lecture 3: feature detection and matching deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

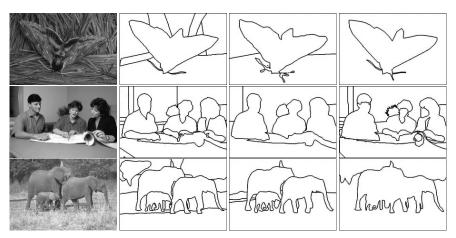
Rennes, Nov. 2017 - Jan. 2018

outline

derivatives feature detection spatial matching

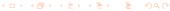
derivatives

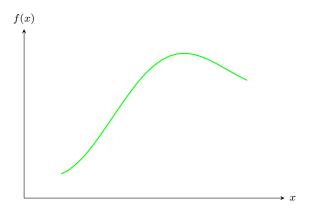
edges

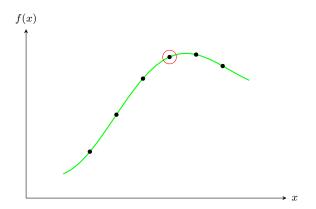


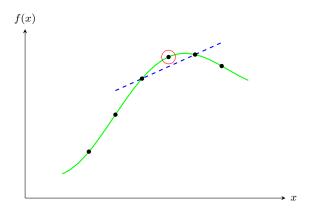
- connection between image recognition and segmentation
- database of human 'ground truth' to evaluate edge detection

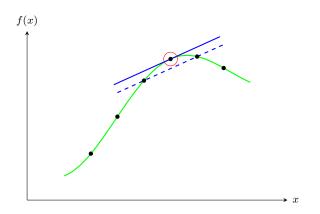
Martin, Fowlkes, Tal, Malik. ICCV 2001. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics.





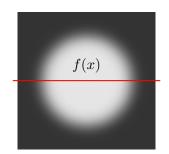


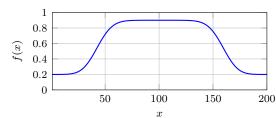




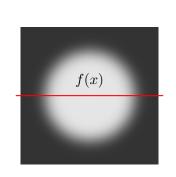
$$\frac{df}{dx}(x) \approx \frac{f(x+1) - f(x-1)}{2}$$

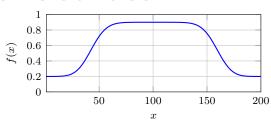
derivative in one dimension

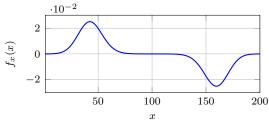




derivative in one dimension





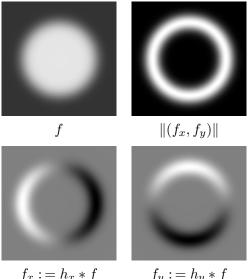


$$f_x(x) := \frac{f(x+1) - f(x-1)}{2} = h * f, \quad h := \frac{1}{2}[1 \ 0 \ -1]$$

derivative in two dimensions: gradient

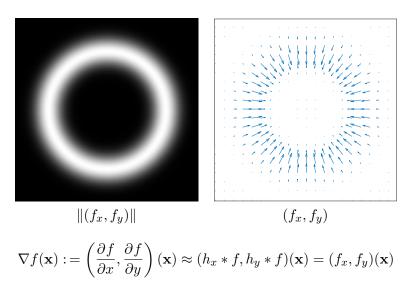
 $\begin{array}{ll} f_x := h_x * f & f_y := h_y * f \\ h_x := \frac{1}{2}[1 \ 0 \ -1] & h_y := \frac{1}{2}[1 \ 0 \ -1]^\top \end{array}$

derivative in two dimensions: gradient



 $\begin{array}{ll} f_x := h_x * f & f_y := h_y * f \\ h_x := \frac{1}{2}[1 \ 0 \ -1] & h_y := \frac{1}{2}[1 \ 0 \ -1]^\top \end{array}$

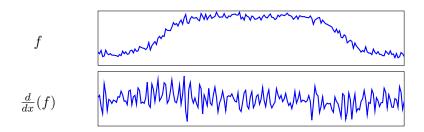
gradient: magnitude and orientation



noise

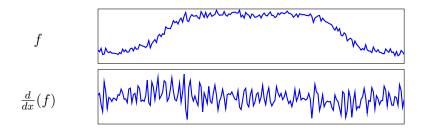
- Q: what happened to the edges?
- derivative is a high-pass filter: signal vanishes, noise remains

noise



- Q: what happened to the edges?
- derivative is a high-pass filter: signal vanishes, noise remains

noise



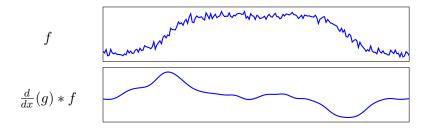
- Q: what happened to the edges?
- derivative is a high-pass filter: signal vanishes, noise remains

smoothing



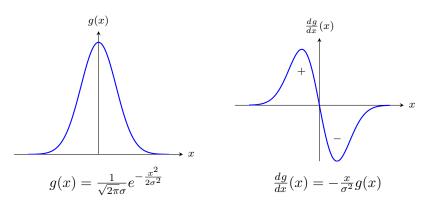
- smooth signal first
- that's better: edges recovered

filter derivative



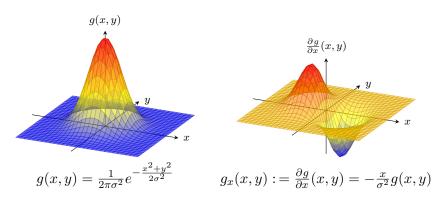
- this is equivalent to convolution with the filter derivative
- that's even better: filter is known in analytic form

