>Φ(Y )

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.
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efficient match kernels (EMK)

• given a function K(X,Y ) on sets X,Y in the form of a pairwise sum
of nonlinear functions κ(x, y) of the elements x ∈ X, y ∈ Y , we can
decompose it into an inner product of Φ(X), Φ(Y )

• this can be done by

• encoding x 7→ φ(x)
• pooling X 7→ Φ(X) = γ(X)

∑
x∈X φ(x)

• this is always possible for positive-definite functions κ but φ may be
infinite-dimensional; in nonlinear SVM, it is only implicit through κ

• here, we are interested in an explicit, low-dimensional feature map φ,
which can be designed or learned

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.
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• this can be done by

• encoding x 7→ φ(x)
• pooling X 7→ Φ(X) = γ(X)

∑
x∈X φ(x)

• this is always possible for positive-definite functions κ but φ may be
infinite-dimensional; in nonlinear SVM, it is only implicit through κ

• here, we are interested in an explicit, low-dimensional feature map φ,
which can be designed or learned

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.



pyramid matching



histogram intersection
[Swain and Ballard 1991]

• the sum
∑

x∈Xc

∑
y∈Yc 1 appearing in sBoW(X,Y ) implies an all-all

matching; it is often preferable to have an one-one matching instead

• given two histograms x, y of b bins, their histogram intersection is

κHI(x, y) =

b∑

i=1

min(xi, yi)

• this is related to `1 distance by

‖x− y‖1 = ‖x‖1 + ‖y‖1 − 2κHI(x, y)

Swain and Ballard. IJCV 1991. Color Indexing.
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pyramid match kernel (PMK)
[Grauman and Darrell 2005]

• given the descriptors of two images as point sets X,Y in Rd

• a weighted sum of histogram intersections at different levels
approximates their optimal pairwise matching

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.
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pyramid match kernel (PMK)

X Y X0 Y0 min(X0, Y0)

• 1d point sets X,Y on grid of size 1

•
•

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.
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X Y X0 Y0 min(X0, Y0)
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pyramid match kernel (PMK)

X Y X0 Y0 min(X0, Y0)

• 1d point sets X,Y on grid of size 1 - level 0 histograms - intersection

• (2 matches weighted by 1)

• total score 2× 1

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

X Y X1 Y1 min(X1, Y1)

• 1d point sets X,Y on grid of size 2 - level 1 histograms - intersection

• (2 matches weighted by 1) + (2 weighted by 1
2)

• total score 2× 1 + 2× 1
2

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

X Y X2 Y2 min(X2, Y2)

• 1d point sets X,Y on grid of size 4 - level 2 histograms - intersection

• (2 matches weighted by 1) + (2 weighted by 1
2) + (1 weighted by 1

4)

• total score 2× 1 + 2× 1
2 + 1× 1

4

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

• given a set X = {x1, . . . , xn} ⊂ Rd, where distances of elements
range in [1, D]

• let Xi be a histogram of X in Rd on a regular grid of side length 2i

• i ranges from −1, where each bin has at most one element, to
L = dlog2De, where X is contained in a single bin

• given two images with descriptors X,Y ⊂ Rd, their pyramid match is

K∆(X,Y ) = γ(X)γ(Y )

L∑

i=0

1

2i
(κHI(Xi, Yi)− κHI(Xi−1, Yi−1))

= γ(X)γ(Y )

(
1

2L
κHI(XL, YL) +

L−1∑

i=0

1

2i+1
κHI(Xi, Yi)

)

where γ(X) serves for normalization

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.
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PMK is a positive-definite kernel

• κ∆ can be written as a weighted sum of κHI terms, with nonnegative
coefficients

• κHI can be written as a sum of min terms

• min can be written as a dot product:
x φ(x)

3 1 1 1 0 0 0 0 0
5 1 1 1 1 1 0 0 0
min(x, y) = 3 1 1 1 0 0 0 0 0

• therefore, so can κ∆

• but what other function does κ∆ approximate itself?

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.
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PMK as an embedding
[Indyk and Thaper 2003]

• there is an explicit embedding for κHI, therefore also for κ∆

• if |X| ≤ |Y | and π : X → Y is one-to-one, then K∆(X,Y )
approximates the optimal pairwise matching

max
π

∑

x∈X
‖x− π(x)‖−1

1

• this was first shown on the earth mover’s distance

min
π

∑

x∈X
‖x− π(x)‖1

• but PMK is a similarity measure; it allows partial matching and does
not penalize clutter, expect for the normalization

Indyk and Thaper. WSCTV 2003. Fast Image Retrieval via Embeddings.
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PMK and vocabulary tree
[Grauman and Darrell 2007]

(a) Uniform bins (b) Vocabulary-guided bins

Figure 1: Rather than carve the feature space into uniformly-shaped partitions (left), we let the vocabulary
(structure) of the feature space determine the partitions (right). As a result, the bins are better concentrated on
decomposing the space where features cluster, particularly for high-dimensional feature spaces. These figures
depict the grid boundaries for two resolution levels for a 2-D feature space. In both (a) and (b), the left plot
contains the coarser resolution level, and the right plot contains the finer one. Features are red points, bin
centers are larger black points, and blue lines denote bin boundaries.

