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bag of words



image matching

e so far, we have a representation that is very robust in matching
different views of the same object or scene—same instance—to be
used e.g. for retrieval

e the same representation can be used in matching views of different
instances of the same category—same class—to be used e.g. for
classification or detection



image matching

so far, we have a representation that is very robust in matching
different views of the same object or scene—same instance—to be
used e.g. for retrieval

the same representation can be used in matching views of different

instances of the same category—same class—to be used e.g. for
classification or detection

main differences

instance  class

features sparse dense
descriptors same
vocabulary fine coarse

geometry rigid flexible




spatial matching—same instance

e now robust to scale, viewpoint, occlusion, clutter, lighting

e and very fast



spatial matching—same instance

e now robust to scale, viewpoint, occlusion, clutter, lighting
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spatial matching—same class
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o solve for feature correspondence, flexible transformation and outliers
on all possible correspondence pairs by joint optimization

e very expensive

Berg, Berg and Malik. CVPR 2005. Shape Matching and Object Recognition Using Low Distortion Correspondences.



spatial matching—same class

o solve for feature correspondence, flexible transformation and outliers
on all possible correspondence pairs by joint optimization

e very expensive and error prone

Berg, Berg and Malik. CVPR 2005. Shape Matching and Object Recognition Using Low Distortion Correspondences.



geometry

e spatial matching on same instance is robust, but expensive

® we can

encode position, e.g. with dense features; easier to match, but
we loose invariance

discard geometry altogether and use a global representation; even
easier, we maintain invariance, but loose discriminative power
discard geometry as a first step, then bring it back

make it more efficient?



geometry

e spatial matching on same instance is robust, but expensive
e we can
e encode position, e.g. with dense features; easier to match, but
we loose invariance
e discard geometry altogether and use a global representation; even
easier, we maintain invariance, but loose discriminative power
e discard geometry as a first step, then bring it back
e make it more efficient?
e rigid transformations won't work for classification, and matching is
even more expensive
e make it more flexible?
e make it more efficient?
e maintain invariance?



matching discriminative local features
[Lowe, ICCV 1999]

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



matching discriminative local features
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Lowe. ICCV 1999. Object recognition from local scale-invariant features.



matching discriminative local features
[Lowe, ICCV 1999]

features

normalized features

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



appearance

e matching appearance via descriptors should be easier than geometry

e but

if we have positions e.g. with dense features, we know what to
match (but we loose invariance)

otherwise, we need to find correspondences (expensive)

we can apply some pooling in image space or in descriptor space;
more efficient; it may help or not

global pooling is the most efficient (but is not as discriminative)
local descriptors take up a lot of space; with pooling or not, we
can compress them



forget about geometry: bag-of-words
[Sivic and Zisserman 2003]

Object Bag of ‘words’

e in fact, discarding geometry (bag) is one thing and quantizing
descriptors (words) is another

Image credit: Fei-Fei, Fergus and Torralba. CVPR 2007 Tutorial. Recognizing and Learning Object Categories.



vector quantization — visual words

e query vs. dataset image

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization — visual words

e pairwise descriptor matching

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization — visual words

o pairwise descriptor matching for every dataset image

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization — visual words

e similar descriptors should all be nearby in the descriptor space

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization — visual words

e let's quantize them into visual words

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



vector quantization — visual words

e now visual words act as a proxy; no pairwise matching needed

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag-of-words and “cosine” similarity

o each image is represented by a single vector z € R*, where k is the
size of the codebook

e each element z; = w;n; where w; fixed weight per visual word (e.g.
inverse document frequency) and n; the number of occurrences of this
word in the image

e this vector then typically normalized, e.g. ||z||1 =1 or ||z|2 =1

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag-of-words and “cosine” similarity

o each image is represented by a single vector z € R*, where k is the
size of the codebook

e each element z; = w;n; where w; fixed weight per visual word (e.g.
inverse document frequency) and n; the number of occurrences of this
word in the image

e this vector then typically normalized, e.g. ||z||1 =1 or ||z|2 =1

e given two images represented by z,y, similarity is usually measured by
dot product
sBow(2,y) 1 = ZTY

e with /5 normalization, this is equivalent to measuring Euclidean
distance ||z — y|| because ||z — y||> =2(1 —z"y)

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag-of-words for retrieval

o given a set of n images represented by matrix Z € R¥*" (each image
as a column) and query image q, we need a vector of similarities

S = SBOW(Z7 q) = ZTq

and then sort s by descending order

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag-of-words for retrieval

o given a set of n images represented by matrix Z € R¥*" (each image
as a column) and query image q, we need a vector of similarities

S = SBOW(27 q) = ZTq

and then sort s by descending order

e when k£ > p, where p is the number of features per image on average,
Z and q are sparse

e rather than whether a word is contained in an image, ask which
images contain a given word

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



inverted file indexing

54 54
67 67
72 72
A Jy Jy A A A A Jy Jy A A
query
121314 |15|16 17|18 | 19|20 | 21|22
images

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.




inverted file indexing

\

67 67
72 72
query v Y v
1 1 1
121314 |15|16 17|18 | 19|20 | 21|22
images

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.




inverted file indexing

54 54
67 67 >
72 72
query A\ v A\
1 2 2 1
121314 |15|16 17|18 | 19|20 | 21|22
images

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.




inverted file indexing

54 54
67 67
72 72 > [
query v v v
1 3 1 2 1|1
12|13 |14 15|16 |17 18|19 |20 |21 | 22

images

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



inverted file indexing

54 54
67 67
72 72
query
ranked > 3 | 2 1)1
shortlist 12 |13 | 14|[ 15 |[16 | 17 | 18| 19 |20 | 21 | 22
images

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



back to geometry: re-ranking

e dot product similarity is fast but quantized descriptors are not
discriminative enough; performs poorly in the presence of distractors

e perform spatial matching only on top-ranking images, and re-ranking
according to a score based on geometry, e.g. number of inliers

e but to save space, descriptors are not available: tentative
correspondences are based on visual words, and there are too many
(too features are in correspondence if they are assigned to the same
visual word)



back to geometry: re-ranking

original images

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

local features

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

tentative correspondences: too many

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



back to geometry: re-ranking

250
s (£7 R 0

Al

inliers: now more expensive to find

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



bag of words for classification

e each image represented by z € R”; each element z; the number of
occurrences of visual word ¢; in the image

Csurka, Dance, Fan, Willamowski and Bray. SLCV 2004. Visual Categorization With Bags of Keypoints.



bag of words for classification

o each image represented by z € R¥; each element z; the number of
occurrences of visual word ¢; in the image

e Naive Bayes: chose maximum posterior probability of class C' given
image z assuming features are independent — linear classifier with
parameters estimated by visual word statistics on training set

Csurka, Dance, Fan, Willamowski and Bray. SLCV 2004. Visual Categorization With Bags of Keypoints.



