
lecture 5: learning
deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2017 – Jan. 2018



outline

machine learning
binary classification
binary classification, again
multi-class classification
regression
multiple layers



machine learning



machine learning

supervised learning

• learn to map an input to a target output, which can be discrete
(classification) or continuous (regression)

unsupervised learning

• learn a compact representation of the data that can be useful for
other tasks, e.g. density estimation, clustering, sampling, dimension
reduction, manifold learning

• but: in many cases, labels can be obtained automatically, transforming
an unsupervised task to supervised

• also: semi-supervised, weakly supervised, ambiguous/noisy labels,
self-supervised etc.

reinforcement learning

• learn to select actions, supervised by occasional rewards

• not studied here



machine learning

supervised learning

• learn to map an input to a target output, which can be discrete
(classification) or continuous (regression)

unsupervised learning

• learn a compact representation of the data that can be useful for
other tasks, e.g. density estimation, clustering, sampling, dimension
reduction, manifold learning

• but: in many cases, labels can be obtained automatically, transforming
an unsupervised task to supervised

• also: semi-supervised, weakly supervised, ambiguous/noisy labels,
self-supervised etc.

reinforcement learning

• learn to select actions, supervised by occasional rewards

• not studied here



machine learning

supervised learning

• learn to map an input to a target output, which can be discrete
(classification) or continuous (regression)

unsupervised learning

• learn a compact representation of the data that can be useful for
other tasks, e.g. density estimation, clustering, sampling, dimension
reduction, manifold learning

• but: in many cases, labels can be obtained automatically, transforming
an unsupervised task to supervised

• also: semi-supervised, weakly supervised, ambiguous/noisy labels,
self-supervised etc.

reinforcement learning

• learn to select actions, supervised by occasional rewards

• not studied here



machine learning

supervised learning

• learn to map an input to a target output, which can be discrete
(classification) or continuous (regression)

unsupervised learning

• learn a compact representation of the data that can be useful for
other tasks, e.g. density estimation, clustering, sampling, dimension
reduction, manifold learning

• but: in many cases, labels can be obtained automatically, transforming
an unsupervised task to supervised

• also: semi-supervised, weakly supervised, ambiguous/noisy labels,
self-supervised etc.

reinforcement learning

• learn to select actions, supervised by occasional rewards

• not studied here



main objective

• through a learning task/objective that may be unimportant, we are
primarily interested in learning good representations for computer
vision tasks

• we are interested in parametric models where we learn a fixed set of
parameters, rather than non-parametric, where training data are
memorized

• we are interested in learning explicit mappings from raw input to
representation, rather than constructing a representation of an entire
dataset that is hard to extend to new samples

• we may occasionally use “hand-crafted” features or matching
methods, but with the objective of learning better ones



main objective

• through a learning task/objective that may be unimportant, we are
primarily interested in learning good representations for computer
vision tasks

• we are interested in parametric models where we learn a fixed set of
parameters, rather than non-parametric, where training data are
memorized

• we are interested in learning explicit mappings from raw input to
representation, rather than constructing a representation of an entire
dataset that is hard to extend to new samples

• we may occasionally use “hand-crafted” features or matching
methods, but with the objective of learning better ones



main objective

• through a learning task/objective that may be unimportant, we are
primarily interested in learning good representations for computer
vision tasks

• we are interested in parametric models where we learn a fixed set of
parameters, rather than non-parametric, where training data are
memorized

• we are interested in learning explicit mappings from raw input to
representation, rather than constructing a representation of an entire
dataset that is hard to extend to new samples

• we may occasionally use “hand-crafted” features or matching
methods, but with the objective of learning better ones



main objective

• through a learning task/objective that may be unimportant, we are
primarily interested in learning good representations for computer
vision tasks

• we are interested in parametric models where we learn a fixed set of
parameters, rather than non-parametric, where training data are
memorized

• we are interested in learning explicit mappings from raw input to
representation, rather than constructing a representation of an entire
dataset that is hard to extend to new samples

• we may occasionally use “hand-crafted” features or matching
methods, but with the objective of learning better ones



learning and optimization

• in a supervised setting, given a distribution p of input data x and
target outputs t we want to learn the parameters θ of a prediction
model f(x,θ) by minimizing the risk (objective, cost, or error)
function

E∗(θ) : = E(x,t)∼pL(f(x;θ), t)

where L is a per-sample loss function that compares predictions
f(x;θ) to targets t

• since the true distribution p is unknown, we use the empirical
distribution p̂ of a training set x1, . . . ,xm with associated target
outputs t1, . . . , tn and minimize instead the empirical risk

E(θ) : = E(x,t)∼p̂L(f(x;θ), t) =
1

n

n∑
i=1

L(f(xi;θ), ti),

converting the learning problem to optimization



learning and optimization

• in a supervised setting, given a distribution p of input data x and
target outputs t we want to learn the parameters θ of a prediction
model f(x,θ) by minimizing the risk (objective, cost, or error)
function

E∗(θ) : = E(x,t)∼pL(f(x;θ), t)

where L is a per-sample loss function that compares predictions
f(x;θ) to targets t

• since the true distribution p is unknown, we use the empirical
distribution p̂ of a training set x1, . . . ,xm with associated target
outputs t1, . . . , tn and minimize instead the empirical risk

E(θ) : = E(x,t)∼p̂L(f(x;θ), t) =
1

n

n∑
i=1

L(f(xi;θ), ti),

converting the learning problem to optimization



however

• the empirical risk is prone to overfitting the training set (even
memorizing it), if non-parametric

• we need to balance our model’s capacity with the amount of training
data, find ways to regularize the objective function and use a
validation set to select hyperparameters so that our model generalizes
on new samples

• the ideal loss function may be hard to optimize, so we have to use a
surrogate loss function that may as well improve generalization

• still, all functions encountered are non-convex so we can only hope for
local minima



however

• the empirical risk is prone to overfitting the training set (even
memorizing it), if non-parametric

• we need to balance our model’s capacity with the amount of training
data, find ways to regularize the objective function and use a
validation set to select hyperparameters so that our model generalizes
on new samples

• the ideal loss function may be hard to optimize, so we have to use a
surrogate loss function that may as well improve generalization

• still, all functions encountered are non-convex so we can only hope for
local minima



however

• the empirical risk is prone to overfitting the training set (even
memorizing it), if non-parametric

• we need to balance our model’s capacity with the amount of training
data, find ways to regularize the objective function and use a
validation set to select hyperparameters so that our model generalizes
on new samples

• the ideal loss function may be hard to optimize, so we have to use a
surrogate loss function that may as well improve generalization

• still, all functions encountered are non-convex so we can only hope for
local minima



however

• the empirical risk is prone to overfitting the training set (even
memorizing it), if non-parametric

• we need to balance our model’s capacity with the amount of training
data, find ways to regularize the objective function and use a
validation set to select hyperparameters so that our model generalizes
on new samples

• the ideal loss function may be hard to optimize, so we have to use a
surrogate loss function that may as well improve generalization

• still, all functions encountered are non-convex so we can only hope for
local minima



binary classification



k-nearest neighbor classifier

• an input sample is classified by majority voting (ties broken at random)
over the class labels of its k-nearest neighbors in the training set

• no training needed, but prediction can be slow

• we are not interested in such an approach (for now) because it gives
us no opportunity to learn a representation

Image credit: Bishop 2006. Pattern Recognition and Machine Learning.



k-nearest neighbor classifier

• an input sample is classified by majority voting (ties broken at random)
over the class labels of its k-nearest neighbors in the training set

• no training needed, but prediction can be slow

• we are not interested in such an approach (for now) because it gives
us no opportunity to learn a representation

Image credit: Bishop 2006. Pattern Recognition and Machine Learning.



perceptron
[Rosenblatt 1962]

• perceptron, as introduced by
Rosenblatt, refers to a wide
range of network architectures,
learning algorithms and
hardware implementations

• due to Minsky and Papert,
perceptron now refers to a
binary linear classifier and an
algorithm

• let’s have a closer look at that

Rosenblatt 1962. Principles of Neurodynamics



perceptron model

• given input x ∈ Rd, the perceptron is a generalized linear model

y = f(x;w) : = sgn(w>x)

where w ∈ Rd is a weight (parameter) vector to be learned, and

sgn(x) : =

{
+1, x ≥ 0
−1, x < 0

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−10 −5 0 5 10

−1

−0.5

0

0.5

1

x

sg
n
(x

)