A partial matching between two point sets is an assignment that maps all points in the smaller set
to some subset of the points in the larger (or equally-sized)set. Given point setsX andY, where
m = |X|, n = |Y|, andm ≤ n, a partial matchingM (X,Y;π) = {(x1,yπ1

), . . . , (xm,yπm
)}

pairs each point inX to some unique point inY according to the permutation of indices specified
by π = [π1, . . . , πm], 1 ≤ πi ≤ n, whereπi specifies which pointyπi

∈ Y is matched toxi ∈ X,
for 1 ≤ i ≤ m. The cost of a partial matching is the sum of the distances between matched points:
C (M(X,Y;π)) =

∑
xi∈X ||xi − yπi

||2. The optimal partial matchingM(X,Y;π∗) uses the
assignmentπ∗ that minimizes this cost:π∗ = argminπ C (M(X,Y;π)). It is this matching that
we wish to efficiently approximate. In Section 3.2 we describe how our algorithm approximates
the costC (M(X,Y;π∗)); for a small increase in computational cost we can also extract explicit
correspondences to estimateπ∗ itself.

3.1 Building Vocabulary-Guided Pyramids

The first step is to generate the structure of the vocabulary-guided (VG) pyramid to define the bin
placement for the multi-resolution histograms used in the matching. This is a one-time process
performed before any matching takes place. We would like thebins in the pyramid to follow the
feature distribution and concentrate partitions where thefeatures actually fall. To accomplish this,
we perform hierarchical clustering on a sample of representative feature vectors fromF .

We randomly select some example feature vectors from the feature type of interest to form the repre-
sentative feature corpus, and perform hierarchicalk-means clustering with the Euclidean distance to
build the pyramid tree. Other hierarchical clustering techniques, such as agglomerative clustering,
are also possible and do not change the operation of the method. For this unsupervised clustering
process there are two parameters: the number of levels in thetreeL, and the branching factork.
The initial corpus of features is clustered intok top-level groups, where group membership is deter-
mined by the Voronoi partitioning of the feature corpus according to thek cluster centers. Then the
clustering is repeated recursivelyL − 1 times on each of these groups, filling out a tree withL total
levels containingki bins (nodes) at leveli, where levels are counted from the root (i = 0) to the
leaves (i = L − 1). The bins are irregularly shaped and sized, and their boundaries are determined
by the Voronoi cells surrounding the cluster centers. (See Figure 1.) For each bin in the VG pyramid
we record its diameter, which we estimate empirically basedon the maximal inter-feature distance
between any points from the initial feature corpus that wereassigned to it.

Once we have constructed a VG pyramid, we can embed point setsfrom S as multi-resolution
histograms. A point’s placement in the pyramid is determined by comparing it to the appropriatek
bin centers at each of theL pyramid levels. The histogram count is incremented for the bin (among
thek choices) that the point is nearest to in terms of the same distance function used to cluster the
initial corpus. We then push the point down the tree and continue to increment finer level counts
only along the branch (bin center) that is chosen at each level. So a point is first assigned to one of
the top-level clusters, then it is assigned to one ofits children, and so on recursively. This amounts
to a total ofkL distances that must be computed between a point and the pyramid’s bin centers.

Given the bin structure of the VG pyramid, a point setX is mapped to its pyramid:Ψ(X) =
[H0(X), . . . ,HL−1(X)], with Hi(X) = [〈p, n, d〉1, . . . , 〈p, n, d〉ki ], and whereHi(X) is a ki-
dimensional histogram associated with leveli in the pyramid,p ∈ Zi for entries inHi(X), and
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depict the grid boundaries for two resolution levels for a 2-D feature space. In both (a) and (b), the left plot
contains the coarser resolution level, and the right plot contains the finer one. Features are red points, bin
centers are larger black points, and blue lines denote bin boundaries.

A partial matching between two point sets is an assignment that maps all points in the smaller set
to some subset of the points in the larger (or equally-sized)set. Given point setsX andY, where
m = |X|, n = |Y|, andm ≤ n, a partial matchingM (X,Y;π) = {(x1,yπ1

), . . . , (xm,yπm
)}

pairs each point inX to some unique point inY according to the permutation of indices specified
by π = [π1, . . . , πm], 1 ≤ πi ≤ n, whereπi specifies which pointyπi

∈ Y is matched toxi ∈ X,
for 1 ≤ i ≤ m. The cost of a partial matching is the sum of the distances between matched points:
C (M(X,Y;π)) =

∑
xi∈X ||xi − yπi

||2. The optimal partial matchingM(X,Y;π∗) uses the
assignmentπ∗ that minimizes this cost:π∗ = argminπ C (M(X,Y;π)). It is this matching that
we wish to efficiently approximate. In Section 3.2 we describe how our algorithm approximates
the costC (M(X,Y;π∗)); for a small increase in computational cost we can also extract explicit
correspondences to estimateπ∗ itself.