1d Gaussian derivative



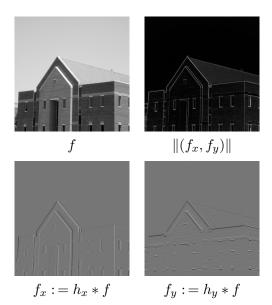
- performs derivation and smoothing at the same time
- σ : "derivation scale"

2d Gaussian derivative

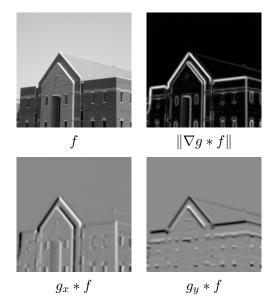


- derivation in one direction, smoothing in both
- "derivative = convolution"

2d gradient



2d gradient by Gaussian derivative



• remember, the directional derivative of function f along vector ${\bf v}$ at point ${\bf x}$ is

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \mathbf{v} \cdot \nabla f(\mathbf{x}) = v_x \frac{\partial f}{\partial x}(\mathbf{x}) + v_y \frac{\partial f}{\partial y}(\mathbf{x})$$

- f v is a unit vector, the directional derivative is maximum when f v points in the direction of the gradient
- does the same hold for the convolution with the Gaussian derivative?

ullet remember, the directional derivative of function f along vector ${f v}$ at point ${f x}$ is

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \mathbf{v} \cdot \nabla f(\mathbf{x}) = v_x \frac{\partial f}{\partial x}(\mathbf{x}) + v_y \frac{\partial f}{\partial y}(\mathbf{x})$$

- when v is a unit vector, the directional derivative is maximum when v
 points in the direction of the gradient
- does the same hold for the convolution with the Gaussian derivative?

• remember, the directional derivative of function f along vector ${\bf v}$ at point ${\bf x}$ is

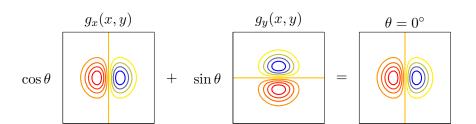
$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \mathbf{v} \cdot \nabla f(\mathbf{x}) = v_x \frac{\partial f}{\partial x}(\mathbf{x}) + v_y \frac{\partial f}{\partial y}(\mathbf{x})$$

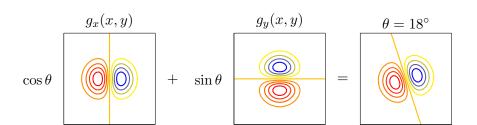
- \bullet when ${\bf v}$ is a unit vector, the directional derivative is maximum when ${\bf v}$ points in the direction of the gradient
- does the same hold for the convolution with the Gaussian derivative?

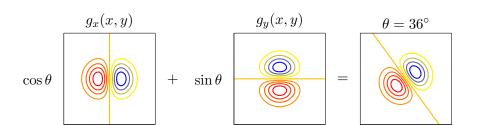
ullet remember, the directional derivative of function f along vector ${f v}$ at point ${f x}$ is

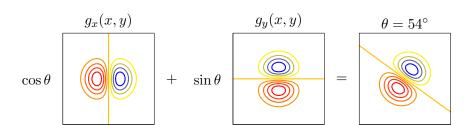
$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \mathbf{v} \cdot \nabla f(\mathbf{x}) = v_x \frac{\partial f}{\partial x}(\mathbf{x}) + v_y \frac{\partial f}{\partial y}(\mathbf{x})$$

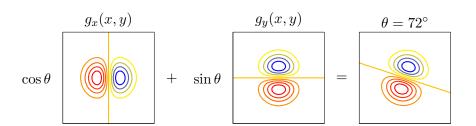
- f v when f v is a unit vector, the directional derivative is maximum when f v points in the direction of the gradient
- does the same hold for the convolution with the Gaussian derivative?