Rosenblatt 1962. Principles of Neurodynamics



perceptron algorithm

• an input x with output y = f(x;w) is classified to class C1 if y = 1
and to C2 if y = −1

• given a training sample x ∈ Rd and a target variable s ∈ {−1, 1}, x is
correctly classified iff output y = f(x;w) equals s, i.e. sy > 0

• we are given training samples x1, . . . ,xn ∈ Rd and target variables
s1, . . . , sn ∈ {−1, 1}

• starting from an initial parameter vector w(0), the algorithm learns by
iteratively choosing a random sample xi that is misclassified and
updating

w(τ+1) ← w(τ) + εsixi

Rosenblatt 1962. Principles of Neurodynamics



perceptron algorithm

• an input x with output y = f(x;w) is classified to class C1 if y = 1
and to C2 if y = −1

• given a training sample x ∈ Rd and a target variable s ∈ {−1, 1}, x is
correctly classified iff output y = f(x;w) equals s, i.e. sy > 0

• we are given training samples x1, . . . ,xn ∈ Rd and target variables
s1, . . . , sn ∈ {−1, 1}

• starting from an initial parameter vector w(0), the algorithm learns by
iteratively choosing a random sample xi that is misclassified and
updating

w(τ+1) ← w(τ) + εsixi

Rosenblatt 1962. Principles of Neurodynamics



perceptron algorithm

w0

• initial parameter vector w0, normal to the decision boundary and
pointing to the region to be classified as blue (+)



perceptron algorithm

w0

x0

• pick a random point x0 that is misclassified: blue (+) in red (−)
region



perceptron algorithm

w0

x0

w1 = w0 + εx0

• because x0 is blue and w is pointing at blue, we add εx0 to w0



perceptron algorithm

w1

• with the new parameter vector w1, the decision boundary is updated



perceptron algorithm

w1
x1

• pick a new random point x1 that is misclassified: red in blue region



perceptron algorithm

w1
x1

w2 = w1 − εx1

• because x1 is red and w is pointing at blue, we subtract εx1 from w1



perceptron algorithm

w2

• with the new w2, the decision boundary is updated again



perceptron algorithm

w2

x2

• again, random point x2, blue misclassified in red region



perceptron algorithm

w2

x2

w3 = w2 + εx2

• and we add εx2 to w2



perceptron algorithm

w3

• now at w3



perceptron algorithm

w3

x3

• one last random point x3, red in blue region



perceptron algorithm

w3

x3

w4 = w3 − εx3

• and we subtract



perceptron algorithm

w4

• finally at w4, all points are classified correctly



perceptron algorithm

w4

• finally at w4, all points are classified correctly



perceptron algorithm

w4

• finally at w4, all points are classified correctly



“details”

• we do not say anything about convergence now; we will discuss later

• there is one more parameter to be learned: a more general linear
model would be

y = f(x;w, b) : = sgn(w>x + b)

where w ∈ Rd is a weight vector, and b is a bias

• this is often omitted because we can just add an extra dimension d+ 1
to x and w and always set xd+1 = 1; then wd+1 plays the role of bias

• but in many cases weights and bias need separate treatment

• it is common to use a (fixed) set of basis functions on the raw input
and write φ(x) instead of x

• the linear model itself is not affected by this choice, but the classifier
is; again, we discuss this later

Rosenblatt 1962. Principles of Neurodynamics



“details”

• we do not say anything about convergence now; we will discuss later

• there is one more parameter to be learned: a more general linear
model would be

y = f(x;w, b) : = sgn(w>x + b)

where w ∈ Rd is a weight vector, and b is a bias

• this is often omitted because we can just add an extra dimension d+ 1
to x and w and always set xd+1 = 1; then wd+1 plays the role of bias

• but in many cases weights and bias need separate treatment

• it is common to use a (fixed) set of basis functions on the raw input
and write φ(x) instead of x

• the linear model itself is not affected by this choice, but the classifier
is; again, we discuss this later

Rosenblatt 1962. Principles of Neurodynamics



“details”

• we do not say anything about convergence now; we will discuss later

• there is one more parameter to be learned: a more general linear
model would be

y = f(x;w, b) : = sgn(w>x + b)

where w ∈ Rd is a weight vector, and b is a bias

• this is often omitted because we can just add an extra dimension d+ 1
to x and w and always set xd+1 = 1; then wd+1 plays the role of bias

• but in many cases weights and bias need separate treatment

• it is common to use a (fixed) set of basis functions on the raw input
and write φ(x) instead of x

• the linear model itself is not affected by this choice, but the classifier
is; again, we discuss this later

Rosenblatt 1962. Principles of Neurodynamics



support vector machine (SVM)
[Boser et al. 1992]

• given a decision boundary that classifies all points correctly, define the
margin as its distance to the nearest point

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



support vector machine (SVM)
[Boser et al. 1992]

• this was not optimal in the case of perceptron

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



support vector machine (SVM)
[Boser et al. 1992]

• there is another decision boundary for which the margin is maximum;
the vectors at this distance are the support vectors

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



SVM model

• there is now an explicit bias parameter b, but otherwise the SVM
model is the same: activation

a : = w>x + b

and output

y = f(x;w, b) : = sgn(w>x + b) = sgn(a)

• again, an input x with a = w>x + b and output y = sgn(a) is
classified to class C1 if y = 1 (a ≥ 0) and to C2 if y = −1 (a < 0)

• again, given a training sample x and a target variable s, x is correctly
classified iff sy > 0, i.e. sa = s(w>x + b) ≥ 0

• we are given training samples x1, . . . ,xn ∈ Rd and target variables
s1, . . . , sn ∈ {−1, 1}

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



SVM model

• there is now an explicit bias parameter b, but otherwise the SVM
model is the same: activation

a : = w>x + b

and output

y = f(x;w, b) : = sgn(w>x + b) = sgn(a)

• again, an input x with a = w>x + b and output y = sgn(a) is
classified to class C1 if y = 1 (a ≥ 0) and to C2 if y = −1 (a < 0)

• again, given a training sample x and a target variable s, x is correctly
classified iff sy > 0, i.e. sa = s(w>x + b) ≥ 0

• we are given training samples x1, . . . ,xn ∈ Rd and target variables
s1, . . . , sn ∈ {−1, 1}

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



margin

x

y

w

w>x+b
‖w‖

x
a = 0

• the distance of x to the boundary is |w>x + b|/‖w‖
• this is s(w>x + b)/‖w‖ if it is classified correctly

• if all points are classified correctly, then the margin is

1

‖w‖
min
i

(si(w
>xi + b))

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



margin

x

y

w

w>x+b
‖w‖

x
a = 0

• the distance of x to the boundary is |w>x + b|/‖w‖
• this is s(w>x + b)/‖w‖ if it is classified correctly

• if all points are classified correctly, then the margin is

1

‖w‖
min
i

(si(w
>xi + b))

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



margin

x

y

w

w>x+b
‖w‖

x
a = 0

• the distance of x to the boundary is |w>x + b|/‖w‖
• this is s(w>x + b)/‖w‖ if it is classified correctly

• if all points are classified correctly, then the margin is

1

‖w‖
min
i

(si(w
>xi + b))

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



maximum margin

• the margin is invariant to scaling of w and b, so we choose
siai = si(w

>xi + b) = 1 for the point that is nearest to the boundary

• then, the margin is maximized by

arg min
w,b

1

2
‖w‖2

subject to
siai ≥ 1

for all training samples i, where ai : = w>xi + b

• this is a quadratic programming problem

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



maximum margin

• the margin is invariant to scaling of w and b, so we choose
siai = si(w

>xi + b) = 1 for the point that is nearest to the boundary

• then, the margin is maximized by

arg min
w,b

1

2
‖w‖2

subject to
siai ≥ 1

for all training samples i, where ai : = w>xi + b

• this is a quadratic programming problem

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



overlapping class distributions
[Cortes and Vapnik 1995]

a = 1

a = −1

a = 0
a < −1

a > 1

• assuming that all training samples can be correctly classified is
unrealistic

Cortes and Vapnik. ML 1995. Support-Vector Networks.



overlapping class distributions
[Cortes and Vapnik 1995]

a = 1

a = −1

a = 0
a < −1

a > 1
ξ > 1 ξ < 1

ξ = 0

ξ = 0

• introduce slack variables ξi ≥ 0 that should be minimized; ξi ≤ 1 for
correctly classified samples, ξi = 0 beyond the margin

Cortes and Vapnik. ML 1995. Support-Vector Networks.



overlapping class distributions

• the constraints siai ≥ 1 are now replaced by

siai ≥ 1− ξi
ξi ≥ 0

where ai : = w>xi + b

• and the objective arg minw,b
1
2‖w‖

2 is replaced by

arg min
w,b

C

n

n∑
i=1

ξi +
1

2
‖w‖2

where hyperparameter C controls the trade-off between slack variables
and margin

Cortes and Vapnik. ML 1995. Support-Vector Networks.



overlapping class distributions

• the constraints siai ≥ 1 are now replaced by

siai ≥ 1− ξi
ξi ≥ 0

where ai : = w>xi + b

• and the objective arg minw,b
1
2‖w‖

2 is replaced by

arg min
w,b

C

n

n∑
i=1

ξi +
1

2
‖w‖2

where hyperparameter C controls the trade-off between slack variables
and margin

Cortes and Vapnik. ML 1995. Support-Vector Networks.