3.1 Building Vocabulary-Guided Pyramids

The first step is to generate the structure of the vocabulary-guided (VG) pyramid to define the bin
placement for the multi-resolution histograms used in the matching. This is a one-time process
performed before any matching takes place. We would like thebins in the pyramid to follow the
feature distribution and concentrate partitions where thefeatures actually fall. To accomplish this,
we perform hierarchical clustering on a sample of representative feature vectors fromF .

We randomly select some example feature vectors from the feature type of interest to form the repre-
sentative feature corpus, and perform hierarchicalk-means clustering with the Euclidean distance to
build the pyramid tree. Other hierarchical clustering techniques, such as agglomerative clustering,
are also possible and do not change the operation of the method. For this unsupervised clustering
process there are two parameters: the number of levels in thetreeL, and the branching factork.
The initial corpus of features is clustered intok top-level groups, where group membership is deter-
mined by the Voronoi partitioning of the feature corpus according to thek cluster centers. Then the
clustering is repeated recursivelyL − 1 times on each of these groups, filling out a tree withL total
levels containingki bins (nodes) at leveli, where levels are counted from the root (i = 0) to the
leaves (i = L − 1). The bins are irregularly shaped and sized, and their boundaries are determined
by the Voronoi cells surrounding the cluster centers. (See Figure 1.) For each bin in the VG pyramid
we record its diameter, which we estimate empirically basedon the maximal inter-feature distance
between any points from the initial feature corpus that wereassigned to it.

Once we have constructed a VG pyramid, we can embed point setsfrom S as multi-resolution
histograms. A point’s placement in the pyramid is determined by comparing it to the appropriatek
bin centers at each of theL pyramid levels. The histogram count is incremented for the bin (among
thek choices) that the point is nearest to in terms of the same distance function used to cluster the
initial corpus. We then push the point down the tree and continue to increment finer level counts
only along the branch (bin center) that is chosen at each level. So a point is first assigned to one of
the top-level clusters, then it is assigned to one ofits children, and so on recursively. This amounts
to a total ofkL distances that must be computed between a point and the pyramid’s bin centers.

Given the bin structure of the VG pyramid, a point setX is mapped to its pyramid:Ψ(X) =
[H0(X), . . . ,HL−1(X)], with Hi(X) = [〈p, n, d〉1, . . . , 〈p, n, d〉ki ], and whereHi(X) is a ki-
dimensional histogram associated with leveli in the pyramid,p ∈ Zi for entries inHi(X), and

uniform bins vocabulary-guided bins

• replace regular grid with hierarchical vocabulary cells

• compared to vocabulary tree, there is a principle in assigning cell
weights

• still, its approximation quality suffers at high dimensions

Grauman and Darrell. NIPS 2007. Approximate Correspondences in High Dimensions.



PMK and spatial matching
[Grauman and Darrell 2004]

input 1 input 2 5 dim 32 dim 60 dim input 1 input 2 5 dim 32 dim 60 dim

input 1 input 2 5 dim 32 dim 60 dim input 1 input 2 5 dim 32 dim 60 dim

input 1 input 2 5 dim 32 dim 60 dim input 1 input 2 5 dim 32 dim 60 dim

Figure 4: Shape context subspace captures local contour variations in much fewer dimensions. The optimal correspondences
for feature sets composed of 5 and 32 shape context PCA coefficients are shown here and compared with the correspondences
that result with the raw (60 dim) shape context feature. The optimal correspondence found by the raw high-dimensional
feature is generally achieved by projections onto a much lower dimensional subspace.

computational complexity and distortion of our method.

5.1. Datasets and Representation

We have tested our method on two databases of contours: a set of 10,000 images of synthetic human figure contours in

random poses that were generated with a computer graphics package called Poser [4], and a set of 60,000 handwritten digits

from the benchmark MNIST dataset [12]. The separate test sets with which we query the human figure and digit databases

are of sizes 1,050 and 10,000, respectively. A third set of 1,000 real images from a single human subject in various poses was

also used to query the synthetic image database.

We have experimented with two feature representations: scale and translation invariant contour points, and projections of

shape context histograms onto a low-dimensional subspace. Contour points are extracted from the binary silhouette inputs,

then normalized for scale and translation by subtracting the silhouette’s center of mass from each contour point coordinate

and dividing by the estimated height of the shape. We construct a shape context subspace from 5 x 12 log-polar histograms

extracted from the training sets; we used a sample of 816,000 histograms from the human figure data, and 420,000 from

the digit data. The representation of a novel contour is determined by projecting its shape context histograms onto the

low-dimensional subspace. We found that for our datasets, a 2-D projection adequately captured the descriptive power of

the shape context feature and resulted in good contour matches for our datasets (see Figure 3). Since this representation is

10

optimal matching

Figure 1: Imposing hierarchy of grids on a set of contour points to get its embedding.

4.1. Matching Contours with Approximate EMD

Recall our motivation to design an efficient means of calculating the least cost correspondences between two shape fea-

ture sets: such correspondences are required by a number of effective shape matching algorithms, but typically optimal

solutions make large per-object feature set sizes or large database retrieval problems impractical for these algorithms.