Csurka,

bag of words for classification

each image represented by z € R¥; each element z; the number of
occurrences of visual word ¢; in the image

Naive Bayes: chose maximum posterior probability of class C' given
image z assuming features are independent — linear classifier with
parameters estimated by visual word statistics on training set

support vector machine (SVM): images z,y compared by kernel
function k(z,y); if k(z,y) = z'y, this is again a linear classifier and
is a standard choice at large scale

Dance, Fan, Willamowski and Bray. SLCV 2004. Visual Categorization With Bags of Keypoints.



codebooks



vector quantization: k-means clustering
[MacQueen 1967]
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MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]
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initial centroids

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]

Voronoi cells

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering

[MacQueen 1967]

points assigned to nearest centroids

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering

[MacQueen 1967]

centroids move to mean per cell

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering
[MacQueen 1967]
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MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.

iterate until convergence



vector quantization: k-means clustering

[MacQueen 1967]
——__

iterate until convergence

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering

[MacQueen 1967]
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iterate until convergence

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering

[MacQueen 1967]
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¥
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iterate until convergence



vector quantization: k-means clustering

[MacQueen 1967]
——__

R

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.

iterate until convergence



vector quantization: k-means clustering

« objective: given dataset X C R?, find codebook C' € R¢, with
|C| = k, and quantizer function ¢ : R¢ — C, minimizing distortion

E(C.q):= ) |z —q()]?

zeX

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering

* objective: given dataset X C R, find codebook C'  R?, with
|C| = k, and quantizer function ¢ : R¢ — C, minimizing distortion

E(C,q) =) |z —q(2)|?

zeX

e regardless of C', ¢ should map vector x to its nearest centroid

) = argmin |z — c|

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



vector quantization: k-means clustering

* objective: given dataset X C R, find codebook C'  R?, with
|C| = k, and quantizer function ¢ : R¢ — C, minimizing distortion

E(C,q) =) |z —q(2)|?

zeX

e regardless of C', ¢ should map vector x to its nearest centroid

) = argmin |z — c|

e algorithm: at each iteration, given the set X, = {z € X : q(z) = ¢}
of points assigned to centroid ¢, (assignment step), ¢ moves to their
mean (update step)

MacQueen. SMSP 1967. Some Methods for Classification and Analysis of Multivariate Observations.



codebook size
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Nr. Visual Words

e classification: thousands

e depends on a lot of factors e.g. the number of features in the image
representation and size and variability of the dataset

van Gemert, Veenman, Smeulders and Geusebroek PAMI 2010. Visual Word Ambiguity.



codebook size

: -+-Bag of words

——Spatial
0'450 2 4 6 8 10 12
Vocabulary Size % 10°

e instance retrieval: millions

e depends on a lot of factors e.g. the number of features in the image
representation and size and variability of the dataset

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



hierarchical k-means (HKM)

[Fukunaga and Narendra 1975]

e partition data into b clusters using k-means

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means (HKM)

[Fukunaga and Narendra 1975]

e within each cluster, partition data into b clusters

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means (HKM)

[Fukunaga and Narendra 1975]

e and repeat; b is called the branching factor

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means (HKM)

[Fukunaga and Narendra 1975]

o at ¢ levels, there are b’ total clusters

Fukunaga and Narendra. ToC 1975. A Branch and Bound Algorithm for Computing K-Nearest Neighbors.



hierarchical k-means

e intensity: ratio of first to second neighbor distance

Muja and Lowe. ICCV 2009. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration.



vocabulary tree
[Nister and Stewenius. CVPR 2006]

e apply k-means hierarchically and
build a fine partition tree

e descriptors descend from root to
leaves by finding nearest node at
each level

Nister and Stewenius. CVPR 2006. Scalable Recognition With a Vocabulary Tree.



vocabulary tree
[Nister and Stewenius. CVPR 2006]

e apply k-means hierarchically and
build a fine partition tree

e descriptors descend from root to
leaves by finding nearest node at
each level

e image represented by z; = w;n;
as in BoW, but now there is one
element per node including
internal nodes

o dataset searched by inverted files
at leaves

Nister and Stewenius. CVPR 2006. Scalable Recognition With a Vocabulary Tree.



vocabulary tree
[Nister and Stewenius. CVPR 2006]

however:

e no principled way of defining w;
across levels

Nister and Stewenius. CVPR 2006. Scalable Recognition With a Vocabulary Tree.



vocabulary tree
[Nister and Stewenius. CVPR 2006]

however:

e no principled way of defining w;
across levels

e distortion minimized only locally;
points get assigned to leaves
that are not globally nearest

Nister and Stewenius. CVPR 2006. Scalable Recognition With a Vocabulary Tree.



approximate k-means (AKM)
[Philbin et al. 2007]

0O O O O O 0 0 0 o 0o 0o o

o with branching factor b = 10 and ¢ = 6 levels, HKM yields k = 105
visual words; complexity is O(nb/)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



approximate k-means (AKM)
[Philbin et al. 2007]

o flat k-means with e.g. n = 107 points and k = 10° centroids is
prohibitive; complexity is O(nk), because each assignment is O(k)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



approximate k-means (AKM)
[Philbin et al. 2007]

