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machine learning



machine learning

supervised learning

• learn to map an input to a target output, which can be discrete
(classification) or continuous (regression)

unsupervised learning

• learn a compact representation of the data that can be useful for
other tasks, e.g. density estimation, clustering, sampling, dimension
reduction, manifold learning

• but: in many cases, labels can be obtained automatically, transforming
an unsupervised task to supervised

• also: semi-supervised, weakly supervised, ambiguous/noisy labels,
self-supervised etc.

reinforcement learning

• learn to select actions, supervised by occasional rewards

• not studied here
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main objective

• through a learning task/objective that may be unimportant, we are
primarily interested in learning good representations for computer
vision tasks

• we are interested in parametric models where we learn a fixed set of
parameters, rather than non-parametric, where training data are
memorized

• we are interested in learning explicit mappings from raw input to
representation, rather than constructing a representation of an entire
dataset that is hard to extend to new samples

• we may occasionally use “hand-crafted” features or matching
methods, but with the objective of learning better ones
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learning and optimization

• in a supervised setting, given a distribution p of input data x and
target outputs t we want to learn the parameters θ of a prediction
model f(x,θ) by minimizing the risk (objective, cost, or error)
function

E∗(θ) : = E(x,t)∼pL(f(x;θ), t)

where L is a per-sample loss function that compares predictions
f(x;θ) to targets t

• since the true distribution p is unknown, we use the empirical
distribution p̂ of a training set x1, . . . ,xm with associated target
outputs t1, . . . , tn and minimize instead the empirical risk

E(θ) : = E(x,t)∼p̂L(f(x;θ), t) =
1

n

n∑
i=1

L(f(xi;θ), ti),

converting the learning problem to optimization
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however

• the empirical risk is prone to overfitting the training set (even
memorizing it), if non-parametric

• we need to balance our model’s capacity with the amount of training
data, find ways to regularize the objective function and use a
validation set to select hyperparameters so that our model generalizes
on new samples

• the ideal loss function may be hard to optimize, so we have to use a
surrogate loss function that may as well improve generalization

• still, all functions encountered are non-convex so we can only hope for
local minima
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binary classification



k-nearest neighbor classifier

• an input sample is classified by majority voting (ties broken at random)
over the class labels of its k-nearest neighbors in the training set

• no training needed, but prediction can be slow

• we are not interested in such an approach (for now) because it gives
us no opportunity to learn a representation

Image credit: Bishop 2006. Pattern Recognition and Machine Learning.
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perceptron
[Rosenblatt 1962]

• perceptron, as introduced by
Rosenblatt, refers to a wide
range of network architectures,
learning algorithms and
hardware implementations

• due to Minsky and Papert,
perceptron now refers to a
binary linear classifier and an
algorithm

• let’s have a closer look at that

Rosenblatt 1962. Principles of Neurodynamics



perceptron model

• given input x ∈ Rd, the perceptron is a generalized linear model

y = f(x;w) : = sgn(w>x)

where w ∈ Rd is a weight (parameter) vector to be learned, and

sgn(x) : =

{
+1, x ≥ 0
−1, x < 0
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perceptron algorithm

• an input x with output y = f(x;w) is classified to class C1 if y = 1
and to C2 if y = −1

• given a training sample x ∈ Rd and a target variable s ∈ {−1, 1}, x is
correctly classified iff output y = f(x;w) equals s, i.e. sy > 0

• we are given training samples x1, . . . ,xn ∈ Rd and target variables
s1, . . . , sn ∈ {−1, 1}

• starting from an initial parameter vector w(0), the algorithm learns by
iteratively choosing a random sample xi that is misclassified and
updating

w(τ+1) ← w(τ) + εsixi

Rosenblatt 1962. Principles of Neurodynamics
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perceptron algorithm

w0

• initial parameter vector w0, normal to the decision boundary and
pointing to the region to be classified as blue (+)