We will thus embed the problem of correspondence between two sets of local shape features into L 1, and use the ap-

proximate solution to match the shapes. The embedded vector resulting from an input point set is high-dimensional,

but very sparse; only O(n log(∆)) entries are non-zero. The time required to embed one point set is O(nd log(∆)).

Thus the computational cost of retrieving the near-optimal feature correspondences for our shape matching method will

be O(nd log(∆)) + O(n log(∆)) = O(nd log(∆)), the cost of embedding two point sets, plus an L1 distance on the sparse

vectors. The exact solutions typically used in shape matching to solve this correspondence (such as dynamic programming,

the simplex algorithm for linear programming, or the Hungarian method for bipartite graph matching) require time cubic or

exponential in n.

Probably the most direct application of EMD for 2-D contour matching is to compose point sets from the literal points on

the two contours (or some subsets of them) and use the Euclidean distance between two contour points’ image coordinates

as the ground distance D in (1). For this simple positional feature, examples must be translated and scaled to be on par

with some reference shape. To embed a set of 2-D contour points, we impose a hierarchy of grids on the image coordinates

themselves, starting at a single cell the size of the largest image (G log ∆), and ending with a grid resolution where each

image coordinate receives its own cell (see Figure 1). For efficiency, once a grid cell is found to be empty, its count is no

longer polled throughout the following, higher resolution grids. We do an empirical study of the distortion induced on the

correspondence solution in Section 5.2.

When two weighted point sets have unequal total weights, EMD does not satisfy the triangle inequality or positivity

property, and thus is not a true metric. Yet while the embedding of EMD into a normed space is given for the metric case of

7

representation

• same idea, applied to image 2d coordinate space for spatial matching

• matching cost is only based on point coordinates; no appearance

Grauman and Darrell. CVPR 2004. Fast Contour Matching Using Approximate Earth Mover’s Distance.



spatial pyramid matching (SPM)
[Lazebnik et al. 2006]

get the following definition of a pyramid match kernel:

κL(X,Y ) = IL +

L−1∑

�=0

1

2L−�

(
I� − I�+1

)
(2)

=
1

2L
I0 +

L∑

�=1

1

2L−�+1
I� . (3)

Both the histogram intersection and the pyramid match ker-
nel are Mercer kernels [7].

3.2. Spatial Matching Scheme

As introduced in [7], a pyramid match kernel works
with an orderless image representation. It allows for pre-
cise matching of two collections of features in a high-
dimensional appearance space, but discards all spatial in-
formation. This paper advocates an “orthogonal” approach:
perform pyramid matching in the two-dimensional image
space, and use traditional clustering techniques in feature
space.1 Specifically, we quantize all feature vectors into M
discrete types, and make the simplifying assumption that
only features of the same type can be matched to one an-
other. Each channel m gives us two sets of two-dimensional
vectors, Xm and Ym, representing the coordinates of fea-
tures of type m found in the respective images. The final
kernel is then the sum of the separate channel kernels:

KL(X,Y ) =

M∑

m=1

κL(Xm, Ym) . (4)

This approach has the advantage of maintaining continuity
with the popular “visual vocabulary” paradigm — in fact, it
reduces to a standard bag of features when L = 0.

Because the pyramid match kernel (3) is simply a
weighted sum of histogram intersections, and because
c min(a, b) = min(ca, cb) for positive numbers, we can
implement KL as a single histogram intersection of “long”
vectors formed by concatenating the appropriately weighted
histograms of all channels at all resolutions (Fig. 1). For
L levels and M channels, the resulting vector has dimen-
sionality M

∑L
�=0 4� = M 1

3 (4L+1 − 1). Several experi-
ments reported in Section 5 use the settings of M = 400
and L = 3, resulting in 34000-dimensional histogram in-
tersections. However, these operations are efficient because
the histogram vectors are extremely sparse (in fact, just as
in [7], the computational complexity of the kernel is linear
in the number of features). It must also be noted that we did
not observe any significant increase in performance beyond
M = 200 and L = 2, where the concatenated histograms
are only 4200-dimensional.

1In principle, it is possible to integrate geometric information directly
into the original pyramid matching framework by treating image coordi-
nates as two extra dimensions in the feature space.
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Figure 1. Toy example of constructing a three-level pyramid. The
image has three feature types, indicated by circles, diamonds, and
crosses. At the top, we subdivide the image at three different lev-
els of resolution. Next, for each level of resolution and each chan-
nel, we count the features that fall in each spatial bin. Finally, we
weight each spatial histogram according to eq. (3).

The final implementation issue is that of normalization.
For maximum computational efficiency, we normalize all
histograms by the total weight of all features in the image,
in effect forcing the total number of features in all images to
be the same. Because we use a dense feature representation
(see Section 4), and thus do not need to worry about spuri-
ous feature detections resulting from clutter, this practice is
sufficient to deal with the effects of variable image size.