0O O O O ©) 0O 0O 0 0 0o o0 o

e approximate nearest neighbor search to find the nearest centroid: each
assignment is now O(log k), and complexity drops to O(nlog k)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



approximate k-means (AKM)
[Philbin et al. 2007]

0O O O O O ©c 0O 0 0O 0O 0O 0o 0o O

e approximate nearest neighbor search to find the nearest centroid: each
assignment is now O(log k), and complexity drops to O(nlog k)

e search through multiple randomized trees (comparison to HKM in
color)

Muja and Lowe. ICCV 2009. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration.



approximate k-means (AKM)

e if the sole purpose of the hierarchy is to accelerate assignment, both
at learning and at search, it is better to use a flat vocabulary
combined with a more principled nearest neighbor search method

e however, with appropriate node weighting, a hierarchical structure can
help (see pyramid matching later on)

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



pipeline, again

e given codebook C = {c1,...,c;} C R?
e given image with descriptors z; € R? at positions 1; € R?,
i=1,...,ninto a; € R¥

Boureau, Bach, Lecun and Ponce. CVPR 2010. Learning Mid-Level Features for Recognition.



pipeline, again

given codebook C = {ec1,...,c,} C RY
o given image with descriptors ; € R? at positions y; € R2,
i=1,...,ninto a; € R¥

encode each descriptor x; into a; € RF

a;:=F(x;;C) := (f(z4,¢1;C), ..., f(zi,cp; C))

pool each spatial region R;,j =1,...,m into z/ € RF

7 :=g({a; : y; € R;})

Boureau, Bach, Lecun and Ponce. CVPR 2010. Learning Mid-Level Features for Recognition.



pipeline, again

o given codebook C' = {c1,...,c;} C R?
o given image with descriptors ; € R? at positions y; € R2,
i=1,...,ninto a; € R¥

e encode each descriptor x; into a; € RF
a;:=F(x;;C) := (f(z4,¢1;C), ..., f(zi,cp; C))
e pool each spatial region R;,j =1,...,m into z/ € RF
7l =g({a;:y; € R;})
e concatenate into z € R¥™
z:=(z'...;2™)
e global pooling is just m =1

Boureau, Bach, Lecun and Ponce. CVPR 2010. Learning Mid-Level Features for Recognition.



soft assignment
[van Gemert et al. 2008]

o A: ok; l: ambiguous; 9: not represented

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment
[van Gemert et al. 2008]

0.5 0.5
0.4 A ¢ 2] 0.4 A @ o)
0.3 0.3
0.2 0.2
0.1 0.1
0 — 0
abcdef ghi|j abcdefghi]|j
Traditional Codebook Visual Word Uncertainty
(HIN LI v .
0.3 03
0.2 0.2
0.1 0.1
0 0
abcdefghi]| abcdefghi]|
Visual Word Plausibility Kernel Codebook

o A: ok; l: ambiguous; 9: not represented

o left: assigned to nearest neighbor; right: to all visual words with
different weights

e top: total weight normalized to one; bottom: depends on distance

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment

e r-nearest neighbors of = in C: NN¢(z)

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment

e r-nearest neighbors of = in C: NN¢(z)

e kernel function

h(z) = ha(w;0) : = N(0,0°T)(z) o exp (—M>

202

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment

e r-nearest neighbors of z in C: NN (x)

e kernel function

T 2
h(z) = ha(z;0) := N(0,06°I)(z) o exp (_””>

202

e encoding descriptor x into visual word ¢

visual word
f(@.eC) nearest all
fixed weight Lle € NN¢ ()] > h(z—c;)
“BoW" “uncertainty”
I — —
variable weight | L€ € NNc(@)lh(@ —c) (@ —c)
plausibility kernel

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment

e on classification: best model is “uncertainty”

‘ B h(z —c¢)
A T )

e it is better to contribute to visual words even if all are far away

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment

e on classification: best model is “uncertainty”

h(z —c¢)
flz,6;C) = =——F"—
o 2 Mz =)
e it is better to contribute to visual words even if all are far away
o we shall see this is the softmax of negative distances — ||z — c||?

e it is also the responsibility of visual word ¢ for descriptor z in a
Gaussian mixture model with C' as components

van Gemert, Geusebroek, Veenman and Smeulders. ECCV 2008. Kernel Codebooks for Scene Categorization.



soft assignment
[Liu et al. 2011]

e on classification: it turns out, it is better to limit contributions to r
nearest neighbors

h(z —c)

25 Wz —¢j)

e this is attributed to respecting the manifold structure of the data, and
it superior to more expensive sparse coding that have been proposed
in the meantime

f(z,¢,C) = 1]c € NNg(2)]

Liu, Wang and Liu. ICCV 2011. In Defense of Soft-assignment Coding.



soft assignment
[Philbin et al. 2008]

e on retrieval: "kernel” is followed on r nearest neighbors
f(z,¢;C) = 1[c € NNg(z)]h(z — ¢)

e it is better to discard descriptors if they are not well represented

Philbin, Chum, Sivic, Isard and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large
Scale Image Databases.



soft assignment
[Philbin et al. 2008]

e on retrieval: “kernel” is followed on r nearest neighbors
f(z,¢;C) = 1[c € NNg(z)]h(z — ¢)

e it is better to discard descriptors if they are not well represented

e r should be small: this applies to dataset images and increases the
required index space and query time (including spatial matching) by r

Philbin, Chum, Sivic, Isard and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large
Scale Image Databases.



multiple assignment
[Jégou et al. 2010]

e on retrieval: same as before, but now applies only to query images

o f(x,c;C) further limited to visual words at distance < ad; from z,
where d; is the distance of NN} (z)

e index space maintained as in standard hard assignment, but query
time is still increased by r

Jegou, Douze and Schmid. [JCV 2010. Improving Bag-of-Features for Large Scale Image Search.



max pooling vs. average pooling
[Boureau et al. 2010]

250 .
—average pooling, class +
200r —average pooling, class
= 150F ==max pooling, class +
‘51007 -- max pooling, class —
50r “,,,,.“.m\ ceein ]
% 5 10 15