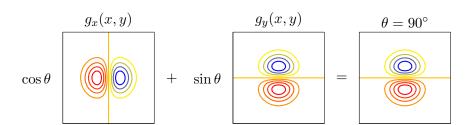


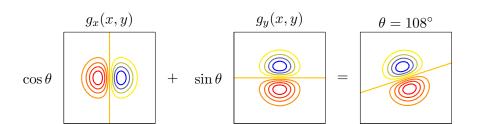


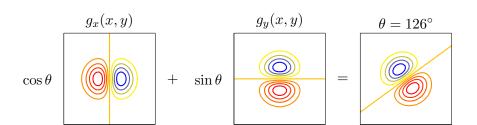


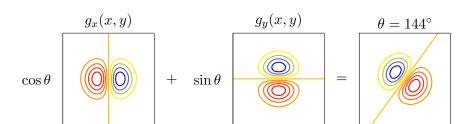


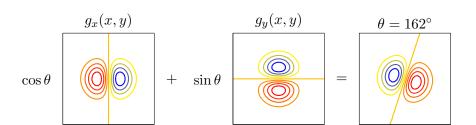




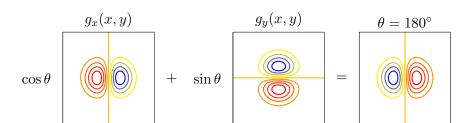






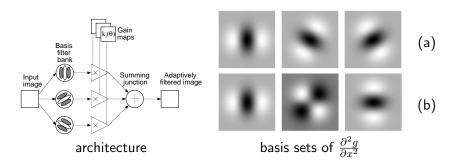


2d Gaussian derivative is steerable



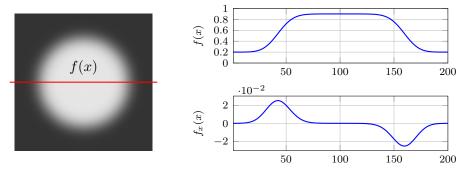
steerable filter

[Freeman and Adelson 1991]

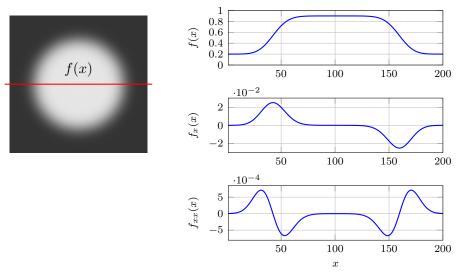


- an orientation-selective filter that can be expressed as a linear combination of a small basis set of filters
- the basis set can be (a) a set of rotated versions of itself, or (b) a set of separable filters

second derivative in one dimension

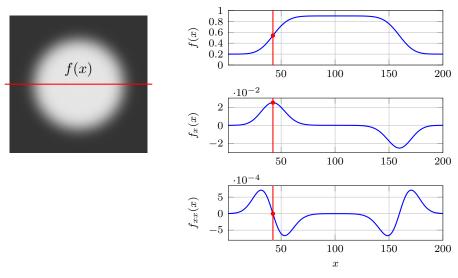


second derivative in one dimension



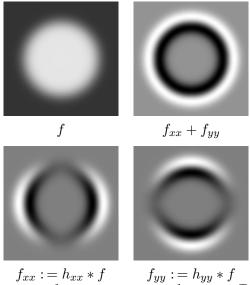
$$f_{xx}(x) := \frac{f(x-1) - 2f(x) + f(x+1)}{4} = h * f, \quad h := \frac{1}{4}[1 - 2 \ 1]$$

second derivative in one dimension

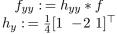


$$f_{xx}(x) := \frac{f(x-1) - 2f(x) + f(x+1)}{4} = h * f, \quad h := \frac{1}{4}[1 - 2 1]$$

second derivative in two dimensions: Laplacian



 $\begin{array}{ll} f_{xx} := h_{xx} * f & f_{yy} := h_{yy} * f \\ h_{xx} := \frac{1}{4}[1 \ -2 \ 1] & h_{y} := \frac{1}{4}[1 \ -2 \ 1]^{\top} \end{array}$



Laplacian operator

· discrete approximation

$$h_{xx} := \frac{1}{4} [1 -2 1]$$

$$h_{yy} := \frac{1}{4} [1 -2 1]^{\top}$$

$$h_{L} := h_{xx} + h_{yy} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

differential operator

$$\nabla^2 f(\mathbf{x}) := \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)(\mathbf{x})$$

$$\approx (h_{xx} * f + h_{yy} * f)(\mathbf{x}) = (f_{xx} + f_{yy})(\mathbf{x})$$

Laplacian operator

discrete approximation

$$h_{xx} := \frac{1}{4} [1 -2 1]$$

$$h_{yy} := \frac{1}{4} [1 -2 1]^{\top}$$

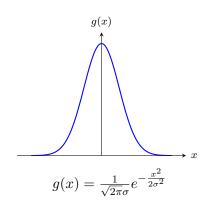
$$h_{L} := h_{xx} + h_{yy} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

differential operator

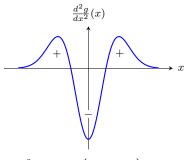
$$\nabla^2 f(\mathbf{x}) := \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)(\mathbf{x})$$

$$\approx (h_{xx} * f + h_{yy} * f)(\mathbf{x}) = (f_{xx} + f_{yy})(\mathbf{x})$$

1d Gaussian second derivative

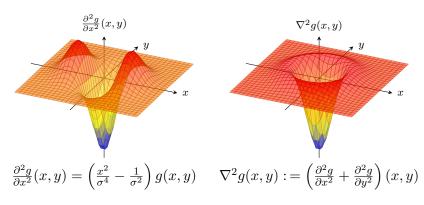


• "center-surround" operator



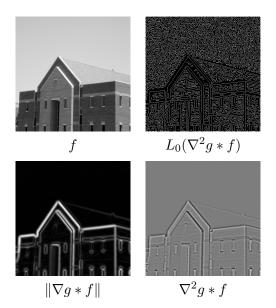
$$\frac{d^2g}{dx^2}(x) = \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right)g(x)$$