perceptron algorithm

w0

x0

• pick a random point x0 that is misclassified: blue (+) in red (−)
region



perceptron algorithm

w0

x0

w1 = w0 + εx0

• because x0 is blue and w is pointing at blue, we add εx0 to w0



perceptron algorithm

w1

• with the new parameter vector w1, the decision boundary is updated



perceptron algorithm

w1
x1

• pick a new random point x1 that is misclassified: red in blue region



perceptron algorithm

w1
x1

w2 = w1 − εx1

• because x1 is red and w is pointing at blue, we subtract εx1 from w1



perceptron algorithm

w2

• with the new w2, the decision boundary is updated again



perceptron algorithm

w2

x2

• again, random point x2, blue misclassified in red region



perceptron algorithm

w2

x2

w3 = w2 + εx2

• and we add εx2 to w2



perceptron algorithm

w3

• now at w3



perceptron algorithm

w3

x3

• one last random point x3, red in blue region



perceptron algorithm

w3

x3

w4 = w3 − εx3

• and we subtract



perceptron algorithm

w4

• finally at w4, all points are classified correctly
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w4

• finally at w4, all points are classified correctly



perceptron algorithm

w4

• finally at w4, all points are classified correctly



“details”

• we do not say anything about convergence now; we will discuss later

• there is one more parameter to be learned: a more general linear
model would be

y = f(x;w, b) : = sgn(w>x + b)

where w ∈ Rd is a weight vector, and b is a bias

• this is often omitted because we can just add an extra dimension d+ 1
to x and w and always set xd+1 = 1; then wd+1 plays the role of bias

• but in many cases weights and bias need separate treatment

• it is common to use a (fixed) set of basis functions on the raw input
and write φ(x) instead of x

• the linear model itself is not affected by this choice, but the classifier
is; again, we discuss this later

Rosenblatt 1962. Principles of Neurodynamics
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support vector machine (SVM)
[Boser et al. 1992]

• given a decision boundary that classifies all points correctly, define the
margin as its distance to the nearest point

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



support vector machine (SVM)
[Boser et al. 1992]

• this was not optimal in the case of perceptron

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



support vector machine (SVM)
[Boser et al. 1992]

• there is another decision boundary for which the margin is maximum;
the vectors at this distance are the support vectors

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



SVM model

• there is now an explicit bias parameter b, but otherwise the SVM
model is the same: activation

a : = w>x + b

and output

y = f(x;w, b) : = sgn(w>x + b) = sgn(a)

• again, an input x with a = w>x + b and output y = sgn(a) is
classified to class C1 if y = 1 (a ≥ 0) and to C2 if y = −1 (a < 0)

• again, given a training sample x and a target variable s, x is correctly
classified iff sy > 0, i.e. sa = s(w>x + b) ≥ 0

• we are given training samples x1, . . . ,xn ∈ Rd and target variables
s1, . . . , sn ∈ {−1, 1}

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.
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margin

x

y

w

w>x+b
‖w‖

x
a = 0

• the distance of x to the boundary is |w>x + b|/‖w‖
• this is s(w>x + b)/‖w‖ if it is classified correctly

• if all points are classified correctly, then the margin is

1

‖w‖
min
i

(si(w
>xi + b))

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.
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maximum margin

• the margin is invariant to scaling of w and b, so we choose
siai = si(w

>xi + b) = 1 for the point that is nearest to the boundary

• then, the margin is maximized by

arg min
w,b

1

2
‖w‖2

subject to
siai ≥ 1

for all training samples i, where ai : = w>xi + b

• this is a quadratic programming problem

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.
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overlapping class distributions
[Cortes and Vapnik 1995]

a = 1

a = −1

a = 0
a < −1

a > 1

• assuming that all training samples can be correctly classified is
unrealistic

Cortes and Vapnik. ML 1995. Support-Vector Networks.



overlapping class distributions
[Cortes and Vapnik 1995]

a = 1

a = −1

a = 0
a < −1

a > 1
ξ > 1 ξ < 1

ξ = 0

ξ = 0

• introduce slack variables ξi ≥ 0 that should be minimized; ξi ≤ 1 for
correctly classified samples, ξi = 0 beyond the margin

Cortes and Vapnik. ML 1995. Support-Vector Networks.