X

e on classification: rnax—pooling superior to average pooIing
Jmax A) = maxai,...,maxa g. A — a
ma. ac 1 ac k avg | ’

e with max-pooling, SVM with linear and nonlinear kernel perform
nearly the same

Boureau, Bach, Lecun and Ponce. CVPR 2010. Learning Mid-Level Features for Recognition.



burstiness
[Jégou et al. 2009]

e burstiness: descriptors appear more frequently than a statistically
independent model predicts; it hurts performance because bursty
features dominate the image similarity

e on retrieval: the situation is more complex here; max-pooling would
be like keeping only one representative per cell, average pooling like
keeping all, but none is the best choice

Jegou, Douze and Schmid. CVPR 2009. On the burstiness of visual elements.



beyond codebooks



Mikulik,

learning cell shapes
[Mikulik et al. 2010]

on retrieval: matched across images in an entire dataset, features are
connected into feature tracks

feature tracks have curved shape in descriptor space, contrary to the
Gaussian assumption—an example of manifold structure

even if such structure cannot be captured by k-means, cells can still
be connected via feature tracks — vocabulary of 16 words

Perdoch, Chum and Matas. ECCV 2010. Learning a Fine Vocabulary.



learning cell shapes

Hamming learned

Mikulik, Perdoch, Chum and Matas. ECCV 2010. Learning a Fine Vocabulary.



descriptor matching

e on retrieval: given two images with descriptors X, Y ¢ R?, and
recalling X, = {z € X : q(x) = ¢}, bag-of-words similarity on C'is

sBow (X, Y) o 3 we| X[V
ceC

=D we ) )1

ceC reX.yeYe

Tolias, Avrithis and Jegou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



descriptor matching

e on retrieval: given two images with descriptors X, Y ¢ R?, and
recalling X, = {z € X : q(x) = ¢}, bag-of-words similarity on C'is

$Bow (X, V) o¢ >~ we| X[ Ye|
ceC

=D we ) )1

ceC rzeXcyeYe

o if descriptors are available in some form (more space), it is better to
use a more general function of the form

K(X7 Y) = V(X)'V(Y> Z wa(Xca ch)
ceC

where M is a within-cell matching function and ~(X) serves for
normalization

Tolias, Avrithis and Jegou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



Hamming embedding (HE)

[Jégou et al. 2008]

fine vocabulary Hamming embedding

o each descriptor z is binarized into b(x) € {0,1}4

e pairs within cells are kept only if Hamming distance is at most 7

Mye(Xe, Ye) = ) > Ldn(b(@), by)) < 7]

rzeXe yEYc

Jegou, Douze and Schmid. ECCV 2008. Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search.



aggregated selective match kernel (ASMK)

[Tolias et al. 2013]

e borrow from HE the idea that descriptor pairs are selected by a
nonlinear function

Mug(Xe,Ye) =Y ) 1fdu(b(x),b(y)) < 7]

zeXcyeYe

e borrow from VLAD the idea that residuals are pooled per cell

Myiap(Xe, Ye) 1= V(X => > (=

reX.yeYe

Tolias, Avrithis and Jegou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



aggregated selective match kernel (ASMK)

[Tolias et al. 2013]

e borrow from HE the idea that descriptor pairs are selected by a
nonlinear function

Mug(Xe,Ye) =Y ) 1fdu(b(x),b(y)) < 7]

zeXcyeYe

e borrow from VLAD the idea that residuals are pooled per cell

Myiap(Xe, Ye) 1= V(X => > (=

reX.yeYe
e combine pooling within cells with selectivity between cells
Masmk (X, Ye) 1= 0 (V(X) TV (Y2))

where & : = z/||z|| and o, a nonlinear function

Tolias, Avrithis and Jegou. ICCV 2013. To Aggregate or not to Aggregate: Selective Match Kernels for Image Search.



aggregated selective match kernel (ASMK)
= p— . [

AL e

e apart from saving space, pooling and normalizing per cell helps fight
burstiness

e still, unlike VLAD, due to the nonlinearity we cannot have a low
dimensional embedding

e it is targeting large vocabularies, which, together with compressed
descriptors (as in HE), takes up a lot of space

Jegou, Douze and Schmid. CVPR 2009. On the burstiness of visual elements.



efficient match kernels (EMK)
[Bo and Sminchisescu. NIPS 2009]

e on classification: given two images with descriptors X, Y c R¢,
bag-of-words similarity on C'is

sow (X, Y) oc Y X Yol = D Y Lg(w) = q(y)]

ceC zeX yey

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.
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[Bo and Sminchisescu. NIPS 2009]

e on classification: given two images with descriptors X, Y c R¢,
bag-of-words similarity on C'is

sow (X, Y) oc Y X Yol = D Y Lg(w) = q(y)]

ceC zeX yey

e use a continuous function (z,y) instead, with no codebook

K(X,Y):=9X)Y) > klx,y)

zeX yeY

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.



efficient match kernels (EMK)
[Bo and Sminchisescu. NIPS 2009]

e on classification: given two images with descriptors X, Y c R¢,
bag-of-words similarity on C' is

sow (X, Y) Z | Xe|[Ye| = Z Z 1[g(x) = q(y)]
ceC zeX yey
e use a continuous function k(z,y) instead, with no codebook
K(X,Y):=9X)Y) > klx,y)
zeX yeY

e derive an approximate finite-dimensional feature map ¢ such that

k(z,y) = ¢(x) d(y), and

K(X,Y) = ( )Y oz > V(Y)Y ely) | = (X)) e(Y)

zeX yey

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.



efficient match kernels (EMK)

e given a function K(X,Y) on sets X,Y in the form of a pairwise sum
of nonlinear functions x(x,y) of the elements x € X, y € Y, we can
decompose it into an inner product of ®(X), ®(Y)

e this can be done by
e encoding x — ¢(x)

e pooling X = ®(X) =vy(X) >, cx o(x)