2d Laplacian of Gaussian (LoG)

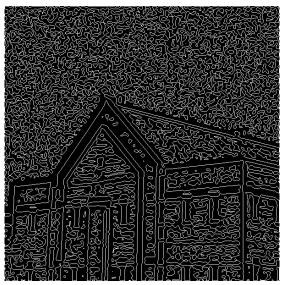


- rotationally symmetric
- "mexican hat"

edge detection



edge detection



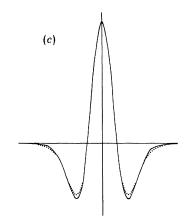
 $L_0(\nabla^2 g * f)$

edge detection

 $L_0(\nabla^2 g * f) \|\nabla g * f\|$

difference of Gaussians (DoG)

[Marr and Hildreth 1980]

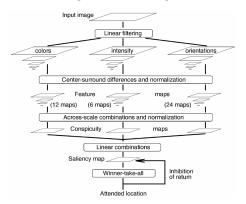


- studied the $abla^2 g$ operator as a model of retinal X-cells
- popularized it as a computational theory of edge detection
- hypothesized a biological implementation as a difference of Gaussians with $\sigma_1/\sigma_2 \approx 1.6$

feature detection

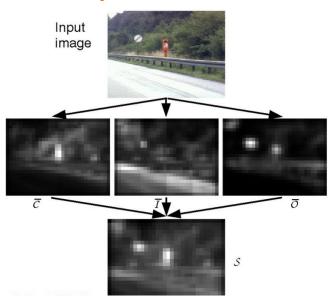
saliency and visual attention

[Itti et al. 1998]

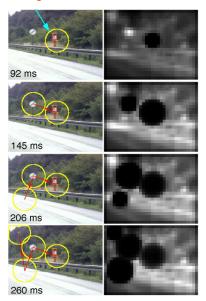


- visual attention system, inspired by the early primate visual system
- multiple scales, multiple features, center-surround, normalization and winner-take-all operations

saliency and visual attention



saliency and visual attention



• for every scale factor s, and for every point \mathbf{x} , the scaled image f' at the scaled point $\mathbf{x}' := s\mathbf{x}$ equals the original image f at the original point \mathbf{x}

$$f'(\mathbf{x}') = f'(s\mathbf{x}) = f(\mathbf{x})$$

[Witkin 1983]

• the scale-space F of f at point ${\bf x}$ and scale σ , and its n-th derivative with respect to some variable x, are defined as

$$F(\mathbf{x};\sigma) := [g(\cdot;\sigma) * f](\mathbf{x})$$

$$F_{x^n}(\mathbf{x};\sigma) := \frac{\partial^n F}{\partial x^n}(\mathbf{x};\sigma) = \left[\frac{\partial^n g}{\partial x^n}(\cdot;\sigma) * f\right](\mathbf{x})$$

gradient

$$\nabla F = (F_x, F_y)$$

Laplacian

$$\nabla^2 F = F_{xx} + F_{yy}$$

we write derivatives but we only compute convolutions

[Witkin 1983]

• the scale-space F of f at point ${\bf x}$ and scale σ , and its n-th derivative with respect to some variable x, are defined as

$$F(\mathbf{x};\sigma) := [g(\cdot;\sigma) * f](\mathbf{x})$$

$$F_{x^n}(\mathbf{x};\sigma) := \frac{\partial^n F}{\partial x^n}(\mathbf{x};\sigma) = \left[\frac{\partial^n g}{\partial x^n}(\cdot;\sigma) * f\right](\mathbf{x})$$

gradient

$$\nabla F = (F_x, F_y)$$

Laplacian

$$\nabla^2 F = F_{xx} + F_{yy}$$

• we write derivatives but we only compute convolutions

scale space under scaling

[Witkin 1983]

• for every scale factor s, for every point \mathbf{x} , and for every scale σ , the scale-space F' at the point $\mathbf{x}' := s\mathbf{x}$ and scale $\sigma' := s\sigma$ equals the original scale-space F at the original point \mathbf{x} and scale σ :

$$F'(\mathbf{x}'; \sigma') = F'(s\mathbf{x}, s\sigma) = F(\mathbf{x}; \sigma)$$

and we would like the same for their derivatives

scale-normalized derivatives

[Lindeberg 1998]

remember, however,

$$\frac{dg}{dx}(x;\sigma) = -\frac{x}{\sigma^2}g(x;\sigma) \qquad \frac{d^2g}{dx^2}(x;\sigma) = \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right)g(x;\sigma)$$
$$F'_{r'}(\mathbf{x}';\sigma') = s^{-1}F_x(\mathbf{x};\sigma) \qquad F'_{r'r'}(\mathbf{x}';\sigma') = s^{-2}F_{xx}(\mathbf{x};\sigma)$$