overlapping class distributions

• the constraints siai ≥ 1 are now replaced by

siai ≥ 1− ξi
ξi ≥ 0

where ai : = w>xi + b

• and the objective arg minw,b
1
2‖w‖

2 is replaced by

arg min
w,b

C

n

n∑
i=1

ξi +
1

2
‖w‖2

where hyperparameter C controls the trade-off between slack variables
and margin

Cortes and Vapnik. ML 1995. Support-Vector Networks.
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“details”

• we do not say anything about how to solve this problem yet

• the standard treatment of SVM introduces Lagrange multipliers for
the constraints and results in the dual formulation where coordinates
only appear in dot products

• at this point, writing φ(x) instead of x, gives rise to

κ(x,y) = φ(x)>φ(y)

• this kernel trick can make the classifier nonlinear assuming an
appropriate positive-definite kernel function κ for the problem at hand

• we are not interested in this approach here because

• we want to learn a parametric model and discard the training
data after learning

• we do not want to design a matching function κ any more than
designing the representation φ; we want to learn from raw data

Cortes and Vapnik. ML 1995. Support-Vector Networks.
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(binary) logistic regression
[Cox 1958]

• again, activation (but here we omit the bias)

a = w>x

and output
y = f(x;w) : = σ(w>x) = σ(a)

• but now we have a different nonlinearity: σ is the sigmoid function

σ(x) : =
1

1 + e−x
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Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.
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probabilistic interpretation

• the output y represents the posterior probability of class C1 given
input x, which by Bayes rule is

y = p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + e−a
= σ(a)

• here the activation a is defined to represent the log-odds

a = ln
p(C1|x)

p(C2|x)
= ln

p(x|C1)p(C1)

p(x|C2)p(C2)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.



maximum likelihood

• we are given training samples X = (x1, . . . ,xn) with xi ∈ Rd and
target variables T = (t1, . . . , tn) with ti ∈ {0, 1}

• watch out: target variables are in {0, 1} here, not {−1, 1}
• the probabilistic interpretation allows us to define the learning

objective: maximize the likelihood function

p(T |X,w) =

n∏
i=1

ytii (1− yi)1−ti

• or, minimize the (average) cross-entropy error function

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

Cox. JSTOR 1958. The Regression Analysis of Binary Sequences.
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binary classifiers

raw data



binary classifiers

perceptron



binary classifiers

SVM



binary classifiers

logistic regression



binary classification, again



three solutions so far

perceptron SVM logistic

objective — yes yes
constraints — yes —
regularizer — yes —
algorithm yes — —

probabilistic — — yes



perceptron, again

• “choose a random sample i that is misclassified and update”

w(τ+1) ← w(τ) + εsixi

• given sample xi, if siyi > 0 (i.e. siai ≥ 0) the sample is correctly
classified and there is no action; otherwise, we attempt to minimize
−siai = −siw>xi: the error function is

E(w) =
1

n

n∑
i=1

Ei(w) =
1

n

n∑
i=1

[−siai]+ =
1

n

n∑
i=1

[−siw>xi]+

• indeed, given any random sample xi (correctly classified or not), the
update is

w(τ+1) ← w(τ) − ε∇wEi(w
(τ))
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positive part

• quantity [x]+ is the positive part of x; this function also known as
rectified linear unit (ReLU):

relu(x) : = [x]+ : = max(0, x)
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gradient descent

• in general, given an error function in parameters θ of the additive form

E(θ) =
1

n

n∑
i=1

Ei(θ),

• online (or stochastic) gradient descent updates the parameters after
seeing one random sample i, according to

θ(τ+1) ← θ(τ) − ε∇θEi(θ
(τ))

• batch gradient descent updates the parameters once after seeing the
entire dataset, according to

θ(τ+1) ← θ(τ) − ε∇θE(θ(τ))
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gradient descent

• mini-batch (or stochastic) gradient descent (SGD) is the most
common option and updates the parameters after seeing a random
subset I ⊂ {1, . . . , n} of samples of fixed size m = |I| according to

θ(τ+1) ← θ(τ) − ε 1

m

∑
i∈I
∇θEi(θ

(τ))

• ε is the learning rate and is a hyperparameter; we will discuss later the
convergence to a local minimum of E and conditions on ε