4. Feature Extraction

This section briefly describes the two kinds of features
used in the experiments of Section 5. First, we have so-
called “weak features,” which are oriented edge points, i.e.,
points whose gradient magnitude in a given direction ex-
ceeds a minimum threshold. We extract edge points at two
scales and eight orientations, for a total of M = 16 chan-
nels. We designed these features to obtain a representation
similar to the “gist” [21] or to a global SIFT descriptor [12]
of the image.

For better discriminative power, we also utilize higher-
dimensional “strong features,” which are SIFT descriptors
of 16 × 16 pixel patches computed over a grid with spacing
of 8 pixels. Our decision to use a dense regular grid in-
stead of interest points was based on the comparative evalu-
ation of Fei-Fei and Perona [4], who have shown that dense
features work better for scene classification. Intuitively, a
dense image description is necessary to capture uniform re-
gions such as sky, calm water, or road surface (to deal with
low-contrast regions, we skip the usual SIFT normalization
procedure when the overall gradient magnitude of the patch
is too weak). We perform k-means clustering of a random
subset of patches from the training set to form a visual vo-
cabulary. Typical vocabulary sizes for our experiments are
M = 200 and M = 400.

• if X(j), Y (j) are the feature coordinates of images X,Y with descriptors
assigned to visual word j,

KSP(X,Y ) =

k∑

j=1

K∆(X(j), Y (j))

Lazebnik, Schmid and Ponce. CVPR 2006. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene
categories.



spatial pyramid matching (SPM)
[Lazebnik et al. 2006]

get the following definition of a pyramid match kernel:

κL(X,Y ) = IL +

L−1∑

�=0

1

2L−�

(
I� − I�+1

)
(2)

=
1

2L
I0 +

L∑

�=1

1

2L−�+1
I� . (3)

Both the histogram intersection and the pyramid match ker-
nel are Mercer kernels [7].

3.2. Spatial Matching Scheme

As introduced in [7], a pyramid match kernel works
with an orderless image representation. It allows for pre-
cise matching of two collections of features in a high-
dimensional appearance space, but discards all spatial in-
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space.1 Specifically, we quantize all feature vectors into M
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other. Each channel m gives us two sets of two-dimensional
vectors, Xm and Ym, representing the coordinates of fea-
tures of type m found in the respective images. The final
kernel is then the sum of the separate channel kernels:

KL(X,Y ) =

M∑

m=1

κL(Xm, Ym) . (4)

This approach has the advantage of maintaining continuity
with the popular “visual vocabulary” paradigm — in fact, it
reduces to a standard bag of features when L = 0.

Because the pyramid match kernel (3) is simply a
weighted sum of histogram intersections, and because
c min(a, b) = min(ca, cb) for positive numbers, we can
implement KL as a single histogram intersection of “long”
vectors formed by concatenating the appropriately weighted
histograms of all channels at all resolutions (Fig. 1). For
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∑L
�=0 4� = M 1

3 (4L+1 − 1). Several experi-
ments reported in Section 5 use the settings of M = 400
and L = 3, resulting in 34000-dimensional histogram in-
tersections. However, these operations are efficient because
the histogram vectors are extremely sparse (in fact, just as
in [7], the computational complexity of the kernel is linear
in the number of features). It must also be noted that we did
not observe any significant increase in performance beyond
M = 200 and L = 2, where the concatenated histograms
are only 4200-dimensional.

1In principle, it is possible to integrate geometric information directly
into the original pyramid matching framework by treating image coordi-
nates as two extra dimensions in the feature space.
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Figure 1. Toy example of constructing a three-level pyramid. The
image has three feature types, indicated by circles, diamonds, and
crosses. At the top, we subdivide the image at three different lev-
els of resolution. Next, for each level of resolution and each chan-
nel, we count the features that fall in each spatial bin. Finally, we
weight each spatial histogram according to eq. (3).

The final implementation issue is that of normalization.
For maximum computational efficiency, we normalize all
histograms by the total weight of all features in the image,
in effect forcing the total number of features in all images to
be the same. Because we use a dense feature representation
(see Section 4), and thus do not need to worry about spuri-
ous feature detections resulting from clutter, this practice is
sufficient to deal with the effects of variable image size.

4. Feature Extraction

This section briefly describes the two kinds of features
used in the experiments of Section 5. First, we have so-
called “weak features,” which are oriented edge points, i.e.,
points whose gradient magnitude in a given direction ex-
ceeds a minimum threshold. We extract edge points at two
scales and eight orientations, for a total of M = 16 chan-
nels. We designed these features to obtain a representation
similar to the “gist” [21] or to a global SIFT descriptor [12]
of the image.

For better discriminative power, we also utilize higher-
dimensional “strong features,” which are SIFT descriptors
of 16 × 16 pixel patches computed over a grid with spacing
of 8 pixels. Our decision to use a dense regular grid in-
stead of interest points was based on the comparative evalu-
ation of Fei-Fei and Perona [4], who have shown that dense
features work better for scene classification. Intuitively, a
dense image description is necessary to capture uniform re-
gions such as sky, calm water, or road surface (to deal with
low-contrast regions, we skip the usual SIFT normalization
procedure when the overall gradient magnitude of the patch
is too weak). We perform k-means clustering of a random
subset of patches from the training set to form a visual vo-
cabulary. Typical vocabulary sizes for our experiments are
M = 200 and M = 400.