• in general, we only have

$$F'_{x'^n}(\mathbf{x}';\sigma') = s^{-n} F_{x^n}(\mathbf{x};\sigma)$$

• solution: we normalize the n-th order derivative by σ^n

$$\hat{F}_{x^n}(\mathbf{x};\sigma) := \sigma^n F_{x^n}(\mathbf{x};\sigma) = \sigma^n \frac{\partial^n g}{\partial x^n}(\mathbf{x};\sigma) * f(\mathbf{x})$$

• then, indeed

$$\hat{F}'_{x'n}(\mathbf{x}';\sigma') = \hat{F}_{x^n}(\mathbf{x};\sigma)$$

scale-normalized derivatives

[Lindeberg 1998]

remember, however,

$$\frac{dg}{dx}(x;\sigma) = -\frac{x}{\sigma^2}g(x;\sigma) \qquad \frac{d^2g}{dx^2}(x;\sigma) = \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right)g(x;\sigma)$$
$$F'_{r'}(\mathbf{x}';\sigma') = s^{-1}F_x(\mathbf{x};\sigma) \qquad F'_{r'r'}(\mathbf{x}';\sigma') = s^{-2}F_{xx}(\mathbf{x};\sigma)$$

• in general, we only have

$$F'_{x'^n}(\mathbf{x}';\sigma') = s^{-n}F_{x^n}(\mathbf{x};\sigma)$$

• solution: we normalize the n-th order derivative by σ^n

$$\hat{F}_{x^n}(\mathbf{x};\sigma) := \sigma^n F_{x^n}(\mathbf{x};\sigma) = \sigma^n \frac{\partial^n g}{\partial x^n}(\mathbf{x};\sigma) * f(\mathbf{x})$$

• then, indeed

$$\hat{F}'_{x'^n}(\mathbf{x}';\sigma') = \hat{F}_{x^n}(\mathbf{x};\sigma)$$

scale-normalized derivatives

[Lindeberg 1998]

remember, however,

$$\frac{dg}{dx}(x;\sigma) = -\frac{x}{\sigma^2}g(x;\sigma) \qquad \frac{d^2g}{dx^2}(x;\sigma) = \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right)g(x;\sigma)$$
$$F'_{x'}(\mathbf{x}';\sigma') = s^{-1}F_x(\mathbf{x};\sigma) \qquad F'_{x'x'}(\mathbf{x}';\sigma') = s^{-2}F_{xx}(\mathbf{x};\sigma)$$

• in general, we only have

$$F'_{x'^n}(\mathbf{x}';\sigma') = s^{-n}F_{x^n}(\mathbf{x};\sigma)$$

• solution: we normalize the n-th order derivative by σ^n

$$\hat{F}_{x^n}(\mathbf{x};\sigma) := \sigma^n F_{x^n}(\mathbf{x};\sigma) = \sigma^n \frac{\partial^n g}{\partial x^n}(\mathbf{x};\sigma) * f(\mathbf{x})$$

• then, indeed

$$\hat{F}'_{x'n}(\mathbf{x}';\sigma') = \hat{F}_{x^n}(\mathbf{x};\sigma)$$

scale-normalized derivatives

[Lindeberg 1998]

remember, however,

$$\frac{dg}{dx}(x;\sigma) = -\frac{x}{\sigma^2}g(x;\sigma) \qquad \frac{d^2g}{dx^2}(x;\sigma) = \left(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2}\right)g(x;\sigma)$$
$$F'_{x'}(\mathbf{x}';\sigma') = s^{-1}F_x(\mathbf{x};\sigma) \qquad F'_{x'x'}(\mathbf{x}';\sigma') = s^{-2}F_{xx}(\mathbf{x};\sigma)$$

• in general, we only have

$$F'_{x'^n}(\mathbf{x}';\sigma') = s^{-n}F_{x^n}(\mathbf{x};\sigma)$$

• solution: we normalize the n-th order derivative by σ^n

$$\hat{F}_{x^n}(\mathbf{x};\sigma) := \frac{\sigma^n}{\sigma^n} F_{x^n}(\mathbf{x};\sigma) = \frac{\sigma^n}{\sigma^n} \frac{\partial^n g}{\partial x^n}(\mathbf{x};\sigma) * f(\mathbf{x})$$

then, indeed

$$\hat{F}'_{x'^n}(\mathbf{x}';\sigma') = \hat{F}_{x^n}(\mathbf{x};\sigma)$$

normalized Laplacian operator

$$\hat{\nabla}^2 F(\mathbf{x}; \sigma) := \sigma^2 \nabla^2 F(\mathbf{x}; \sigma) = \sigma^2 (F_{xx} + F_{yy})(\mathbf{x}; \sigma)$$

scale selection

$$\operatorname{scale}(\mathbf{x}) = \arg \max_{\sigma} |\hat{\nabla}^2 F(\mathbf{x}; \sigma)|$$

 $\sigma^2 \frac{d^2 g}{dx^2}(x;\sigma) = (\frac{x^2}{\sigma^2} - 1)g(x;\sigma)$

• let's try a blob centered at the origin, filter by a normalized LoG of varying scale σ , and measure the response at the origin

normalized Laplacian operator

$$\hat{\nabla}^2 F(\mathbf{x}; \sigma) := \sigma^2 \nabla^2 F(\mathbf{x}; \sigma) = \sigma^2 (F_{xx} + F_{yy})(\mathbf{x}; \sigma)$$