• whatever the choice, an iteration over the entire dataset is called an
epoch

• stochastic versions make more sense when dataset is redundant

• it is important to take random samples
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SVM, again

a = 1

a = −1

a = 0
a < −1

a > 1
ξ > 1 ξ < 1

ξ = 0

ξ = 0

• either siai ≥ 1 and ξi = 0 (correct side of margin) or ξi = 1− siai



SVM, again

• the constraints

siai ≥ 1− ξi
ξi ≥ 0

do not tell the whole truth

• either siai ≥ 1 and ξi = 0 (correct side of margin) or ξi = 1− siai,
that is, ξi = [1− siai]+

• the error function becomes

E(w, b) =
1

n

n∑
i=1

[1− siai]+ +
λ

2
‖w‖2

without ξi and without constraints, where λ = 1/C

Cortes and Vapnik. ML 1995. Support-Vector Networks.
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weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



weight decay

• recall that the margin in SVM is invariant to scaling w and b

• same for perceptron error function

• in logistic regression, the sigmoid tends to a non-smooth step function
as ‖w‖ becomes larger

• as ‖w‖ increases, the classifier function becomes more sensitive to
perturbations in the input and is harder to generalize to new data

• the term
λ

2
‖w‖2

helps to keep ‖w‖ low because its gradient is −λw; it is a standard
regularization method and we can add it to any method including
perceptron and logistic regression

• λ is another hyperparameter

• weight decay is only applied to weights, not to bias



logistic regression, again

• recall that

E(w) : = − 1

n

n∑
i=1

(ti ln yi + (1− ti) ln(1− yi))

where yi = σ(ai) = σ(w>xi)

• using variables si = 2ti − 1 in {−1, 1}, each term is

if ti = 1 (si = 1) lnσ(ai)
if ti = 0 (si = −1) ln(1− σ(ai)) = lnσ(−ai)
in either case lnσ(siai)

• the error function becomes

E(w) = − 1

n

n∑
i=1

lnσ(siai) =
1

n

n∑
i=1

ln(1 + e−siai)
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maximum posterior

• weight decay also appears in probabilistic formulations by considering
the weight vector a random variable and incorporating a Gaussian
prior for w

p(w|λ) = exp(−λ
2
‖w‖2)

• the posterior distribution given the dataset X,T is

p(w|X,T ) ∝ p(T |X,w)p(w|λ)

• taking negative logarithm, the error function to minimize is

E(w) = − ln p(T |X,w) +
λ

2
‖w‖2
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error function and optimization

• in all three cases, we can define the error function (or cost function)

E(θ) : =
1

n

n∑
i=1

L(f̂(xi;θ), si) +
λ

2
‖w‖2

• there are no constraints: in all three cases, we can use (stochastic)
gradient descent to minimize the error function with respect to
parameters θ
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prediction function

• in all three cases, we can use parameters θ = (w, b) and

f̂(x;w, b) = w>x + b

to make predictions during learning (training); this is the activation,
without the nonlinearity

• in all three cases, when the optimal parameters θ∗ = arg minθ E(θ)
are found, use the prediction function

f(x;w∗, b∗) = sgn(w∗>x + b∗) =

{
+1, w∗>x + b∗ ≥ 0

−1, w∗>x + b∗ < 0

to classify new samples during inference (testing)
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loss function

• in all cases, we can use loss function

L(a, s) = `(sa)

where a is the activation and s the target variable in {−1, 1} (“sign”)

• the only difference is

`(x)

perceptron [−x]+
SVM (hinge) [1− x]+
logistic ln(1 + e−x)
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loss function

• perceptron and logistic are asymptotically equivalent

• both SVM and logistic penalize small positive inputs
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• perceptron and logistic are asymptotically equivalent

• both SVM and logistic penalize small positive inputs
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derivatives

• the actual value of the loss is never used; all that matters is its
derivative
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• the actual value of the loss is never used; all that matters is its
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derivatives

• in all cases, a sample that is correctly classified with an activation well
above some margin does not contribute at all to the error function:
the loss derivative is zero

• in all cases, a sample that is correctly classified with an activation well
below some margin has a fixed negative contribution: the loss
derivative is −1

• the same holds for logistic regression, which is unexpected if one looks
at the saturating form of the sigmoid (dσdx (x) tends to zero for
|x| → ∞)