• coupled with BoW, it is a set of joint appearance-geometry histograms

• robust to deformation but not invariant to transformations; applied to
global scene classification

Lazebnik, Schmid and Ponce. CVPR 2006. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene
categories.



Hough pyramid matching (HPM)
[Tolias and Avrithis 2011]

fast spatial matching

• work with a single set of correspondences instead of two sets of
features

• determine a transformation hypothesis by a pair of features and then
use histograms to collect votes in the transformation space

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.
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Hough pyramid matching (HPM)

• a local feature p in image P has position t(p), scale s(p) and
orientation θ(p) given by matrix R(p) ∈ R2×2

F (p) =

(
s(p)R(p) t(p)

0> 1

)

• a correspondence c = (p, q) is a pair of features p ∈ P, q ∈ Q of two
images P,Q and determines relative similarity transformation from p
to q

F (c) = F (q)F (p)−1 =

(
s(c)R(c) t(c)

0> 1

)

with translation t(c) = t(q)− s(c)R(c)t(p), relative scale
s(c) = s(q)/s(p) and rotation R(c) = R(q)R(p)−1 or
θ(c) = θ(q)− θ(p)

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

• the 4-dof relative transformation represented by 4d vector

f(c) = (t(c), s(c), θ(c))

• to enforce one-to-one mapping, two correspondences c = (p, q),
c′ = (p′, q′) are conflicting if they refer to the same feature on either
image, i.e. p = p′ or q = q′

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.
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Hough pyramid matching (HPM)
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• correspondence c contributes by w(c), based e.g. on visual word
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• in a bin b with nb correspondences, each groups with [nb − 1]+ others

• level 0 weight 1
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Hough pyramid matching (HPM)
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Hough pyramid matching (HPM)

c1

c2c3

c4
c5

c6

c7

c8

c9

pyramid level 2 p q similarity score

c1 (2 + 1
2
2 + 1

4
2)w(c1)

c2 (2 + 1
2
2 + 1

4
2)w(c2)

c3 (2 + 1
2
2 + 1

4
2)w(c3)

c4 (1 + 1
2
3 + 1

4
2)w(c4)

c5 (1 + 1
2
3 + 1

4
2)w(c5)

c6 0

c7 0

c8 ( 1
4
6)w(c8)

c9 ( 1
4
6)w(c9)

• correspondence c contributes by w(c), based e.g. on visual word

• conflicting correspondences in the same bin b are erased

• in a bin b with nb correspondences, each groups with [nb − 1]+ others

• level 2 weight 1
4

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)
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• mode seeking: we are looking for regions where density is maximized
in the transformation space

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

• linear in the number of correspondences; no need to count inliers

• robust to deformations and multiple matching surfaces, invariant to
transformations

• only applies to same instance matching

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



nearest neighbor search



nearest neighbor search

• given query point y, find its nearest neighbor with respect to
Euclidean distance within data set X in a d-dimensional space

• image retrieval: same problem; one or multiple queries depending on
global or local representation

• image classification: nearest neighbor or näıve Bayes nearest neighbor
classifier, again depending on representation



k-d tree
[Bentley 1975]

Figure ���

Generally during a nearest

neighbour search only a few

leaf nodes need to be in	

spected�

Figure ���

A bad distribution which
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• index: recursively split at medoid on some dimension, make balanced
binary tree

• search: descend recursively from root, choosing child according to
splitting dimension and value

• backtracking becomes exhaustive at high dimensions

Bentley. CACM 1975. Multidimensional Binary Search Trees Used for Associative Searching.
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randomized k-d trees
[Silpa-Anan and Hartley 1975]

probability on either side of the hyperplane and if it lies on
the opposite side of the splitting hyperplane, further explo-
ration of the tree is required before the cell containing it
will be visited. Using multiple random decompositions
increases the probability that in one of them the query point
and its nearest neighbor will be in the same cell.

3.2 The Priority Search K-Means Tree Algorithm

We have found the randomized k-d forest to be very
effective in many situations, however on other data sets a
different algorithm, the priority search k-means tree, has been
more effective at finding approximate nearest neighbors,
especially when a high precision is required. The priority
search k-means tree tries to better exploit the natural struc-
ture existing in the data, by clustering the data points using
the full distance across all dimensions, in contrast to the
(randomized) k-d tree algorithm which only partitions the
data based on one dimension at a time.

Nearest-neighbor algorithms that use hierarchical parti-
tioning schemes based on clustering the data points have
been previously proposed in the literature [18], [19], [24].
These algorithms differ in the way they construct the parti-
tioning tree (whether using k-means, agglomerative or
some other form of clustering) and especially in the strate-
gies used for exploring the hierarchical tree. We have devel-
oped an improved version that explores the k-means tree
using a best-bin-first strategy, by analogy to what has been
found to significantly improve the performance of the
approximate kd-tree searches.