• scale selection

$$\operatorname{scale}(\mathbf{x}) = \arg \max_{\sigma} |\hat{\nabla}^2 F(\mathbf{x}; \sigma)|$$

$$\sigma^2 \frac{d^2 g}{dx^2}(x;\sigma) = \left(\frac{x^2}{\sigma^2} - 1\right)g(x;\sigma)$$



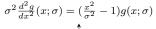
• let's try a blob centered at the origin, filter by a normalized LoG of varying scale σ , and measure the response at the origin

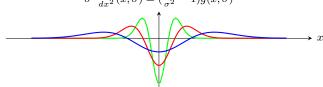
normalized Laplacian operator

$$\hat{\nabla}^2 F(\mathbf{x}; \sigma) := \sigma^2 \nabla^2 F(\mathbf{x}; \sigma) = \sigma^2 (F_{xx} + F_{yy})(\mathbf{x}; \sigma)$$

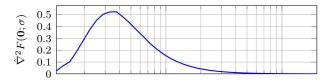
scale selection

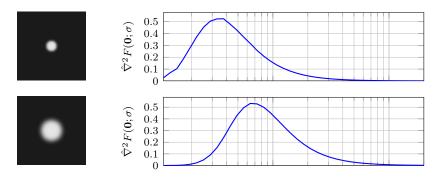
$$\operatorname{scale}(\mathbf{x}) = \arg \max_{\sigma} |\hat{\nabla}^2 F(\mathbf{x}; \sigma)|$$

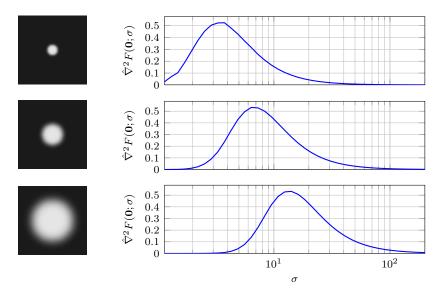




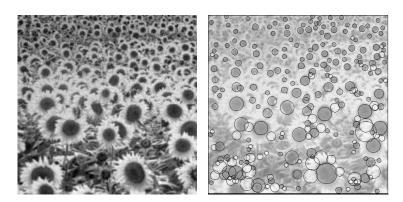
 let's try a blob centered at the origin, filter by a normalized LoG of varying scale σ , and measure the response at the origin





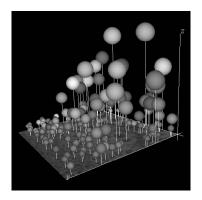


blob detection



- convolution with a circular symmetric center-surround pattern in scale-space
- local maxima in scale-space yield positions and scales of blobs

blob detection



- convolution with a circular symmetric center-surround pattern in scale-space
- local maxima in scale-space yield positions and scales of blobs

difference of Gaussians

• Gaussian satisfies heat equation (try it!), hence finite difference approximation to $\frac{\partial g}{\partial \sigma}$ can be used

$$\sigma \nabla^2 g = \frac{\partial g}{\partial \sigma} \approx \frac{g(\mathbf{x}; k\sigma) - g(\mathbf{x}; \sigma)}{k\sigma - \sigma}$$

• then, difference of Gaussians approximates its normalized Laplacian

$$g(\mathbf{x}; k\sigma) - g(\mathbf{x}; \sigma) \approx (k-1)\sigma^2 \nabla^2 g$$

incorporating scale normalization

difference of Gaussians

• Gaussian satisfies heat equation (try it!), hence finite difference approximation to $\frac{\partial g}{\partial \sigma}$ can be used

$$\sigma \nabla^2 g = \frac{\partial g}{\partial \sigma} \approx \frac{g(\mathbf{x}; k\sigma) - g(\mathbf{x}; \sigma)}{k\sigma - \sigma}$$

• then, difference of Gaussians approximates its normalized Laplacian

$$g(\mathbf{x}; k\sigma) - g(\mathbf{x}; \sigma) \approx (k-1)\sigma^2 \nabla^2 g$$

incorporating scale normalization

difference of Gaussians

• Gaussian satisfies heat equation (try it!), hence finite difference approximation to $\frac{\partial g}{\partial \sigma}$ can be used

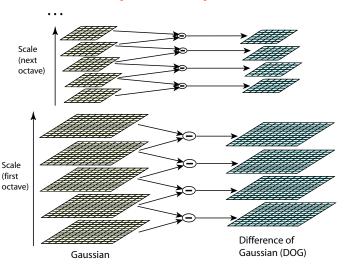
$$\sigma \nabla^2 g = \frac{\partial g}{\partial \sigma} \approx \frac{g(\mathbf{x}; k\sigma) - g(\mathbf{x}; \sigma)}{k\sigma - \sigma}$$

• then, difference of Gaussians approximates its normalized Laplacian

$$g(\mathbf{x}; k\sigma) - g(\mathbf{x}; \sigma) \approx (k-1)\sigma^2 \nabla^2 g,$$