• this is because the log of cross-entropy cancels the effect of the exp of
the sigmoid and is a good reason the treat these two as one function
operating directly on the activation
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question

• perceptron and hinge loss differ only by a shift; once the bias is
learned, aren’t they equivalent?
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epoch 0

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3
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training

epoch 9

perceptron hinge logistic

• k = 2, n = 200,m = 10, ε = 10−3, λ = 10−3



multi-class classification



multi-class logistic regression

• there are now k classes C1, . . . , Ck and, given input x ∈ Rd, one
activation per class for j = 1, . . . , k

aj = w>j x + bj

or, in matrix form

a = (a1, . . . , ak) = W>x + b

where W = (w1, . . . ,wk) is a d× k weight matrix and
b = (b1, . . . , bk) a bias vector

• and one output yj ∈ [0, 1] per class for j = 1, . . . , k

yj = fj(x;W,b) : = σj(W
>x + b) = σj(a)

or output vector y ∈ [0, 1]k

y = (y1, . . . , yk) = f(x;W,b) : = σ(W>x + b)
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softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum
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softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing
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(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum
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• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing
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softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
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softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
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aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum
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• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing
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softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum
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softmax

• the softmax function generalizes the sigmoid function and yields a
vector of k values in [0, 1] by exponentiating and then normalizing

σ(a) : = softmax(a) : =
1∑
j e

aj
(ea1 , . . . , eak)

• as activation values increase, softmax tends to focus on the maximum
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cross-entropy error

• we are given training samples X = (x1, . . . ,xn) ∈ Rd×n and target
variables T = (t1, . . . , tn) ∈ {0, 1}k×n

• this is an 1-of-k or one-hot encoding scheme: tji = 1[xi ∈ Cj ]
• there is a similar probabilistic interpretation: output yji represents the

posterior class probability p(Cj |xi)
• again, maximizing the likelihood function yields the average

cross-entropy error function

E(W,b) =
1

n

n∑
i=1

L(ai, ti) = − 1

n

n∑
i=1

k∑
j=1

tji ln yji

where Y = (y1, . . . ,yn) and yi = σ(ai) = σ(W>xi + b)
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cross-entropy loss

• given a single sample x and target variable t, and corresponding
producing activation a = W>x + b, the loss function is

L(a, t) = −t> lnσ(a)

= −t>
a− ln

 k∑
j=1

eaj


• suppose the correct label (nonzero element of t) is l, i.e. t = el

• also this term can be approximated by the maximum element of a:

L(a, t) ≈ maxa− al = max
j
aj − al

so there is loss if the activation of the correct class is not maximum
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cross-entropy loss derivative

• remember, it’s only derivatives that matter

• the derivative of the cross-entropy loss with respect to the activation
is particularly simple, no approximation needed:

∇aL(a, t) = σ(a)− t = y − t

• again, exp and log cancel, and that’s a reason to keep softmax
followed by cross-entropy as one function

• example (correct label l = 3):

t 0 0 1 0 0 0

a 0.3 0.1 0.8 0.4 0.0 0.2
dL
da 0.3 0.1 −0.2 0.4 0.0 0.2

• by increasing a class activation, the loss decreases if the class is
correct, and increases otherwise
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multiclass SVM

• following the representation of correct label l ∈ {1, . . . , k}
• several extensions, e.g. Weston and Watkins

L(a, l) : =

[
1 + max

j 6=l
aj − al

]
+

= max
j 6=l

[1 + aj − al]+

similar to the previous approximation of cross-entropy, plus margin

• Crammer and Singer

L(a, l) : =
∑
j 6=l

[1 + aj − al]+

penalizes all labels that have better activation than the correct one

• both interpretable with simple derivatives

Weston and Watkins. ESANN 1999. Support Vector Machines for Multi-Class Pattern Recognition.
Crammer and Singer. JMLR 2001. On the Algorithmic Implementation of Multiclass Kernel-Based Vector Machines.



multiclass SVM

• we now apply logistic regression and SVM (W&W) to classify three
classes in 2d

• soft assignment: to visualize the class confidences, we apply softmax
to activations in each case, even if SVM is not probabilistic