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.
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e given a function K(X,Y) on sets X,Y in the form of a pairwise sum
of nonlinear functions x(x,y) of the elements x € X, y € Y, we can
decompose it into an inner product of ®(X), ®(Y)

e this can be done by

e encoding x — ¢(x)
e pooling X = ®(X) = v(X) > cx ()

e this is always possible for positive-definite functions x but ¢ may be
infinite-dimensional; in nonlinear SVM, it is only implicit through
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efficient match kernels (EMK)

e given a function K(X,Y) on sets X,Y in the form of a pairwise sum
of nonlinear functions x(x,y) of the elements x € X, y € Y, we can
decompose it into an inner product of ®(X), ®(Y)

e this can be done by

e encoding x — ¢(x)
e pooling X = ®(X) = v(X) > cx ()

e this is always possible for positive-definite functions x but ¢ may be
infinite-dimensional; in nonlinear SVM, it is only implicit through

e here, we are interested in an explicit, low-dimensional feature map ¢,
which can be designed or learned

Bo and Sminchisescu. NIPS 2009. Efficient Match Kernel Between Sets of Features for Visual Recognition.



pyramid matching



histogram intersection
[Swain and Ballard 1991]

o thesum > v > oy, 1 appearing in sgow/(X,Y) implies an all-all
matching; it is often preferable to have an one-one matching instead

Swain and Ballard. 1JCV 1991. Color Indexing.
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histogram intersection
[Swain and Ballard 1991]
o thesum > v > oy, 1 appearing in sgow/(X,Y) implies an all-all
matching; it is often preferable to have an one-one matching instead

e given two histograms x, y of b bins, their histogram intersection is

(. ) zmm i)

Swain and Ballard. 1JCV 1991. Color Indexing.



histogram intersection
[Swain and Ballard 1991]
o thesum > v > oy, 1 appearing in sgow/(X,Y) implies an all-all
matching; it is often preferable to have an one-one matching instead

e given two histograms x, y of b bins, their histogram intersection is

Kui(z,y) Zmln i, Yi)

e this is related to ¢; distance by

[z =yl = llzll + lyll = 2r0 (2, y)

Swain and Ballard. 1JCV 1991. Color Indexing.



pyramid match kernel (PMK)

[Grauman and Darrell 2005]

o given the descriptors of two images as point sets X,Y in R?

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

[Grauman and Darrell 2005]

H
R = R
=
. oﬁa‘«:a = 3=
= ~ = 4
® 0w - = W
® = =
= =

o given the descriptors of two images as point sets X,Y in R?

e a weighted sum of histogram intersections at different levels
approximates their optimal pairwise matching

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

X Y

e 1d point sets X,Y on grid of size 1

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

X Y Xo Yo
I I I I

e 1d point sets X,Y on grid of size 1 - level 0 histograms

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

X Y Xo Yo min(Xo, o)

I I I I I I I
E . i | i}
o | | l

e 1d point sets X, Y on grid of size 1 - level 0 histograms - intersection

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

X Y Xo Yo min(Xo, o)

I I I I I I I
E__. | | .
: i | |

e 1d point sets X,Y on grid of size 1 - level 0 histograms - intersection
* (2 matches weighted by 1)

e total score 2 x 1

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

Y: min(Xl, YI)

e 1d point sets X,Y on grid of size 2 - level 1 histograms - intersection
e (2 matches weighted by 1) + (2 weighted by 1)
o totalscore2><1+2><%

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

X Y Xo Yo min (X, Y2)

\

|

T

[

 —
.\

e 1d point sets X, Y on grid of size 4 - level 2 histograms - intersection
e (2 matches weighted by 1) + (2 weighted by ) + (1 weighted by 1)
o totalscore2><1+2><%—|—1><}L

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

o given aset X = {z1,...,2,} C R<, where distances of elements
range in [1, D]

o let X; be a histogram of X in R? on a regular grid of side length 2°

e ¢ ranges from —1, where each bin has at most one element, to
L = [logy D], where X is contained in a single bin

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

o given aset X = {z1,...,2,} C R<, where distances of elements
range in [1, D]

let X; be a histogram of X in R? on a regular grid of side length 2

1 ranges from —1, where each bin has at most one element, to
L = [logy D], where X is contained in a single bin

given two images with descriptors X,Y C R¢, their pyramid match is

L
KA(X,)Y) =v(X)v(Y) Z -(kH1 (X5, Y) — mmi(Xi—1,Yio1))

where v(X) serves for normalization

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



pyramid match kernel (PMK)

o given aset X = {z1,...,2,} C R<, where distances of elements
range in [1, D]

let X; be a histogram of X in R? on a regular grid of side length 2

1 ranges from —1, where each bin has at most one element, to
L = [logy D], where X is contained in a single bin

given two images with descriptors X,Y C R¢, their pyramid match is
|
KA(X,Y) = y(X)y(Y) Y o (kmi(Xi, i) — kpn(Xio1, Yi1))

L—1
— Y (XAY) (;nHmXL, Vi) + 3 (X m)
1=0

where v(X) serves for normalization

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



PMK is a positive-definite kernel

e KA can be written as a weighted sum of ky; terms, with nonnegative
coefficients

e Kni can be written as a sum of min terms

e min can be written as a dot product:

x ¢(z)

3 111 0 0 0 0 O
) 111 1 1 0 0 O
min(z,y)=3 1 1 1 0 0 0 0 O

e therefore, so can ka

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



PMK is a positive-definite kernel

e KA can be written as a weighted sum of ky; terms, with nonnegative
coefficients

e Kni can be written as a sum of min terms

e min can be written as a dot product:

x ¢(z)

3 111 0 0 0 0 O
) 111 1 1 0 0 O
min(z,y)=3 1 1 1 0 0 0 0 O

e therefore, so can ka
e but what other function does KA approximate itself?

Grauman and Darrell. ICCV 2005. The Pyramid Match Kernel: Discriminative Classification With Sets of Image Features.