“details”

• we do not say anything about how to solve this problem yet

• the standard treatment of SVM introduces Lagrange multipliers for
the constraints and results in the dual formulation where coordinates
only appear in dot products

• at this point, writing φ(x) instead of x, gives rise to

κ(x,y) = φ(x)>φ(y)

• this kernel trick can make the classifier nonlinear assuming an
appropriate positive-definite kernel function κ for the problem at hand

• we are not interested in this approach here because

• we want to learn a parametric model and discard the training
data after learning

• we do not want to design a matching function κ any more than
designing the representation φ; we want to learn from raw data

Cortes and Vapnik. ML 1995. Support-Vector Networks.



“details”

• we do not say anything about how to solve this problem yet

• the standard treatment of SVM introduces Lagrange multipliers for
the constraints and results in the dual formulation where coordinates
only appear in dot products

• at this point, writing φ(x) instead of x, gives rise to

κ(x,y) = φ(x)>φ(y)

• this kernel trick can make the classifier nonlinear assuming an
appropriate positive-definite kernel function κ for the problem at hand

• we are not interested in this approach here because

• we want to learn a parametric model and discard the training
data after learning

• we do not want to design a matching function κ any more than
designing the representation φ; we want to learn from raw data

Cortes and Vapnik. ML 1995. Support-Vector Networks.



“details”

• we do not say anything about how to solve this problem yet

• the standard treatment of SVM introduces Lagrange multipliers for
the constraints and results in the dual formulation where coordinates
only appear in dot products

• at this point, writing φ(x) instead of x, gives rise to

κ(x,y) = φ(x)>φ(y)

• this kernel trick can make the classifier nonlinear assuming an
appropriate positive-definite kernel function κ for the problem at hand

• we are not interested in this approach here because

• we want to learn a parametric model and discard the training
data after learning

• we do not want to design a matching function κ any more than
designing the representation φ; we want to learn from raw data

Cortes and Vapnik. ML 1995. Support-Vector Networks.



(binary) logistic regression
[Cox 1958]

• again, activation (but here we omit the bias)

a = w>x

and output
y = f(x;w) : = σ(w>x) = σ(a)

• but now we have a different nonlinearity: σ is the sigmoid function

σ(x) : =
1

1 + e−x

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

0

0.5

1

x

σ
(x

)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.



(binary) logistic regression
[Cox 1958]

• again, activation (but here we omit the bias)

a = w>x

and output
y = f(x;w) : = σ(w>x) = σ(a)

• but now we have a different nonlinearity: σ is the sigmoid function

σ(x) : =
1

1 + e−x

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

0

0.5

1

x

σ
(x

)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.



probabilistic interpretation

• the output y represents the posterior probability of class C1 given
input x, which by Bayes rule is

y = p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + e−a
= σ(a)

• here the activation a is defined to represent the log-odds

a = ln
p(C1|x)

p(C2|x)
= ln

p(x|C1)p(C1)

p(x|C2)p(C2)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.



maximum likelihood

• we are given training samples X = (x1, . . . ,xn) with xi ∈ Rd and
target variables T = (t1, . . . , tn) with ti ∈ {0, 1}

• watch out: target variables are in {0, 1} here, not {−1, 1}
• the probabilistic interpretation allows us to define the learning

objective: maximize the likelihood function

p(T |X,w) =

n∏
i=1

ytii (1− yi)1−ti

• or, minimize the (average) cross-entropy error function

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.



maximum likelihood

• we are given training samples X = (x1, . . . ,xn) with xi ∈ Rd and
target variables T = (t1, . . . , tn) with ti ∈ {0, 1}

• watch out: target variables are in {0, 1} here, not {−1, 1}
• the probabilistic interpretation allows us to define the learning

objective: maximize the likelihood function

p(T |X,w) =

n∏
i=1

ytii (1− yi)1−ti

• or, minimize the (average) cross-entropy error function

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.



maximum likelihood

• we are given training samples X = (x1, . . . ,xn) with xi ∈ Rd and
target variables T = (t1, . . . , tn) with ti ∈ {0, 1}

• watch out: target variables are in {0, 1} here, not {−1, 1}
• the probabilistic interpretation allows us to define the learning

objective: maximize the likelihood function

p(T |X,w) =

n∏
i=1

ytii (1− yi)1−ti

• or, minimize the (average) cross-entropy error function

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.



binary classifiers

raw data



binary classifiers

perceptron



binary classifiers

SVM



binary classifiers

logistic regression



binary classification, again



three solutions so far

perceptron SVM logistic

objective — yes yes
constraints — yes —
regularizer — yes —
algorithm yes — —

probabilistic — — yes



perceptron, again

• “choose a random sample i that is misclassified and update”

w(τ+1) ← w(τ) + εsixi

• given sample xi, if siyi > 0 (i.e. siai ≥ 0) the sample is correctly
classified and there is no action; otherwise, we attempt to minimize
−siai = −siw>xi: the error function is

E(w) =
1

n

n∑
i=1

Ei(w) =
1

n

n∑
i=1

[−siai]+ =
1

n

n∑
i=1

[−siw>xi]+

• indeed, given any random sample xi (correctly classified or not), the
update is

w(τ+1) ← w(τ) − ε∇wEi(w
(τ))



perceptron, again

• “choose a random sample i that is misclassified and update”

w(τ+1) ← w(τ) + εsixi

• given sample xi, if siyi > 0 (i.e. siai ≥ 0) the sample is correctly
classified and there is no action; otherwise, we attempt to minimize
−siai = −siw>xi: the error function is

E(w) =
1

n

n∑
i=1

Ei(w) =
1

n

n∑
i=1

[−siai]+ =
1

n

n∑
i=1

[−siw>xi]+

• indeed, given any random sample xi (correctly classified or not), the
update is

w(τ+1) ← w(τ) − ε∇wEi(w
(τ))



perceptron, again

• “choose a random sample i that is misclassified and update”

w(τ+1) ← w(τ) + εsixi

• given sample xi, if siyi > 0 (i.e. siai ≥ 0) the sample is correctly
classified and there is no action; otherwise, we attempt to minimize
−siai = −siw>xi: the error function is

E(w) =
1

n

n∑
i=1

Ei(w) =
1

n

n∑
i=1

[−siai]+ =
1

n

n∑
i=1

[−siw>xi]+

• indeed, given any random sample xi (correctly classified or not), the
update is

w(τ+1) ← w(τ) − ε∇wEi(w
(τ))



positive part

• quantity [x]+ is the positive part of x; this function also known as
rectified linear unit (ReLU):

relu(x) : = [x]+ : = max(0, x)

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

0

2

4

6

8

10

−10 −5 0 5 10

0

2

4

6

8

10

x

[x
] +



gradient descent

• in general, given an error function in parameters θ of the additive form

E(θ) =
1

n

n∑
i=1

Ei(θ),

• online (or stochastic) gradient descent updates the parameters after
seeing one random sample i, according to

θ(τ+1) ← θ(τ) − ε∇θEi(θ
(τ))

• batch gradient descent updates the parameters once after seeing the
entire dataset, according to