• hard assignment: now we threshold activations with sgn instead, as
we do in testing

• we repeat at different epochs during training



prediction: soft assignment

epoch 00

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3
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epoch 05

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3
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epoch 10

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3
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epoch 15

hinge (W&W) logistic
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prediction: soft assignment

epoch 20

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 25

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 30

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: soft assignment

epoch 35

hinge (W&W) logistic

• k = 3, n = 300,m = 10, ε = 10−1, λ = 10−3



prediction: hard assignment

epoch 00

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 04

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 08

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 12

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 16

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 20

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 24

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



prediction: hard assignment

epoch 28

hinge (W & W) logistic

• k = 3, n = 300,m = 10, ε = 10−2, λ = 10−3



MNIST digits dataset

• 10 classes, 60k training images, 10k test images, 28 × 28 images

LeCun, Bottou, Bengio and Haffner IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



from images to vectors

• all classifiers considered so far work with vectors

• we have seen how to extract a descriptor—a vector—from an image

• however, the point now is how to learn to extract a descriptor

• so we start from raw pixels: a gray-scale input image is just a 28× 28
matrix, and we vectorize it into 784× 1



linear classifier on raw pixels
x

×

W>x

+

a

σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned
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σ

y

28× 28 784× 1 10× 1

W

b

784× 10 10× 1

• input - weights - bias - softmax - parameters to be learned



what is being learned?

• the columns of W are multiplied with x; they live in the same space

• we can reshape each one back from 784× 1 to 28× 28: it should look
like a digit



linear classifier on MNIST: patterns

0 1
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• test error 7.67%
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linear classifier on MNIST: patterns

6 7
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4
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linear classifier on MNIST: patterns

8 9
• k = 3, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• test error 7.67%



regression



line fitting

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

x

y

‖w‖ = 0.457

• linear model with parameters w = (a, b)

y = ax+ b = (a, b)>(x, 1) = w>φ(x)

• least squares error given samples (x1, . . . , xn), targets t = (t1, . . . , tn)

E(w) =

n∑
i=1

(w>φ(xi)− ti)2



line fitting
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‖w‖ = 0.457

• linear model with parameters w = (a, b)

y = ax+ b = (a, b)>(x, 1) = w>φ(x)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×2

w∗ = (Φ>Φ)−1Φ>t



polynomial curve fitting
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‖w‖ = 0.577

• linear model with parameters w ∈ R4

y = w>φ(x) = w>(1, x, x2, x3)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×4

w∗ = (Φ>Φ)−1Φ>t



overfitting
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• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×11

w∗ = (Φ>Φ)−1Φ>t



more data
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• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• least squares solution, where Φ = (φ(x1); . . . ;φ(xn)) ∈ Rn×11

w∗ = (Φ>Φ)−1Φ>t



regularization
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• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares error with parameter λ

E(w) =
n∑
i=1

(w>φ(xi)− ti)2 +
λ

2
‖w‖2



regularization
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y

‖w‖ = 0.889

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares solution with parameter λ = 10−3

w∗ = (λI + Φ>Φ)−1Φ>t



severe regularization
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• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares solution with parameter λ = 1

w∗ = (λI + Φ>Φ)−1Φ>t



generalization error
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E

training set

validation set

• linear model with parameters w ∈ R11

y = w>φ(x) = w>(1, x, x2, . . . , x10)

• regularized least squares solution with parameter λ ∈ [10−8, 100]

w∗ = (λI + Φ>Φ)−1Φ>t



setting hyperparameters

• optimize both parameters and hyperparameters on the training set:
could work perfectly on training set, no idea how it works on test set

train

• train parameters on training set, hyperparameters on test set: no idea
how it works no new data; the test set represents new data and should
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• train parameters on training set, hyperparameters on validation set:
great, validation data are new so we test our model’s generalization;
test data are also new and are only used for evaluation
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k-fold cross-validation

• split data into k groups; treat k − 1 as training and 1 as validation,
measure on test set; repeat over all splits and average the results

trainval run 1 test

val run 2 test

val test

val test

• too expensive for large datasets: better use only one split; even better,
each dataset has an official validation set so results are comparable
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“basis” functions