3.2.1 Algorithm Description

The priority search k-means tree is constructed by partition-
ing the data points at each level into K distinct regions
using k-means clustering, and then applying the same
method recursively to the points in each region. The recur-
sion is stopped when the number of points in a region is
smaller thanK (see Algorithm 1).

Fig. 2. Example of randomized kd-trees. The nearest neighbor is across
a decision boundary from the query point in the first decomposition, how-
ever is in the same cell in the second decomposition.

Fig. 1. Speedup obtained by using multiple randomized kd-trees (100K
SIFT features data set).

2230 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014

q

• index: same as before, but now multiple randomized trees

• search: descend trees in parallel according to shared priority queue

• still, points are stored, distances are exact

Silpa-Anan and Hartley CVPR 2008. Optimized KD-trees for fast image descriptor matching.
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locality sensitive hashing (LSH)
[Charikar 2002]

x

a1

• index: choose ai ∼ N (0, 1); encode each data point x ∈ X by binary
code h(x) : = (ha1(x), . . . , hak

(x)) ∈ {−1, 1}d with hash function

ha(x) = sgn(a>x)

• search: encode query y as h(y) and search by Hamming distance

• not adapted to data distribution

Charikar. STOC 2002. Similarity Estimation Techniques From Rounding Algorithms.
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vector quantization (VQ)
[Gray 1984]

• index: cluster X into codebook C = {c1, . . . , ck}; quantize each
x ∈ X to q(x) = minc∈C ‖x− c‖2 and encode it by log k bits

• search: pre-compute distances ‖y − c‖2 for c ∈ C and approximate
distances ‖y − x‖2 by ‖y − q(x)‖2 where q(x) ∈ C

• small distortion → large k, too large to store, too slow to search

Gray. SPM 1984. Vector quantization.
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product quantization (PQ)
[Jégou et al. 2011]

• index: decompose vectors as x = (x1, . . . , xm), cluster X into
codebook C = C1 × · · · × Cm with k cells each and |C| = km

• search: pre-compute distances ‖yj − c‖2 for c ∈ Cj and approximate
‖y − x‖2 by ‖y − q(x)‖2 =

∑m
j=1 ‖yj − qj(xj)‖2 where qj(xj) ∈ Cj

• a lot of centroids do not represent data and are unused

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



product quantization (PQ)
[Jégou et al. 2011]

• index: decompose vectors as x = (x1, . . . , xm), cluster X into
codebook C = C1 × · · · × Cm with k cells each and |C| = km

• search: pre-compute distances ‖yj − c‖2 for c ∈ Cj and approximate
‖y − x‖2 by ‖y − q(x)‖2 =

∑m
j=1 ‖yj − qj(xj)‖2 where qj(xj) ∈ Cj

• a lot of centroids do not represent data and are unused

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



inverted index
[Jégou et al. 2011]
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• index: train a coarse quantizer Q of k cells; quantize each x ∈ X to
Q(x), compute residual r(x) = x−Q(x) and encode residuals by a
product quantizer q

• search: quantize query y to a fixed number of nearest cells;
exhaustively search by PQ only within those cells

• a lot of points in the coarse cells are too far away from query

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



inverted index
[Jégou et al. 2011]
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• index: train a coarse quantizer Q of k cells; quantize each x ∈ X to
Q(x), compute residual r(x) = x−Q(x) and encode residuals by a
product quantizer q

• search: quantize query y to a fixed number of nearest cells;
exhaustively search by PQ only within those cells

• a lot of points in the coarse cells are too far away from query

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



inverted multi-index
[Babenko and Lempitsky 2012]
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• index: decompose vectors as x = (x1, x2); train two coarse quantizers
Q1, Q2 of k cells each, quantize each x ∈ X to Q1(x1), Q2(x2) and
encode residuals by product quantizers q1, q2

• search: visit cells (c1, c2) ∈ C1 × C2 in ascending order of distance to
y by multi-sequence algorithm

• two coarse quantizers induce a finer partition than one

Babenko and Lempitsky. CVPR 2012. The Inverted Multi-Index.
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• index: decompose vectors as x = (x1, x2); train two coarse quantizers
Q1, Q2 of k cells each, quantize each x ∈ X to Q1(x1), Q2(x2) and
encode residuals by product quantizers q1, q2

• search: visit cells (c1, c2) ∈ C1 × C2 in ascending order of distance to
y by multi-sequence algorithm

• two coarse quantizers induce a finer partition than one

Babenko and Lempitsky. CVPR 2012. The Inverted Multi-Index.



principal component analysis (PCA)

x

y

λ1λ2

u1u2

• given data {x1, . . . ,xn}, compute empirical mean x̄ : = 1
n

∑n
i=1 xi

and covariance matrix

S : =
1

n

n∑

i=1

(xi − x̄)(xi − x̄)>

• then diagonalize S by S = UΛU> where U = (u1 u2) and
Λ = diag(λ1, λ2)



optimized product quantization (OPQ)
[Ge et al. 2013]