θ(τ+1) ← θ(τ) − ε∇θE(θ(τ))



gradient descent

• in general, given an error function in parameters θ of the additive form

E(θ) =
1

n

n∑
i=1

Ei(θ),

• online (or stochastic) gradient descent updates the parameters after
seeing one random sample i, according to

θ(τ+1) ← θ(τ) − ε∇θEi(θ
(τ))

• batch gradient descent updates the parameters once after seeing the
entire dataset, according to

θ(τ+1) ← θ(τ) − ε∇θE(θ(τ))



gradient descent

• in general, given an error function in parameters θ of the additive form

E(θ) =
1

n

n∑
i=1

Ei(θ),

• online (or stochastic) gradient descent updates the parameters after
seeing one random sample i, according to

θ(τ+1) ← θ(τ) − ε∇θEi(θ
(τ))

• batch gradient descent updates the parameters once after seeing the
entire dataset, according to

θ(τ+1) ← θ(τ) − ε∇θE(θ(τ))



gradient descent

• mini-batch (or stochastic) gradient descent (SGD) is the most
common option and updates the parameters after seeing a random
subset I ⊂ {1, . . . , n} of samples of fixed size m = |I| according to

θ(τ+1) ← θ(τ) − ε 1

m

∑
i∈I
∇θEi(θ

(τ))

• ε is the learning rate and is a hyperparameter; we will discuss later the
convergence to a local minimum of E and conditions on ε

• whatever the choice, an iteration over the entire dataset is called an
epoch

• stochastic versions make more sense when dataset is redundant

• it is important to take random samples



gradient descent

• mini-batch (or stochastic) gradient descent (SGD) is the most
common option and updates the parameters after seeing a random
subset I ⊂ {1, . . . , n} of samples of fixed size m = |I| according to

θ(τ+1) ← θ(τ) − ε 1

m

∑
i∈I
∇θEi(θ

(τ))

• ε is the learning rate and is a hyperparameter; we will discuss later the
convergence to a local minimum of E and conditions on ε

• whatever the choice, an iteration over the entire dataset is called an
epoch

• stochastic versions make more sense when dataset is redundant

• it is important to take random samples



gradient descent

• mini-batch (or stochastic) gradient descent (SGD) is the most
common option and updates the parameters after seeing a random
subset I ⊂ {1, . . . , n} of samples of fixed size m = |I| according to

θ(τ+1) ← θ(τ) − ε 1

m

∑
i∈I
∇θEi(θ

(τ))

• ε is the learning rate and is a hyperparameter; we will discuss later the
convergence to a local minimum of E and conditions on ε

• whatever the choice, an iteration over the entire dataset is called an
epoch

• stochastic versions make more sense when dataset is redundant

• it is important to take random samples



SVM, again

a = 1

a = −1

a = 0
a < −1

a > 1
ξ > 1 ξ < 1

ξ = 0

ξ = 0

• either siai ≥ 1 and ξi = 0 (correct side of margin) or ξi = 1− siai



SVM, again

• the constraints

siai ≥ 1− ξi
ξi ≥ 0

do not tell the whole truth

• either siai ≥ 1 and ξi = 0 (correct side of margin) or ξi = 1− siai,
that is, ξi = [1− siai]+

• the error function becomes

E(w, b) =
1

n

n∑
i=1

[1− siai]+ +
λ

2
‖w‖2

without ξi and without constraints, where λ = 1/C

Cortes and Vapnik. ML 1995. Support-Vector Networks.



SVM, again

• the constraints

siai ≥ 1− ξi
ξi ≥ 0

do not tell the whole truth

• either siai ≥ 1 and ξi = 0 (correct side of margin) or ξi = 1− siai,
that is, ξi = [1− siai]+

• the error function becomes

E(w, b) =
1

n

n∑
i=1

[1− siai]+ +
λ

2
‖w‖2

without ξi and without constraints, where λ = 1/C

Cortes and Vapnik. ML 1995. Support-Vector Networks.



SVM, again

• the constraints

siai ≥ 1− ξi
ξi ≥ 0

do not tell the whole truth

• either siai ≥ 1 and ξi = 0 (correct side of margin) or ξi = 1− siai,
that is, ξi = [1− siai]+

• the error function becomes

E(w, b) =
1

n

n∑
i=1

[1− siai]+ +
λ

2
‖w‖2

without ξi and without constraints, where λ = 1/C

Cortes and Vapnik. ML 1995. Support-Vector Networks.



weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



logistic regression, again

• recall that

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

• using variables si = 2ti − 1 in {−1, 1}, each term is

if ti = 1 (si = 1) lnσ(ai)
if ti = 0 (si = −1) ln(1− σ(ai)) = lnσ(−ai)
in either case lnσ(siai)

• the error function becomes

E(w) = − 1

n

n∑
i=1

lnσ(siai) =
1

n

n∑
i=1

ln(1 + e−siai)



logistic regression, again

• recall that

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

• using variables si = 2ti − 1 in {−1, 1}, each term is

if ti = 1 (si = 1) lnσ(ai)
if ti = 0 (si = −1) ln(1− σ(ai)) = lnσ(−ai)
in either case lnσ(siai)

• the error function becomes

E(w) = − 1

n

n∑
i=1

lnσ(siai) =
1

n

n∑
i=1

ln(1 + e−siai)



logistic regression, again

• recall that

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

• using variables si = 2ti − 1 in {−1, 1}, each term is

if ti = 1 (si = 1) lnσ(ai)
if ti = 0 (si = −1) ln(1− σ(ai)) = lnσ(−ai)
in either case lnσ(siai)

• the error function becomes

E(w) = − 1

n

n∑
i=1

lnσ(siai) =
1

n

n∑
i=1

ln(1 + e−siai)



maximum posterior

• weight decay also appears in probabilistic formulations by considering
the weight vector a random variable and incorporating a Gaussian
prior for w

p(w|λ) = exp(−λ
2
‖w‖2)

• the posterior distribution given the dataset X,T is

p(w|X,T ) ∝ p(T |X,w)p(w|λ)

• taking negative logarithm, the error function to minimize is

E(w) = − ln p(T |X,w) +
λ

2
‖w‖2



maximum posterior

• weight decay also appears in probabilistic formulations by considering
the weight vector a random variable and incorporating a Gaussian
prior for w

p(w|λ) = exp(−λ
2
‖w‖2)

• the posterior distribution given the dataset X,T is

p(w|X,T ) ∝ p(T |X,w)p(w|λ)

• taking negative logarithm, the error function to minimize is

E(w) = − ln p(T |X,w) +
λ

2
‖w‖2



maximum posterior

• weight decay also appears in probabilistic formulations by considering
the weight vector a random variable and incorporating a Gaussian
prior for w

p(w|λ) = exp(−λ
2
‖w‖2)

• the posterior distribution given the dataset X,T is

p(w|X,T ) ∝ p(T |X,w)p(w|λ)

• taking negative logarithm, the error function to minimize is

E(w) = − ln p(T |X,w) +
λ

2
‖w‖2



error function and optimization

• in all three cases, we can define the error function (or cost function)

E(θ) : =
1

n

n∑
i=1

L(f̂(xi;θ), si) +
λ

2
‖w‖2

• there are no constraints: in all three cases, we can use (stochastic)
gradient descent to minimize the error function with respect to
parameters θ



error function and optimization

• in all three cases, we can define the error function (or cost function)

E(θ) : =
1

n

n∑
i=1

L(f̂(xi;θ), si) +
λ

2
‖w‖2

data term

• there are no constraints: in all three cases, we can use (stochastic)
gradient descent to minimize the error function with respect to
parameters θ



error function and optimization

• in all three cases, we can define the error function (or cost function)

E(θ) : =
1

n

n∑
i=1

L(f̂(xi;θ), si) +
λ

2
‖w‖2

data term regularization term

• there are no constraints: in all three cases, we can use (stochastic)
gradient descent to minimize the error function with respect to
parameters θ



error function and optimization

• in all three cases, we can define the error function (or cost function)

E(θ) : =
1

n

n∑
i=1

L(f̂(xi;θ), si) +
λ

2
‖w‖2

data term regularization term

• there are no constraints: in all three cases, we can use (stochastic)
gradient descent to minimize the error function with respect to
parameters θ



prediction function

• in all three cases, we can use parameters θ = (w, b) and

f̂(x;w, b) = w>x + b

to make predictions during learning (training); this is the activation,
without the nonlinearity