• the most interesting idea discussed here is that the model becomes
nonlinear in the raw input by expressing the unknown function as a
linear combination (with unknown weights) of a number of fixed
nonlinear “basis” functions

• we can re-use this idea in classification because classification is really
regression followed by thresholding (or comparison)
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basis functions
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basis function derivatives
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basis functions

• we want basis functions to cover the entire space so that any arbitrary
input can be expressed as a linear of combination of such functions

• the Gaussian is localized, the others have larger support

• polynomials and their derivatives can get extremely large; the range of
all the others can be easily controlled

• the derivatives of the Gaussian and sigmoid are localized; the
derivative of softplus is nonzero over half of the space



multiple layers



linear separability

• two point sets X1, X2 ⊂ Rd are linearly separable iff there is w, b such
that w>x1 < b < w>x2 for x1 ∈ X1,x2 ∈ X2

• or, they can be separated by a perceptron



non-linearly separable classes

epoch

credit: dataset adapted from Andrej Karpathy



linear classifier

epoch 00

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 05

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 10

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 15

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3
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epoch 20

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 25

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 30

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 35

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 40

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



linear classifier

epoch 45

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



nonlinear?

epoch

• so how do we make our classifier nonlinear?



nonlinear?

epoch

• define a 10× 10 grid over the entire space



nonlinear?

epoch

• and a (Gaussian?) basis function centered at every cell



nonlinear?

epoch

• then, a linear classifier can separate the 3 classes in 100 dimensions!



the curse of dimensionality

epoch

• but, in 3 dimensions we would need 1000 basis functions; and
remember, a 320× 200 image is a vector in R64,000



basis functions

• we need a small set of basis functions to cover the entire space, or at
least the regions where our data live

• we did use fixed basis functions before: the Gabor filters discretized
the 2d space of scales and orientations in uniform bins and their
responses were used as vectors

• but right in the next layer, the dimensions increase and we cannot
afford to have fixed basis functions everywhere: we have to learn from
the data, as we did with the codebooks

• codebooks were trained by clustering the features of the observed
data, in an unsupervised fashion; but, now, we have the opportunity
to learn them jointly with the classifier, in a supervised fashion

• so, each basis function will have itself some parameters to learn, but
what form should the function have?

• why not just like a classifier?
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two-layer network

• we describe each sample with a feature vector obtained by a nonlinear
function

• we model this function after a (binary) logistic regression unit: much
like this unit can act as a classifier, it might also “detect” features
that can be useful in the final classification

• layer 1 → “features”

a1 = W>1 x + b1, z = h(a1) = h(W>1 x + b1)

where h is a nonlinear activation function

• layer 2 → class probabilities

a2 = W>2 z + b2, y = σ(a2) = σ(W>2 z + b2)

• θ : = (W1,b1,W2,b2) is the set of parameters to learn
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activation function h

• this should be nonlinear, otherwise the whole network will be linear
and we don’t gain much by the hierarchy (but: linear layers can be
useful sometimes)

• it shouldn’t have any more parameters, at least for now: all the
parameters in a layer are W,b

• it is a vector-to-vector function and there are still endless choices of
nonlinear functions

• so we make the simplest choice for now: an element-wise function

• from the functions we saw previously, we leave polynomials and
Gaussians out, and bring a couple more
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activation functions

• tanh and sigmoid model exactly what a classifier makes (a decision),
but they are smooth unlike sgn whose derivative is zero everywhere:
indeed, they have been standard choices for decades.

• relu and its “soft” version softplus are like which functions we have
seen?
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back to loss functions
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• relu(x) = [x]+ and ζ(x) = log(1 + ex) are the flipped versions of the
perceptron and logistic loss functions, respectively

• also shown is the 0-1 misclassification loss, which is what we actually
evaluate during testing: and why didn’t we optimize that instead?