PMK as an embedding

[Indyk and Thaper 2003]

o there is an explicit embedding for ky, therefore also for ka

Indyk and Thaper. WSCTV 2003. Fast Image Retrieval via Embeddings.
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[Indyk and Thaper 2003]

e there is an explicit embedding for xy, therefore also for kK
o if | X| <|Y]and 7: X — Y is one-to-one, then KA(X,Y)
approximates the optimal pairwise matching

max >z —w()ly!

zeX
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[Indyk and Thaper 2003]

e there is an explicit embedding for xy, therefore also for kK
o if | X| <|Y]and 7: X — Y is one-to-one, then KA(X,Y)
approximates the optimal pairwise matching

max >z —w()ly!

zeX

e this was first shown on the earth mover's distance

mlnz |z — m(x)|1

zeX

Indyk and Thaper. WSCTV 2003. Fast Image Retrieval via Embeddings.



PMK as an embedding

[Indyk and Thaper 2003]

e there is an explicit embedding for xy, therefore also for kK
o if | X| <|Y|and 7: X — Y is one-to-one, then Ka(X,Y)
approximates the optimal pairwise matching

max >z —w()ly!

zeX

e this was first shown on the earth mover's distance

mmz |z — m(x)]

zeX

e but PMK is a similarity measure; it allows partial matching and does
not penalize clutter, expect for the normalization

Indyk and Thaper. WSCTV 2003. Fast Image Retrieval via Embeddings.



PMK and vocabulary tree
[Grauman and Darrell 2007]

vocabulary-guided bins

uniform bins

e replace regular grid with hierarchical vocabulary cells
e compared to vocabulary tree, there is a principle in assigning cell

weights
e still, its approximation quality suffers at high dimensions

Grauman and Darrell. NIPS 2007. Approximate Correspondences in High Dimensions.



PMK and spatial matching

[Grauman and Darrell 2004]

o
o

representation

e same idea, applied to image 2d coordinate space for spatial matching

e matching cost is only based on point coordinates; no appearance

Grauman and Darrell. CVPR 2004. Fast Contour Matching Using Approximate Earth Mover's Distance.



spatial pyramid matching (SPM)

[Lazebnik et al. 2006]

level 0 level 1 level 2
° + o + L4 +
< .+ o 4 < .'" o 4 < .'" ol 4+
< . < + o + °
+.0 + ° +'0 + o +'0 + °
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+ e 0 < + e 0 < + 17 0 <
< < <
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I H H Uil Lo 0] P eel o ikt
a
[ 0|o o | 0 ]
x 1/4 x 1/4 x1/2

o if XU, YU) are the feature coordinates of images X, Y with descriptors
assigned to visual word 7,

Ksp(X,Y) ZKA 7y 6

Lazebnik, Schmid and Ponce. CVPR 2006. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene
categories.



spatial pyramid matching (SPM)

[Lazebnik et al. 2006]

level 0 level 1 level 2
° + o + L4 +
< .+ o 4 < .'" o 4 < .'" ol 4+
< . < + o + °
+.0 + ° +'0 + o +'0 + °
> +<>. + ° > +<>. + ° > +<>. + °
. & . o °
+ e 0 < + e 0 < + 17 0 <
< < <
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] 0|0 i
x 1/4 x 1/4 x1/2

e coupled with BoW, it is a set of joint appearance-geometry histograms

e robust to deformation but not invariant to transformations; applied to
global scene classification

Lazebnik, Schmid and Ponce. CVPR 2006. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene
categories.



Hough pyramid matching (HPM)

[Tolias and Auvrithis 2011]

et

fast spatial matching

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.
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[Tolias and Auvrithis 2011]

Hough pyramid matching
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Hough pyramid matching (HPM)

[Tolias and Auvrithis 2011]

Hough pyramid matching

e work with a single set of correspondences instead of two sets of
features

o determine a transformation hypothesis by a pair of features and then
use histograms to collect votes in the transformation space

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

e a local feature p in image P has position t(p), scale s(p) and
orientation 6(p) given by matrix R(p) € R?*?

e a correspondence ¢ = (p, q) is a pair of features p € P,q € @ of two
images P, Q) and determines relative similarity transformation from p

to q
Flo = Fre) = (GF 1)

with translation t(c) = t(q) — s(¢)R(c)t(p), relative scale

s(c) = s(q)/s(p) and rotation R(c) = R(q)R(p)~* or
0(c) = 0(q) — 0(p)

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

o the 4-dof relative transformation represented by 4d vector

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

e the 4-dof relative transformation represented by 4d vector

e to enforce one-to-one mapping, two correspondences ¢ = (p, q),
d = (p',q") are conflicting if they refer to the same feature on either
image, i.e. p=p orq=¢

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

correspondences P q similarity score
ox| @ O=0 ( Juwler)
o o @ o QO | yw(ez)
® oo 0| o 0—0 ¢ Jus(es)

c3 . Co

° a OO0 Jw(es)
. cs (ﬁ ( Jw(es)

07 cs (Jw(es)

cs o Q=0 ( Hwleo

¢ correspondence ¢ contributes by w(c), based e.g. on visual word

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

pyramid level 0 P q similarity score
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¢ correspondence ¢ contributes by w(c), based e.g. on visual word

o conflicting correspondences in the same bin b are erased

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

pyramid level 0 P q similarity score
. Ce 1 H (2 Jw(ct)
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¢ correspondence ¢ contributes by w(c), based e.g. on visual word

o conflicting correspondences in the same bin b are erased

e in a bin b with n; correspondences, each groups with [n, — 1] others

o level 0 weight 1

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

pyramid level 1 P q similarity score
. Co c1 H (2 —+ %2 )w(cl)
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¢ correspondence ¢ contributes by w(c), based e.g. on visual word

level 1 weight %

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.

conflicting correspondences in the same bin b are erased

in a bin b with n;, correspondences, each groups with [n;, — 1] others



Hough pyramid matching (HPM)

pyramid level 2 p q similarity score
X co a O 2+ 124 12)w(er)
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¢ correspondence ¢ contributes by w(c), based e.g. on visual word

o conflicting correspondences in the same bin b are erased
e in a bin b with n; correspondences, each groups with [n, — 1] others
o level 2 weight ll