• no correlation: PCA-align by diagonalizing cov(X) as UΛU>

• balanced variance: shuffle eigenvalues Λ by permutation π such that
the product

∏
i λi is constant in each subspace

• find codebook Ĉ by PQ on rotated data X̂ : = RX where R : = UP>π
and Pπ is the permutation matrix of π

Ge, He, Ke and Sun. CVPR 2013. Optimized Product Quantization for Approximate Nearest Neighbor Search.



locally optimized product quantization (LOPQ)
[Kalantidis and Avrithis 2014]

• same as PQ with inverted index (or multi-index), but residuals are
encoded by OPQ

• better on multimodal data: residual distributions closer to Gaussian
assumption

Kalantidis and Avrithis. CVPR 2014. Locally Optimized Product Quantization for Approximate Nearest Neighbor Search.
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• same as PQ with inverted index (or multi-index), but residuals are
encoded by OPQ

• better on multimodal data: residual distributions closer to Gaussian
assumption
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local principal component analysis
[Kambhatla & Leen 1997]

Copyright © 2001 All Rights Reserved

• cluster data, then apply PCA per cell

• captures the support of data distribution

• multimodal (e.g. mixture) distributions
• distributions on nonlinear manifolds

Kambhatla and Leen. NC 1997. Dimension Reduction By Local Principal Component Analysis.



manifold learning

• e.g. Isomap: apply PCA to the geodesic (graph) distance matrix

• e.g. kernel PCA: apply PCA to the Gram matrix of a nonlinear kernel

• other topology-preserving methods are only focusing on distances to
nearest neighbors

• many classic methods use eigenvalue decomposition and most do not
learn and explicit mapping from the input to the embedding space



summary

• bag of words: treating geometry separately from appearance, and
quantizing descriptors

• BoW for instance and class recognition: what is common, what is
different

• k-means, HKM, vocabulary tree, AKM, soft/multiple assignment, max
pooling, burstiness

• beyond BoW—matching between sets of features/descriptors that
cannot be expressed as dot product: HE, VLAD, ASMK

• design or learn embeddings: EMK, PMK, SPM, HPM?

• a sum of similarities is better than a sum of distances

• nearest neighbor search: inverted index, multi-index, trees, forests,
hashing, compression

• PCA and beyond: we should learn the manifold



discussion



representation

• convolution is linear + translation invariant (or equivariant) and is the
only function having these properties

• Gabor filters or histograms of gradient orientations are more or less the
same thing and are just the first layer of extracting a representation

• they record responses at every possible position, scale and orientation,
resulting in a 4-dimensional representation; rotation and change of
scale in the image behave like translation in the representation space

• convolution means that for every pixel we are looking at some spatial
neighborhood (in the image domain), but the image has only one
channel (grayscale)

• histograms can be expressed as two stages of encoding + pooling;
then we can generalize these operations for the next layers
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same thing and are just the first layer of extracting a representation

• they record responses at every possible position, scale and orientation,
resulting in a 4-dimensional representation; rotation and change of
scale in the image behave like translation in the representation space

• convolution means that for every pixel we are looking at some spatial
neighborhood (in the image domain), but the image has only one
channel (grayscale)
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then we can generalize these operations for the next layers



codebooks

• so, for the second layer we still have histograms of some kind but now
they are over vectors (the filter responses of the first stage) rather
than scalars (orientation and scale)

• to make a histogram we need a finite set of such vectors, and this we
obtain through vector quantization (or sampling) of the layer one
responses of a given dataset

• so, the concept that such representations are “hand-crafted” is
incorrect; codebooks are learned from data in an unsupervised fashion

• codebook size, parameters in the encoding and pooling stages etc.
are just hyperparameters that will we learn through cross-validation

• in contrast to layer one, there is no spatial neighborhood here (with
the exception of HMAX) but there is depth, i.e. a number of
channels corresponding to the dimensions of these vectors; we will
combine both, resulting in 3-dimensional filter kernels
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local features

• depending on the task (e.g. stereopsis, motion estimation, instance
recognition compared to class recognition), not all spatial regions are
equally important

• classification works best with dense features, but still, through
encoding, the responses to most “visual words” are zero; so there
some sparsity in the representation, at least before pooling

• in order to make change of scale really behave like translation in the
representation space, we also need scale normalization and a logarithm

• operators that detect local features can be expressed as convolution
followed by some kind of competition, but they can require more than
one layers with nonlinearities in between; we will follow this idea for
more complex patterns

• when it comes a sparse set of local features, matching becomes easier
to formulate compared to e.g. continuous distributions
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matching

• descriptors are really meant to be used for matching one image to
another (e.g. for instance recognition) or one image to a pattern (for
classification)

• we want to learn a descriptor such that dot product will be good
enough for matching

• we can start by thinking about pairwise matching between two sets of
descriptors and come up with (design or learn) a representation,
maybe at a higher dimension, such that dot product will be
approximating this pairwise matching process

• there should be some invariance to geometric transformations;
whether this should be designed or learned is up to discussion
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