• in all three cases, when the optimal parameters θ∗ = arg minθ E(θ)
are found, use the prediction function

f(x;w∗, b∗) = sgn(w∗>x + b∗) =

{
+1, w∗>x + b∗ ≥ 0

−1, w∗>x + b∗ < 0

to classify new samples during inference (testing)



prediction function

• in all three cases, we can use parameters θ = (w, b) and

f̂(x;w, b) = w>x + b

to make predictions during learning (training); this is the activation,
without the nonlinearity

• in all three cases, when the optimal parameters θ∗ = arg minθ E(θ)
are found, use the prediction function

f(x;w∗, b∗) = sgn(w∗>x + b∗) =

{
+1, w∗>x + b∗ ≥ 0

−1, w∗>x + b∗ < 0

to classify new samples during inference (testing)



loss function

• in all cases, we can use loss function

L(a, s) = `(sa)

where a is the activation and s the target variable in {−1, 1} (“sign”)

• the only difference is

`(x)

perceptron [−x]+
SVM (hinge) [1− x]+
logistic ln(1 + e−x)



loss function

• in all cases, we can use loss function

L(a, s) = `(sa)

where a is the activation and s the target variable in {−1, 1} (“sign”)

• the only difference is

`(x)

perceptron [−x]+
SVM (hinge) [1− x]+
logistic ln(1 + e−x)



loss function

• perceptron and logistic are asymptotically equivalent

• both SVM and logistic penalize small positive inputs

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −2 0 2 4

0

2

4

x

`(
x
)

perceptron [−x]+
hinge [1− x]+
logistic ln(1 + e−x)

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

8

10

12

14

16

18

20

22

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

8

10

12

14

16

18

20

22



loss function

• perceptron and logistic are asymptotically equivalent

• both SVM and logistic penalize small positive inputs

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

8

10

12

14

16

18

20

22

−20 −15 −10 −5 0 5 10 15 20
−2

0

2

4

6

8

10

12

14

16

18

20

22

−20 −10 0 10 20

0

5

10

15

20

x

`(
x
)

perceptron [−x]+
hinge [1− x]+
logistic ln(1 + e−x)



derivatives

• the actual value of the loss is never used; all that matters is its
derivative

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

x

d
`

d
x
(x

)

perceptron 1[x ≥ 0]− 1

hinge 1[x ≥ 1]− 1

logistic σ(x)− 1

−20 −15 −10 −5 0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0

−20 −15 −10 −5 0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0



derivatives

• the actual value of the loss is never used; all that matters is its
derivative

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

−4 −3 −2 −1 0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

−20 −15 −10 −5 0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0

−20 −15 −10 −5 0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0

−20 −15 −10 −5 0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0

x

d
`

d
x
(x

)

perceptron 1[x ≥ 0]− 1

hinge 1[x ≥ 1]− 1

logistic σ(x)− 1



derivatives

• in all cases, a sample that is correctly classified with an activation well
above some margin does not contribute at all to the error function:
the loss derivative is zero

• in all cases, a sample that is correctly classified with an activation well
below some margin has a fixed negative contribution: the loss
derivative is −1

• the same holds for logistic regression, which is unexpected if one looks
at the saturating form of the sigmoid (dσdx (x) tends to zero for
|x| → ∞)

• this is because the log of cross-entropy cancels the effect of the exp of
the sigmoid and is a good reason the treat these two as one function
operating directly on the activation



derivatives

• in all cases, a sample that is correctly classified with an activation well
above some margin does not contribute at all to the error function:
the loss derivative is zero

• in all cases, a sample that is correctly classified with an activation well
below some margin has a fixed negative contribution: the loss
derivative is −1

• the same holds for logistic regression, which is unexpected if one looks
at the saturating form of the sigmoid (dσdx (x) tends to zero for
|x| → ∞)

• this is because the log of cross-entropy cancels the effect of the exp of
the sigmoid and is a good reason the treat these two as one function
operating directly on the activation



question

• perceptron and hinge loss differ only by a shift; once the bias is
learned, aren’t they equivalent?



training

epoch 0

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 1

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 2

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 3

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 4

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 5

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 6

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 7

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 8

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



training

epoch 9

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



multi-class classification



multi-class logistic regression

• there are now k classes C1, . . . , Ck and, given input x ∈ Rd, one
activation per class for j = 1, . . . , k

aj = w>j x + bj

or, in matrix form

a = (a1, . . . , ak) = W>x + b

where W = (w1, . . . ,wk) is a d× k weight matrix and
b = (b1, . . . , bk) a bias vector

• and one output yj ∈ [0, 1] per class for j = 1, . . . , k

yj = fj(x;W,b) : = σj(W
>x + b) = σj(a)

or output vector y ∈ [0, 1]k

y = (y1, . . . , yk) = f(x;W,b) : = σ(W>x + b)



multi-class logistic regression

• there are now k classes C1, . . . , Ck and, given input x ∈ Rd, one
activation per class for j = 1, . . . , k

aj = w>j x + bj

or, in matrix form

a = (a1, . . . , ak) = W>x + b

where W = (w1, . . . ,wk) is a d× k weight matrix and
b = (b1, . . . , bk) a bias vector

• and one output yj ∈ [0, 1] per class for j = 1, . . . , k

yj = fj(x;W,b) : = σj(W
>x + b) = σj(a)

or output vector y ∈ [0, 1]k

y = (y1, . . . , yk) = f(x;W,b) : = σ(W>x + b)



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4
a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−1

0

1

2
a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−2

0

2

4
a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−5

0

5

a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−10

0

10

20
a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−20

0

20

40
a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40



softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

0 0.2 0.4 0.6 0.8 1

−15

−10

−5

0

5

10

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

0

20

40

0 0.2 0.4 0.6 0.8 1

−50

0

50

a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
σ(a)



cross-entropy error

• we are given training samples X = (x1, . . . ,xn) ∈ Rd×n and target
variables T = (t1, . . . , tn) ∈ {0, 1}k×n

• this is an 1-of-k or one-hot encoding scheme: tji = 1[xi ∈ Cj ]
• there is a similar probabilistic interpretation: output yji represents the

posterior class probability p(Cj |xi)
• again, maximizing the likelihood function yields the average

cross-entropy error function

E(W,b) =
1

n

n∑
i=1

L(ai, ti) = − 1

n

n∑
i=1

k∑
j=1

tji ln yji

where Y = (y1, . . . ,yn) and yi = σ(ai) = σ(W>xi + b)



cross-entropy error

• we are given training samples X = (x1, . . . ,xn) ∈ Rd×n and target
variables T = (t1, . . . , tn) ∈ {0, 1}k×n

• this is an 1-of-k or one-hot encoding scheme: tji = 1[xi ∈ Cj ]
• there is a similar probabilistic interpretation: output yji represents the

posterior class probability p(Cj |xi)
• again, maximizing the likelihood function yields the average

cross-entropy error function

E(W,b) =
1

n

n∑
i=1

L(ai, ti) = − 1

n

n∑
i=1

k∑
j=1

tji ln yji

where Y = (y1, . . . ,yn) and yi = σ(ai) = σ(W>xi + b)



cross-entropy loss

• given a single sample x and target variable t, and corresponding
producing activation a = W>x + b, the loss function is

L(a, t) = −t> lnσ(a)

= −t>
a− ln

 k∑
j=1

eaj


• suppose the correct label (nonzero element of t) is l, i.e. t = el

• also this term can be approximated by the maximum element of a:

L(a, t) ≈ maxa− al = max
j
aj − al

so there is loss if the activation of the correct class is not maximum



cross-entropy loss

• given a single sample x and target variable t, and corresponding
producing activation a = W>x + b, the loss function is

L(a, t) = −t> lnσ(a)

= −t>
a− ln

 k∑
j=1

eaj


• suppose the correct label (nonzero element of t) is l, i.e. t = el

• also this term can be approximated by the maximum element of a:

L(a, t) ≈ maxa− al = max
j
aj − al

so there is loss if the activation of the correct class is not maximum



cross-entropy loss derivative

• remember, it’s only derivatives that matter

• the derivative of the cross-entropy loss with respect to the activation
is particularly simple, no approximation needed:

∇aL(a, t) = σ(a)− t = y − t

• again, exp and log cancel, and that’s a reason to keep softmax
followed by cross-entropy as one function

• example (correct label l = 3):

t 0 0 1 0 0 0

a 0.3 0.1 0.8 0.4 0.0 0.2
dL
da 0.3 0.1 −0.2 0.4 0.0 0.2

• by increasing a class activation, the loss decreases if the class is
correct, and increases otherwise



cross-entropy loss derivative

• remember, it’s only derivatives that matter

• the derivative of the cross-entropy loss with respect to the activation
is particularly simple, no approximation needed:

∇aL(a, t) = σ(a)− t = y − t

• again, exp and log cancel, and that’s a reason to keep softmax
followed by cross-entropy as one function

• example (correct label l = 3):

t 0 0 1 0 0 0

a 0.3 0.1 0.8 0.4 0.0 0.2
dL
da 0.3 0.1 −0.2 0.4 0.0 0.2

• by increasing a class activation, the loss decreases if the class is
correct, and increases otherwise



cross-entropy loss derivative

• remember, it’s only derivatives that matter

• the derivative of the cross-entropy loss with respect to the activation
is particularly simple, no approximation needed:

∇aL(a, t) = σ(a)− t = y − t

• again, exp and log cancel, and that’s a reason to keep softmax
followed by cross-entropy as one function

• example (correct label l = 3):

t 0 0 1 0 0 0

a 0.3 0.1 0.8 0.4 0.0 0.2
dL
da 0.3 0.1 −0.2 0.4 0.0 0.2

• by increasing a class activation, the loss decreases if the class is
correct, and increases otherwise



multiclass SVM

• following the representation of correct label l ∈ {1, . . . , k}
• several extensions, e.g. Weston and Watkins

L(a, l) : =

[
1 + max

j 6=l
aj − al

]
+

= max
j 6=l

[1 + aj − al]+

similar to the previous approximation of cross-entropy, plus margin

• Crammer and Singer

L(a, l) : =
∑
j 6=l

[1 + aj − al]+

penalizes all labels that have better activation than the correct one

• both interpretable with simple derivatives

Weston and Watkins. ESANN 1999. Support Vector Machines for Multi-Class Pattern Recognition.
Crammer and Singer. JMLR 2001. On the Algorithmic Implementation of Multiclass Kernel-Based Vector Machines.



multiclass SVM

• we now apply logistic regression and SVM (W&W) to classify three
classes in 2d

• soft assignment: to visualize the class confidences, we apply softmax
to activations in each case, even if SVM is not probabilistic

• hard assignment: now we threshold activations with sgn instead, as
we do in testing

• we repeat at different epochs during training



prediction: soft assignment

epoch 00

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 05

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 10

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 15

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 20

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 25

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 30

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 35

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: hard assignment

epoch 00

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 04

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 08

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 12

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 16

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 20

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 24

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 28

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



MNIST digits dataset

• 10 classes, 60k training images, 10k test images, 28 × 28 images

LeCun, Bottou, Bengio and Haffner IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



from images to vectors

• all classifiers considered so far work with vectors

• we have seen how to extract a descriptor—a vector—from an image

• however, the point now is how to learn to extract a descriptor

• so we start from raw pixels: a gray-scale input image is just a 28× 28
matrix, and we vectorize it into 784× 1



linear classifier on raw pixels
x

×

W>x

+

a

σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned



linear classifier on raw pixels
x

×

W>x

+

a

σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned



linear classifier on raw pixels
x

×

W>x

+

a

σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned



linear classifier on raw pixels
x

×

W>x

+

a

σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned



linear classifier on raw pixels
x

×

W>x

+

a

σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned



linear classifier on raw pixels
x

×

W>x

+

a

σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned



what is being learned?

• the columns of W are multiplied with x; they live in the same space

• we can reshape each one back from 784× 1 to 28× 28: it should look
like a digit



linear classifier on MNIST: patterns

0 1
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• test error 7.67%



linear classifier on MNIST: patterns

2 3
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• test error 7.67%



linear classifier on MNIST: patterns

4 5
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• test error 7.67%



linear classifier on MNIST: patterns

6 7
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• test error 7.67%



linear classifier on MNIST: patterns

8 9
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• test error 7.67%



regression



line fitting

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 0.457

• linear model with parameters w = (a, b)

y = ax+ b = (a, b)>(x, 1) = w>φ(x)

• least squares error given samples (x1, . . . , xn), targets t = (t1, . . . , tn)

E(w) =

n∑
i=1

(w>φ(xi)− ti)2



line fitting

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 0.457

• linear model with parameters w = (a, b)

y = ax+ b = (a, b)>(x, 1) = w>φ(x)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×2

w∗ = (Φ>Φ)−1Φ>t



polynomial curve fitting

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 0.577

• linear model with parameters w ∈ R4

y = w>φ(x) = w>(1, x, x2, x3)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×4

w∗ = (Φ>Φ)−1Φ>t



overfitting

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 50.04

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×11

w∗ = (Φ>Φ)−1Φ>t



more data

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 51.89

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×11

w∗ = (Φ>Φ)−1Φ>t



regularization

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 0.889

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares error with parameter λ

E(w) =
n∑
i=1

(w>φ(xi)− ti)2 +
λ

2
‖w‖2



regularization

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 0.889

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares solution with parameter λ = 10−3

w∗ = (λI + Φ>Φ)−1Φ>t



severe regularization

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 0.330

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares solution with parameter λ = 1

w∗ = (λI + Φ>Φ)−1Φ>t



generalization error

10−8 10−6 10−4 10−2 100
0

0.1

0.2

0.3

λ

E

training set

validation set

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares solution with parameter λ ∈ [10−8, 100]

w∗ = (λI + Φ>Φ)−1Φ>t



setting hyperparameters

• optimize both parameters and hyperparameters on the training set:
could work perfectly on training set, no idea how it works on test set

train

• train parameters on training set, hyperparameters on test set: no idea
how it works no new data; the test set represents new data and should
never be touched but for evaluation at the very end

train test

• train parameters on training set, hyperparameters on validation set:
great, validation data are new so we test our model’s generalization;
test data are also new and are only used for evaluation

train val test



setting hyperparameters

• optimize both parameters and hyperparameters on the training set:
could work perfectly on training set, no idea how it works on test set

train

• train parameters on training set, hyperparameters on test set: no idea
how it works no new data; the test set represents new data and should
never be touched but for evaluation at the very end

train test

• train parameters on training set, hyperparameters on validation set:
great, validation data are new so we test our model’s generalization;
test data are also new and are only used for evaluation

train val test



setting hyperparameters

• optimize both parameters and hyperparameters on the training set:
could work perfectly on training set, no idea how it works on test set

train

• train parameters on training set, hyperparameters on test set: no idea
how it works no new data; the test set represents new data and should
never be touched but for evaluation at the very end

train test

• train parameters on training set, hyperparameters on validation set:
great, validation data are new so we test our model’s generalization;
test data are also new and are only used for evaluation

train val test



setting hyperparameters

• optimize both parameters and hyperparameters on the training set:
could work perfectly on training set, no idea how it works on test set

train

• train parameters on training set, hyperparameters on test set: no idea
how it works no new data; the test set represents new data and should
never be touched but for evaluation at the very end

train test

• train parameters on training set, hyperparameters on validation set:
great, validation data are new so we test our model’s generalization;
test data are also new and are only used for evaluation

train val test



setting hyperparameters

• optimize both parameters and hyperparameters on the training set:
could work perfectly on training set, no idea how it works on test set

train

• train parameters on training set, hyperparameters on test set: no idea
how it works no new data; the test set represents new data and should
never be touched but for evaluation at the very end

train test

• train parameters on training set, hyperparameters on validation set:
great, validation data are new so we test our model’s generalization;
test data are also new and are only used for evaluation

train val test



setting hyperparameters

• optimize both parameters and hyperparameters on the training set:
could work perfectly on training set, no idea how it works on test set

train

• train parameters on training set, hyperparameters on test set: no idea
how it works no new data; the test set represents new data and should
never be touched but for evaluation at the very end

train test

• train parameters on training set, hyperparameters on validation set:
great, validation data are new so we test our model’s generalization;
test data are also new and are only used for evaluation