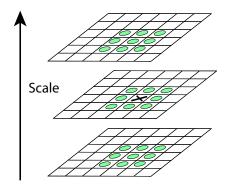
incorporating scale normalization

scale-space computation



• incrementally convolve with Gaussian, subsample at each octave

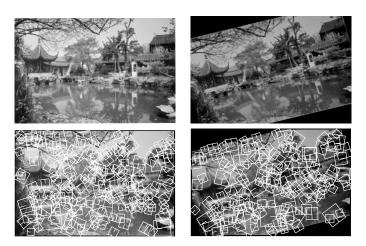
scale-space local extrema



- local maxima among 26 neighbors selected
- accurately localized, edge responses rejected, orientation normalized

scale-invariant feature transform (SIFT)

[Lowe 1999]



detected patches equivariant to translation, scale and rotation

desired properties of local features

- repeatable: in a transformed image, the same feature is detected at a transformed position
- distinctive: different image features can be discriminated by their local appearance
- localized: relatively small regions, robust to occlusion
- elongated: edges, ridges
- + isotropic: blobs, extremal regions
- + points: corners and junctions

desired properties of local features

- repeatable: in a transformed image, the same feature is detected at a transformed position
- **distinctive**: different image features can be discriminated by their local appearance
- localized: relatively small regions, robust to occlusion
- elongated: edges, ridges
- + isotropic: blobs, extremal regions
- + points: corners and junctions

the Hessian matrix

defined as

$$\hat{H}F(\mathbf{x},\sigma) := \sigma^2 \left(\begin{array}{cc} F_{xx} & F_{xy} \\ F_{yx} & F_{yy} \end{array} \right) (\mathbf{x},\sigma)$$

the Laplacian is just its trace

$$\hat{\nabla}^2 F(\mathbf{x}, \sigma) = \sigma^2 (F_{xx} + F_{yy})(\mathbf{x}, \sigma) = \operatorname{tr} \hat{H} F(\mathbf{x}, \sigma)$$

- where gradient magnitude is zero, f is locally maximized (concave), minimized (convex), flat, or has a saddle point depending on eigenvalues λ_1, λ_2 of the Hessian
- good for blobs: maximum for $\lambda_1, \lambda_2 < 0$, minimum for $\lambda_1, \lambda_2 > 0$
- however, still fires on edges

the Hessian matrix

defined as

$$\hat{H}F(\mathbf{x},\sigma) := \sigma^2 \left(\begin{array}{cc} F_{xx} & F_{xy} \\ F_{yx} & F_{yy} \end{array} \right) (\mathbf{x},\sigma)$$

the Laplacian is just its trace

$$\hat{\nabla}^2 F(\mathbf{x}, \sigma) = \sigma^2 (F_{xx} + F_{yy})(\mathbf{x}, \sigma) = \operatorname{tr} \hat{H} F(\mathbf{x}, \sigma)$$

- where gradient magnitude is zero, f is locally maximized (concave), minimized (convex), flat, or has a saddle point depending on eigenvalues λ_1, λ_2 of the Hessian
- good for blobs: maximum for $\lambda_1,\lambda_2<0$, minimum for $\lambda_1,\lambda_2>0$
- however, still fires on edges

the Hessian matrix

defined as

$$\hat{H}F(\mathbf{x},\sigma) := \sigma^2 \left(\begin{array}{cc} F_{xx} & F_{xy} \\ F_{yx} & F_{yy} \end{array} \right) (\mathbf{x},\sigma)$$

the Laplacian is just its trace

$$\hat{\nabla}^2 F(\mathbf{x}, \sigma) = \sigma^2 (F_{xx} + F_{yy})(\mathbf{x}, \sigma) = \operatorname{tr} \hat{H} F(\mathbf{x}, \sigma)$$

- where gradient magnitude is zero, f is locally maximized (concave), minimized (convex), flat, or has a saddle point depending on eigenvalues λ_1, λ_2 of the Hessian
- good for blobs: maximum for $\lambda_1,\lambda_2<0$, minimum for $\lambda_1,\lambda_2>0$
- however, still fires on edges

the (windowed) second moment matrix

[Förstner 1986]

defined as

$$\hat{\mu}F(\mathbf{x},\sigma) := w * \sigma^2 (\nabla F)(\nabla F)^{\top}(\mathbf{x},\sigma)$$
$$= w * \sigma^2 \begin{pmatrix} F_x^2 & F_x F_y \\ F_x F_y & F_y^2 \end{pmatrix} (\mathbf{x},\sigma)$$

where w is another Gaussian at some higher integration scale; σ is called the derivation scale

the (windowed) gradient is just its trace

$$w * \|\hat{\nabla}F(\mathbf{x}, \sigma)\|^2 = w * \sigma^2(F_x^2 + F_y^2)(\mathbf{x}, \sigma) = \operatorname{tr} \hat{\mu}F(\mathbf{x}, \sigma)$$