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

/4
9l i
° 3m/2
°
1| i
= o 5 N
4
= 5/ >
2 } } >
g 0 g L
g « 3m/4 .
1 i
.
/2
ol i
/4
@ assignment
x erased .
3 . L 0
-2 0 2 -1 -0.5 0 0.5 1
horizontal translation, log-scale, log o

e mode seeking: we are looking for regions where density is maximized
in the transformation space

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



Hough pyramid matching (HPM)

e linear in the number of correspondences; no need to count inliers

e robust to deformations and multiple matching surfaces, invariant to
transformations

e only applies to same instance matching

Tolias and Avrithis. ICCV 2011. Speeded-Up, Relaxed Spatial Matching.



nearest neighbor search



nearest neighbor search

e given query point y, find its nearest neighbor with respect to
Euclidean distance within data set X in a d-dimensional space

e image retrieval: same problem; one or multiple queries depending on
global or local representation

e image classification: nearest neighbor or naive Bayes nearest neighbor
classifier, again depending on representation



k-d tree
[Bentley 1975]

olo o

o
o g
o
)

o

e index: recursively split at medoid on some dimension, make balanced
binary tree

e search: descend recursively from root, choosing child according to
splitting dimension and value

Bentley. CACM 1975. Multidimensional Binary Search Trees Used for Associative Searching.



k-d tree
[Bentley 1975]

i
i\ -
Tl

e index: recursively split at medoid on some dimension, make balanced
binary tree

e search: descend recursively from root, choosing child according to
splitting dimension and value

e backtracking becomes exhaustive at high dimensions

Bentley. CACM 1975. Multidimensional Binary Search Trees Used for Associative Searching.



randomized k-d trees
[Silpa-Anan and Hartley 1975]

e index: same as before, but now multiple randomized trees

e search: descend trees in parallel according to shared priority queue

Silpa-Anan and Hartley CVPR 2008. Optimized KD-trees for fast image descriptor matching.



randomized k-d trees
[Silpa-Anan and Hartley 1975]

e index: same as before, but now multiple randomized trees

e search: descend trees in parallel according to shared priority queue

Silpa-Anan and Hartley CVPR 2008. Optimized KD-trees for fast image descriptor matching.



randomized k-d trees
[Silpa-Anan and Hartley 1975]

e index: same as before, but now multiple randomized trees
e search: descend trees in parallel according to shared priority queue

e still, points are stored, distances are exact

Silpa-Anan and Hartley CVPR 2008. Optimized KD-trees for fast image descriptor matching.



locality sensitive hashing (LSH)
[Charikar 2002]

ay

o

e index: choose a; ~ AN (0,1); encode each data point z € X by binary
code h(x) := (ha, (¥), ..., ha, (%)) € {—1,1}7 with hash function
ha(z) = sgn(a' z)

e search: encode query y as h(y) and search by Hamming distance

Charikar. STOC 2002. Similarity Estimation Techniques From Rounding Algorithms.
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e index: choose a; ~ AN (0,1); encode each data point z € X by binary
code h(x) := (ha, (¥), ..., ha, (%)) € {—1,1}7 with hash function
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locality sensitive hashing (LSH)
[Charikar 2002]
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o
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e index: choose a; ~ AN (0,1); encode each data point z € X by binary
code h(x) := (ha, (¥), ..., ha, (%)) € {—1,1}7 with hash function
ha(z) = sgn(a' z)
e search: encode query y as h(y) and search by Hamming distance

e not adapted to data distribution

Charikar. STOC 2002. Similarity Estimation Techniques From Rounding Algorithms.



vector quantization (VQ)
[Gray 1984]

&

e index: cluster X into codebook C' = {ci,...,cr}; quantize each
r € X to q(x) = minec ||z — ¢||? and encode it by log k bits

o search: pre-compute distances ||y — ¢[|* for ¢ € C and approximate
distances |ly — z||? by ||y — ¢(x)||*> where g(z) € C

Gray. SPM 1984. Vector quantization.



vector quantization (VQ)
[Gray 1984]

e index: cluster X into codebook C' = {cy,...,cr}; quantize each
r € X to q(x) = minec ||z — ¢||? and encode it by log k bits

o search: pre-compute distances ||y — ¢[|* for ¢ € C and approximate
distances |ly — z||? by ||y — ¢(x)||*> where g(z) € C
e small distortion — large k, too large to store, too slow to search

Gray. SPM 1984. Vector quantization.



product quantization (PQ)
[Jégou et al. 2011]
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e index: decompose vectors as = = (z!,...,2™), cluster X into

codebook C' = C! x --- x C™ with k cells each and |C] = k™

e search: pre-compute distances |3/ — c||? for ¢ € C7 and approximate
ly — z|” by [ly — q(@)[|* = 372, [ly? — ¢ (27)]|* where ¢/ (27) € C7

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



product quantization (PQ)
[Jégou et al. 2011]
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e index: decompose vectors as = = (z!,...,2™), cluster X into

codebook C' = C! x --- x C™ with k cells each and |C] = k™

e search: pre-compute distances |3/ — c||? for ¢ € C7 and approximate
ly — z|” by [ly — q(@)[|* = 372, [ly? — ¢ (27)]|* where ¢/ (27) € C7
e a lot of centroids do not represent data and are unused

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



inverted index
[Jégou et al. 2011]

e index: train a coarse quantizer () of k cells; quantize each x € X to
Q(z), compute residual r(x) = x — Q(x) and encode residuals by a

product quantizer ¢
e search: quantize query y to a fixed number of nearest cells;

exhaustively search by PQ only within those cells

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



inverted index
[Jégou et al. 2011]

e index: train a coarse quantizer () of k cells; quantize each x € X to
Q(z), compute residual r(x) = x — Q(x) and encode residuals by a
product quantizer ¢

e search: quantize query y to a fixed number of nearest cells;
exhaustively search by PQ only within those cells

e a lot of points in the coarse cells are too far away from query

Jegou, Douze and Schmid. PAMI 2011. Product Quantization for Nearest Neighbor Search.