train val test



k-fold cross-validation

• split data into k groups; treat k − 1 as training and 1 as validation,
measure on test set; repeat over all splits and average the results

trainval run 1 test

val run 2 test

val test

val test

• too expensive for large datasets: better use only one split; even better,
each dataset has an official validation set so results are comparable



k-fold cross-validation

• split data into k groups; treat k − 1 as training and 1 as validation,
measure on test set; repeat over all splits and average the results

val run 1 test

val run 2 test

val run 3 test

val run 4 test

• too expensive for large datasets: better use only one split; even better,
each dataset has an official validation set so results are comparable



k-fold cross-validation

• split data into k groups; treat k − 1 as training and 1 as validation,
measure on test set; repeat over all splits and average the results

val run 1 test

val run 2 test

val run 3 test

val run 4 test

• too expensive for large datasets: better use only one split; even better,
each dataset has an official validation set so results are comparable



k-fold cross-validation

• split data into k groups; treat k − 1 as training and 1 as validation,
measure on test set; repeat over all splits and average the results

val run 1 test

val run 2 test

val run 3 test

val run 4 test

• too expensive for large datasets: better use only one split; even better,
each dataset has an official validation set so results are comparable



k-fold cross-validation

• split data into k groups; treat k − 1 as training and 1 as validation,
measure on test set; repeat over all splits and average the results

val run 1 test

val run 2 test

val run 3 test

val run 4 test

• too expensive for large datasets: better use only one split; even better,
each dataset has an official validation set so results are comparable



k-fold cross-validation

• split data into k groups; treat k − 1 as training and 1 as validation,
measure on test set; repeat over all splits and average the results

val run 1 test

val run 2 test

val run 3 test

val run 4 test

• too expensive for large datasets: better use only one split; even better,
each dataset has an official validation set so results are comparable



“basis” functions

• the most interesting idea discussed here is that the model becomes
nonlinear in the raw input by expressing the unknown function as a
linear combination (with unknown weights) of a number of fixed
nonlinear “basis” functions

• we can re-use this idea in classification because classification is really
regression followed by thresholding (or comparison)



“basis” functions

• the most interesting idea discussed here is that the model becomes
nonlinear in the raw input by expressing the unknown function as a
linear combination (with unknown weights) of a number of fixed
nonlinear “basis” functions

• we can re-use this idea in classification because classification is really
regression followed by thresholding (or comparison)



basis functions

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.95

1

1.05

1.1

1.15

1.2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

polynomial Gaussian

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.5

0.6

0.7

0.8

0.9

1

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

10

20

30

40

50

60

70

−1 −0.5 0 0.5 1
0

20

40

60

sigmoid softplus



basis function derivatives

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−8

−6

−4

−2

0

2

4

6

8

−1 −0.5 0 0.5 1

−5

0

5

−1 −0.5 0 0.5 1
−0.6
−0.4
−0.2

0

0.2

0.4

0.6

polynomial Gaussian

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

sigmoid softplus



basis functions

• we want basis functions to cover the entire space so that any arbitrary
input can be expressed as a linear of combination of such functions

• the Gaussian is localized, the others have larger support

• polynomials and their derivatives can get extremely large; the range of
all the others can be easily controlled

• the derivatives of the Gaussian and sigmoid are localized; the
derivative of softplus is nonzero over half of the space



multiple layers



linear separability

• two point sets X1, X2 ⊂ Rd are linearly separable iff there is w, b such
that w>x1 < b < w>x2 for x1 ∈ X1,x2 ∈ X2

• or, they can be separated by a perceptron



non-linearly separable classes

epoch

credit: dataset adapted from Andrej Karpathy



linear classifier

epoch 00

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 05

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 10

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 15

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 20

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 25

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 30

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 35

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 40

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 45

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



nonlinear?

epoch

• so how do we make our classifier nonlinear?



nonlinear?

epoch

• define a 10× 10 grid over the entire space



nonlinear?

epoch

• and a (Gaussian?) basis function centered at every cell



nonlinear?

epoch

• then, a linear classifier can separate the 3 classes in 100 dimensions!



the curse of dimensionality

epoch

• but, in 3 dimensions we would need 1000 basis functions; and
remember, a 320× 200 image is a vector in R64,000



basis functions

• we need a small set of basis functions to cover the entire space, or at
least the regions where our data live

• we did use fixed basis functions before: the Gabor filters discretized
the 2d space of scales and orientations in uniform bins and their
responses were used as vectors

• but right in the next layer, the dimensions increase and we cannot
afford to have fixed basis functions everywhere: we have to learn from
the data, as we did with the codebooks

• codebooks were trained by clustering the features of the observed
data, in an unsupervised fashion; but, now, we have the opportunity
to learn them jointly with the classifier, in a supervised fashion

• so, each basis function will have itself some parameters to learn, but
what form should the function have?

• why not just like a classifier?



basis functions

• we need a small set of basis functions to cover the entire space, or at
least the regions where our data live

• we did use fixed basis functions before: the Gabor filters discretized
the 2d space of scales and orientations in uniform bins and their
responses were used as vectors

• but right in the next layer, the dimensions increase and we cannot
afford to have fixed basis functions everywhere: we have to learn from
the data, as we did with the codebooks

• codebooks were trained by clustering the features of the observed
data, in an unsupervised fashion; but, now, we have the opportunity
to learn them jointly with the classifier, in a supervised fashion

• so, each basis function will have itself some parameters to learn, but
what form should the function have?

• why not just like a classifier?



basis functions

• we need a small set of basis functions to cover the entire space, or at
least the regions where our data live

• we did use fixed basis functions before: the Gabor filters discretized
the 2d space of scales and orientations in uniform bins and their
responses were used as vectors

• but right in the next layer, the dimensions increase and we cannot
afford to have fixed basis functions everywhere: we have to learn from
the data, as we did with the codebooks

• codebooks were trained by clustering the features of the observed
data, in an unsupervised fashion; but, now, we have the opportunity
to learn them jointly with the classifier, in a supervised fashion

• so, each basis function will have itself some parameters to learn, but
what form should the function have?

• why not just like a classifier?



two-layer network

• we describe each sample with a feature vector obtained by a nonlinear
function

• we model this function after a (binary) logistic regression unit: much
like this unit can act as a classifier, it might also “detect” features
that can be useful in the final classification

• layer 1 → “features”

a1 = W>1 x + b1, z = h(a1) = h(W>1 x + b1)

where h is a nonlinear activation function

• layer 2 → class probabilities

a2 = W>2 z + b2, y = σ(a2) = σ(W>2 z + b2)

• θ : = (W1,b1,W2,b2) is the set of parameters to learn



two-layer network

• we describe each sample with a feature vector obtained by a nonlinear
function

• we model this function after a (binary) logistic regression unit: much
like this unit can act as a classifier, it might also “detect” features
that can be useful in the final classification

• layer 1 → “features”

a1 = W>1 x + b1, z = h(a1) = h(W>1 x + b1)

where h is a nonlinear activation function

• layer 2 → class probabilities

a2 = W>2 z + b2, y = σ(a2) = σ(W>2 z + b2)

• θ : = (W1,b1,W2,b2) is the set of parameters to learn



two-layer network

• we describe each sample with a feature vector obtained by a nonlinear
function

• we model this function after a (binary) logistic regression unit: much
like this unit can act as a classifier, it might also “detect” features
that can be useful in the final classification

• layer 1 → “features”

a1 = W>1 x + b1, z = h(a1) = h(W>1 x + b1)

where h is a nonlinear activation function

• layer 2 → class probabilities

a2 = W>2 z + b2, y = σ(a2) = σ(W>2 z + b2)

• θ : = (W1,b1,W2,b2) is the set of parameters to learn



two-layer network

• we describe each sample with a feature vector obtained by a nonlinear
function

• we model this function after a (binary) logistic regression unit: much
like this unit can act as a classifier, it might also “detect” features
that can be useful in the final classification

• layer 1 → “features”

a1 = W>1 x + b1, z = h(a1) = h(W>1 x + b1)

where h is a nonlinear activation function

• layer 2 → class probabilities

a2 = W>2 z + b2, y = σ(a2) = σ(W>2 z + b2)

• θ : = (W1,b1,W2,b2) is the set of parameters to learn



activation function h

• this should be nonlinear, otherwise the whole network will be linear
and we don’t gain much by the hierarchy (but: linear layers can be
useful sometimes)