• because it’s difficult: its derivative is zero everywhere
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surrogate loss functions

• all three loss functions we have seen are surrogate (proxy) for the 0-1
loss: their derivative is constant for x→ −∞

• they also often work better because even if the 0-1 loss is low (or
zero) on the training set, they improve on the test set

• even so, we could have used a sigmoid instead, which is the smooth
version of the 0-1 loss, but we didn’t: its derivative tends to zero for
x→ −∞

• so if just one sigmoid is harder than relu, softplus etc. in a linear
classifier, why use 100 of those in the hidden units of a two-layer
network?



surrogate loss functions

• all three loss functions we have seen are surrogate (proxy) for the 0-1
loss: their derivative is constant for x→ −∞

• they also often work better because even if the 0-1 loss is low (or
zero) on the training set, they improve on the test set

• even so, we could have used a sigmoid instead, which is the smooth
version of the 0-1 loss, but we didn’t: its derivative tends to zero for
x→ −∞

• so if just one sigmoid is harder than relu, softplus etc. in a linear
classifier, why use 100 of those in the hidden units of a two-layer
network?



surrogate loss functions

• all three loss functions we have seen are surrogate (proxy) for the 0-1
loss: their derivative is constant for x→ −∞

• they also often work better because even if the 0-1 loss is low (or
zero) on the training set, they improve on the test set

• even so, we could have used a sigmoid instead, which is the smooth
version of the 0-1 loss, but we didn’t: its derivative tends to zero for
x→ −∞

• so if just one sigmoid is harder than relu, softplus etc. in a linear
classifier, why use 100 of those in the hidden units of a two-layer
network?



remember LSH?

x

a1

a2

a3

• in LSH, we used a number of random projections followed by sgn to
produce a binary code as a description of x

• here, we use again a number of (initially) random projections followed
by relu instead, acting like a switch: half space is zeroed out, the
other half passes through

• in the nonzero part, gradients are also nonzero and we can use them
to adapt the projections themselves

Charikar. STOC 2002. Similarity Estimation Techniques From Rounding Algorithms.



two-layer classifier

epoch 00 epoch 000

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 05 epoch 050

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 10 epoch 100

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 15 epoch 150

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 20 epoch 200

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 25 epoch 250

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 30 epoch 300

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 35 epoch 350

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 40 epoch 400

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



two-layer classifier

epoch 45 epoch 450

linear two-layer

• k = 3, n = 300,m = 100, ε = 100, λ = 10−3



MNIST digits dataset

• 10 classes, 60k training images, 10k test images, 28 × 28 images

LeCun, Bottou, Bengio and Haffner IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



two-layer classifier on raw pixels
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784× 100 100× 1 100× 10 10× 1

• input - layer 1 weights and bias - relu activation function - layer 2
weights and bias - softmax

• parameter learning using cross-entropy on y (or rather, directly on a2)
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what is being learned?

• the columns of W1 are multiplied with x; they live in the same space,
as in the linear classifier

• we can reshape each one back from 784× 1 to 28× 28: but now it
shouldn’t look like a digit; rather, like a pattern that might help in
recognizing digits

• these patterns are shared: once the activations are computed, they
can be used in the next layer to score any of the digits

• the columns of W2 are in an 100-dimensional space that we can’t
make much sense of now; but we’ll revisit this later



MNIST: two-layer classifier

layer 1 weights 00-09

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 10-19

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 20-29
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• hidden layer width: 100; test error 2.54%
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layer 1 weights 30-39
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• hidden layer width: 100; test error 2.54%
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layer 1 weights 40-49
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MNIST: two-layer classifier

layer 1 weights 50-59
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MNIST: two-layer classifier

layer 1 weights 60-69

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 70-79

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 80-89

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



MNIST: two-layer classifier

layer 1 weights 90-99

• k = 10, n = 60000,m = 6000, ε = 10−1, λ = 10−4

• hidden layer width: 100; test error 2.54%



summary

• only care about learning features: so, not interested e.g. in nearest
neighbor search or dual SVM formulation

• three different linear classifiers, perceptron, SVM and logistic
regression, only differ slightly in their loss function, which is similar to
relu in all cases

• stochastic gradient descent optimization

• multi-class classification, softmax and MNIST

• linear regression, basis functions, overfitting, validation,
hyperparameter optimization

• learning basis functions, two-layer networks, activation functions,
connection to classifier loss functions

• why relu makes sense


	machine learning
	binary classification
	binary classification, again
	multi-class classification
	regression
	multiple layers