inverted multi-index
[Babenko and Lempitsky 2012]
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e index: decompose vectors as = = (z!, 22); train two coarse quantizers

Q', Q? of k cells each, quantize each x € X to Q'(x'), Q*(2?) and
encode residuals by product quantizers ¢!, ¢°

o search: visit cells (¢!, c?) € C x C? in ascending order of distance to
y by multi-sequence algorithm

Babenko and Lempitsky. CVPR 2012. The Inverted Multi-Index.



inverted multi-index
[Babenko and Lempitsky 2012]
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e index: decompose vectors as = = (z!, 22); train two coarse quantizers

Q', Q? of k cells each, quantize each x € X to Q'(x'), Q*(2?) and
encode residuals by product quantizers ¢!, ¢°

o search: visit cells (c!,c?) € C! x C? in ascending order of distance to
y by multi-sequence algorithm

e two coarse quantizers induce a finer partition than one

Babenko and Lempitsky. CVPR 2012. The Inverted Multi-Index.



principal component analysis (PCA)

Yy
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e given data {xy,...,X,}, compute empirical mean x : = %Z?:l X;
and covariance matrix
1 n
L - T
S:i= - g (xi —X)(x; — X)
i=1

o then diagonalize S by S = UAU T where U = (u; us) and
A = diag(A1, A2)



optimized product quantization (OPQ)
[Ge et al. 2013]
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e no correlation: PCA-align by diagonalizing cov(X) as UAU "

e balanced variance: shuffle eigenvalues A by permutation 7 such that
the product [ [, \; is constant in each subspace

o find codebook C' by PQ on rotated data X : = RX where R :=UP,
and P; is the permutation matrix of 7

Ge, He, Ke and Sun. CVPR 2013. Optimized Product Quantization for Approximate Nearest Neighbor Search.



locally optimized product quantization (LOPQ)
[Kalantidis and Avrithis 2014]
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e same as PQ with inverted index (or multi-index), but residuals are
encoded by OPQ

Kalantidis and Avrithis. CVPR 2014. Locally Optimized Product Quantization for Approximate Nearest Neighbor Search.



locally optimized product quantization (LOPQ)
[Kalantidis and Avrithis 2014]

e same as PQ with inverted index (or multi-index), but residuals are
encoded by OPQ

e better on multimodal data: residual distributions closer to Gaussian
assumption

Kalantidis and Avrithis. CVPR 2014. Locally Optimized Product Quantization for Approximate Nearest Neighbor Search.



local principal component analysis
[Kambhatla & Leen 1997]

e cluster data, then apply PCA per cell
e captures the support of data distribution

e multimodal (e.g. mixture) distributions
e distributions on nonlinear manifolds

Kambhatla and Leen. NC 1997. Dimension Reduction By Local Principal Component Analysis.



manifold learning

e.g. Isomap: apply PCA to the geodesic (graph) distance matrix
e.g. kernel PCA: apply PCA to the Gram matrix of a nonlinear kernel

other topology-preserving methods are only focusing on distances to
nearest neighbors

many classic methods use eigenvalue decomposition and most do not
learn and explicit mapping from the input to the embedding space



summary

bag of words: treating geometry separately from appearance, and
quantizing descriptors

BoW for instance and class recognition: what is common, what is
different

k-means, HKM, vocabulary tree, AKM, soft/multiple assignment, max
pooling, burstiness

beyond BoW-—matching between sets of features/descriptors that
cannot be expressed as dot product: HE, VLAD, ASMK

design or learn embeddings: EMK, PMK, SPM, HPM?
a sum of similarities is better than a sum of distances

nearest neighbor search: inverted index, multi-index, trees, forests,
hashing, compression

PCA and beyond: we should learn the manifold



discussion
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representation

convolution is linear + translation invariant (or equivariant) and is the
only function having these properties

Gabor filters or histograms of gradient orientations are more or less the
same thing and are just the first layer of extracting a representation

they record responses at every possible position, scale and orientation,
resulting in a 4-dimensional representation; rotation and change of
scale in the image behave like translation in the representation space
convolution means that for every pixel we are looking at some spatial

neighborhood (in the image domain), but the image has only one
channel (grayscale)

histograms can be expressed as two stages of encoding + pooling;
then we can generalize these operations for the next layers
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codebooks

so, for the second layer we still have histograms of some kind but now
they are over vectors (the filter responses of the first stage) rather
than scalars (orientation and scale)

to make a histogram we need a finite set of such vectors, and this we
obtain through vector quantization (or sampling) of the layer one
responses of a given dataset

so, the concept that such representations are “hand-crafted” is
incorrect; codebooks are learned from data in an unsupervised fashion

codebook size, parameters in the encoding and pooling stages etc.
are just hyperparameters that will we learn through cross-validation

in contrast to layer one, there is no spatial neighborhood here (with
the exception of HMAX) but there is depth, i.e. a number of
channels corresponding to the dimensions of these vectors; we will
combine both, resulting in 3-dimensional filter kernels
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local features

depending on the task (e.g. stereopsis, motion estimation, instance
recognition compared to class recognition), not all spatial regions are
equally important

classification works best with dense features, but still, through
encoding, the responses to most “visual words" are zero; so there
some sparsity in the representation, at least before pooling

in order to make change of scale really behave like translation in the
representation space, we also need scale normalization and a logarithm

operators that detect local features can be expressed as convolution
followed by some kind of competition, but they can require more than
one layers with nonlinearities in between; we will follow this idea for
more complex patterns

when it comes a sparse set of local features, matching becomes easier
to formulate compared to e.g. continuous distributions
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matching

descriptors are really meant to be used for matching one image to
another (e.g. for instance recognition) or one image to a pattern (for
classification)

we want to learn a descriptor such that dot product will be good
enough for matching

we can start by thinking about pairwise matching between two sets of
descriptors and come up with (design or learn) a representation,
maybe at a higher dimension, such that dot product will be
approximating this pairwise matching process

there should be some invariance to geometric transformations;
whether this should be designed or learned is up to discussion
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