• it shouldn’t have any more parameters, at least for now: all the
parameters in a layer are W,b

• it is a vector-to-vector function and there are still endless choices of
nonlinear functions

• so we make the simplest choice for now: an element-wise function

• from the functions we saw previously, we leave polynomials and
Gaussians out, and bring a couple more



activation function h

• this should be nonlinear, otherwise the whole network will be linear
and we don’t gain much by the hierarchy (but: linear layers can be
useful sometimes)

• it shouldn’t have any more parameters, at least for now: all the
parameters in a layer are W,b

• it is a vector-to-vector function and there are still endless choices of
nonlinear functions

• so we make the simplest choice for now: an element-wise function

• from the functions we saw previously, we leave polynomials and
Gaussians out, and bring a couple more



activation function h

• this should be nonlinear, otherwise the whole network will be linear
and we don’t gain much by the hierarchy (but: linear layers can be
useful sometimes)

• it shouldn’t have any more parameters, at least for now: all the
parameters in a layer are W,b

• it is a vector-to-vector function and there are still endless choices of
nonlinear functions

• so we make the simplest choice for now: an element-wise function

• from the functions we saw previously, we leave polynomials and
Gaussians out, and bring a couple more



activation functions

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

0

0.5

1

σ(x) = 1
1+e−x

sigmoid

−10 −5 0 5 10

−1

0

1

tanh(x) = ex−e−x

ex+e−x = 2σ(x)− 1

hyperbolic tangent



activation functions

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

0

0.5

1

−10 −5 0 5 10

0

4

8

σ(x) = 1
1+e−x relu(x) = [x]+ = max(0, x)

sigmoid rectified linear unit (ReLU)

−10 −5 0 5 10

−1

0

1

−10 −5 0 5 10

0

4

8

tanh(x) = ex−e−x

ex+e−x = 2σ(x)− 1 ζ(x) = log(1 + ex)

hyperbolic tangent softplus



activation functions

• tanh and sigmoid model exactly what a classifier makes (a decision),
but they are smooth unlike sgn whose derivative is zero everywhere:
indeed, they have been standard choices for decades.

• relu and its “soft” version softplus are like which functions we have
seen?



activation functions

• tanh and sigmoid model exactly what a classifier makes (a decision),
but they are smooth unlike sgn whose derivative is zero everywhere:
indeed, they have been standard choices for decades.

• relu and its “soft” version softplus are like which functions we have
seen?



back to loss functions

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −2 0 2 4

0

2

4

x

`(
x
)

perceptron [−x]+

hinge [1− x]+

logistic ln(1 + e−x)

• relu(x) = [x]+ and ζ(x) = log(1 + ex) are the flipped versions of the
perceptron and logistic loss functions, respectively

• also shown is the 0-1 misclassification loss, which is what we actually
evaluate during testing: and why didn’t we optimize that instead?

• because it’s difficult: its derivative is zero everywhere



back to loss functions

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −2 0 2 4

0

2

4

x

`(
x
)

perceptron [−x]+

hinge [1− x]+

logistic ln(1 + e−x)

0-1 1[x < 0]

• relu(x) = [x]+ and ζ(x) = log(1 + ex) are the flipped versions of the
perceptron and logistic loss functions, respectively

• also shown is the 0-1 misclassification loss, which is what we actually
evaluate during testing: and why didn’t we optimize that instead?

• because it’s difficult: its derivative is zero everywhere



back to loss functions

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −2 0 2 4

0

2

4

x

`(
x
)

perceptron [−x]+

hinge [1− x]+

logistic ln(1 + e−x)

0-1 1[x < 0]

• relu(x) = [x]+ and ζ(x) = log(1 + ex) are the flipped versions of the
perceptron and logistic loss functions, respectively

• also shown is the 0-1 misclassification loss, which is what we actually
evaluate during testing: and why didn’t we optimize that instead?

• because it’s difficult: its derivative is zero everywhere



back to loss functions

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −2 0 2 4

0

2

4

x

`(
x
)

perceptron [−x]+

hinge [1− x]+

logistic ln(1 + e−x)

0-1 1[x < 0]

• relu(x) = [x]+ and ζ(x) = log(1 + ex) are the flipped versions of the
perceptron and logistic loss functions, respectively

• also shown is the 0-1 misclassification loss, which is what we actually
evaluate during testing: and why didn’t we optimize that instead?

• because it’s difficult: its derivative is zero everywhere



surrogate loss functions

• all three loss functions we have seen are surrogate (proxy) for the 0-1
loss: their derivative is constant for x→ −∞

• they also often work better because even if the 0-1 loss is low (or
zero) on the training set, they improve on the test set

• even so, we could have used a sigmoid instead, which is the smooth
version of the 0-1 loss, but we didn’t: its derivative tends to zero for
x→ −∞

• so if just one sigmoid is harder than relu, softplus etc. in a linear
classifier, why use 100 of those in the hidden units of a two-layer
network?



surrogate loss functions

• all three loss functions we have seen are surrogate (proxy) for the 0-1
loss: their derivative is constant for x→ −∞

• they also often work better because even if the 0-1 loss is low (or
zero) on the training set, they improve on the test set

• even so, we could have used a sigmoid instead, which is the smooth
version of the 0-1 loss, but we didn’t: its derivative tends to zero for
x→ −∞

• so if just one sigmoid is harder than relu, softplus etc. in a linear
classifier, why use 100 of those in the hidden units of a two-layer
network?



surrogate loss functions

• all three loss functions we have seen are surrogate (proxy) for the 0-1
loss: their derivative is constant for x→ −∞

• they also often work better because even if the 0-1 loss is low (or
zero) on the training set, they improve on the test set

• even so, we could have used a sigmoid instead, which is the smooth
version of the 0-1 loss, but we didn’t: its derivative tends to zero for
x→ −∞

• so if just one sigmoid is harder than relu, softplus etc. in a linear
classifier, why use 100 of those in the hidden units of a two-layer
network?



remember LSH?

x

a1

a2

a3

• in LSH, we used a number of random projections followed by sgn to
produce a binary code as a description of x

• here, we use again a number of (initially) random projections followed
by relu instead, acting like a switch: half space is zeroed out, the
other half passes through

• in the nonzero part, gradients are also nonzero and we can use them
to adapt the projections themselves

Charikar. STOC 2002. Similarity Estimation Techniques From Rounding Algorithms.



two-layer classifier

epoch 00 epoch 000

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 05 epoch 050

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 10 epoch 100

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 15 epoch 150

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 20 epoch 200

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 25 epoch 250

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 30 epoch 300

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 35 epoch 350

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 40 epoch 400

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 45 epoch 450

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



MNIST digits dataset

• 10 classes, 60k training images, 10k test images, 28 × 28 images

LeCun, Bottou, Bengio and Haffner IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



two-layer classifier on raw pixels

x

×

W>
1 x

+

a1

h

z

×

W>
2 z

+

a2

σ

y

0 0 0 0 0 0 0 0

W1 b1 W2 b2

28× 28 784× 1 100× 1 100× 1 100× 1 10× 1 10× 1 10× 1

784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)



what is being learned?

• the columns of W1 are multiplied with x; they live in the same space,
as in the linear classifier

• we can reshape each one back from 784× 1 to 28× 28: but now it
shouldn’t look like a digit; rather, like a pattern that might help in
recognizing digits

• these patterns are shared: once the activations are computed, they
can be used in the next layer to score any of the digits

• the columns of W2 are in an 100-dimensional space that we can’t
make much sense of now; but we’ll revisit this later



MNIST: two-layer classifier

layer 1 weights 00-09

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 10-19

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 20-29

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 30-39

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 40-49

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 50-59

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 60-69

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 70-79

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 80-89

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 90-99

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



summary

• only care about learning features: so, not interested e.g. in nearest
neighbor search or dual SVM formulation

• three different linear classifiers, perceptron, SVM and logistic
regression, only differ slightly in their loss function, which is similar to
relu in all cases

• stochastic gradient descent optimization

• multi-class classification, softmax and MNIST

• linear regression, basis functions, overfitting, validation,
hyperparameter optimization

• learning basis functions, two-layer networks, activation functions,
connection to classifier loss functions

• why relu makes sense


	machine learning
	binary classification
	binary classification, again
	multi-class classification
	regression
	multiple layers