• good for edges, corners and junctions; again, depending on the eigenvalues $\lambda_1 \geq \lambda_2$

the (windowed) second moment matrix

[Förstner 1986]

defined as

$$\hat{\mu}F(\mathbf{x},\sigma) := w * \sigma^2 (\nabla F)(\nabla F)^{\top}(\mathbf{x},\sigma)$$
$$= w * \sigma^2 \begin{pmatrix} F_x^2 & F_x F_y \\ F_x F_y & F_y^2 \end{pmatrix} (\mathbf{x},\sigma)$$

where w is another Gaussian at some higher integration scale; σ is called the derivation scale

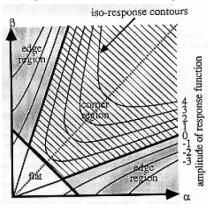
• the (windowed) gradient is just its trace

$$w * \|\hat{\nabla} F(\mathbf{x}, \sigma)\|^2 = w * \sigma^2 (F_x^2 + F_y^2)(\mathbf{x}, \sigma) = \operatorname{tr} \hat{\mu} F(\mathbf{x}, \sigma)$$

• good for edges, corners and junctions; again, depending on the eigenvalues $\lambda_1 \geq \lambda_2$

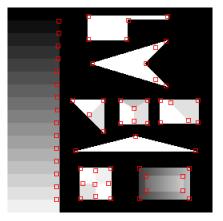
Harris corners

[Harris and Stevens 1988]



- if trace $\lambda_1 + \lambda_2$ is too low \to flat
- if condition number λ_1/λ_2 is too high o edge
- response function $r(\mu) = \det \mu k \operatorname{tr}^2 \mu$

Harris corners (and junctions)



corners response

- response: positive on corners, negative on edges, zero otherwise
- detection: non-maxima suppression and thresholding

motivation: local autocorrelation

- assume f is differentiable and ignore scale space
- assume an image patch at the origin defined by window w; how much does it change when we shift by \mathbf{t} ?

$$E(\mathbf{t}) = \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x} + \mathbf{t}) - f(\mathbf{x}))^2$$

quadratic form defined by $\mu = w * (\nabla f)(\nabla f)^{\top}$

motivation: local autocorrelation

- assume f is differentiable and ignore scale space
- assume an image patch at the origin defined by window w; how much does it change when we shift by \mathbf{t} ?

$$\begin{split} E(\mathbf{t}) &= \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x} + \mathbf{t}) - f(\mathbf{x}))^2 \\ &\approx \sum_{\mathbf{x}} w(\mathbf{x}) (\mathbf{t}^{\top} \nabla f(\mathbf{x}))^2 \quad \text{(Taylor)} \end{split}$$

• quadratic form defined by $\mu = w * (\nabla f)(\nabla f)^{\top}$

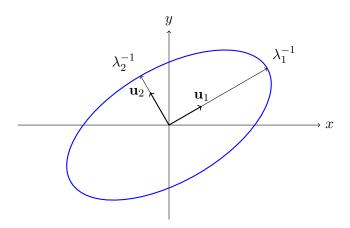
motivation: local autocorrelation

- assume f is differentiable and ignore scale space
- assume an image patch at the origin defined by window w; how much does it change when we shift by t?

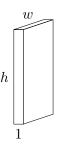
$$\begin{split} E(\mathbf{t}) &= \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x} + \mathbf{t}) - f(\mathbf{x}))^2 \\ &\approx \sum_{\mathbf{x}} w(\mathbf{x}) (\mathbf{t}^\top \nabla f(\mathbf{x}))^2 \quad \text{(Taylor)} \\ &= \sum_{\mathbf{x}} w(\mathbf{x}) \mathbf{t}^\top (\nabla f(\mathbf{x})) (\nabla f(\mathbf{x}))^\top \mathbf{t} \\ &= \mathbf{t}^\top (w * (\nabla f) (\nabla f)^\top) \mathbf{t} \end{split}$$

• quadratic form defined by $\mu = w * (\nabla f)(\nabla f)^{\top}$

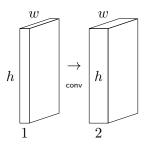
quadratic form



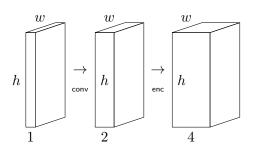
• locus of $(x\ y)^{\top}A(x\ y)=1$, where A has eigenvectors $\mathbf{u}_1,\mathbf{u}_2$ and eigenvalues λ_1,λ_2



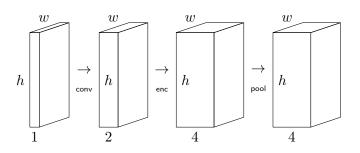
- 3-channel RGB input \rightarrow 1-channel gray-scale
- compute gradient $\nabla F = (F_x, F_y)$ at derivation scale
- encode into tensor product $\nabla F \otimes \nabla F = (F_x^2, F_x F_y, F_x F_y, F_y^2)$
- ullet average pooling by window w at integration scale
- ullet compute point-wise nonlinear response function r



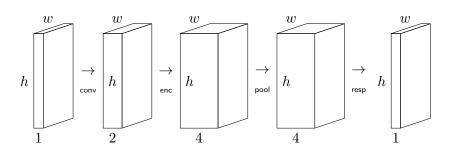
- 3-channel RGB input o 1-channel gray-scale
- compute gradient $\nabla F = (F_x, F_y)$ at derivation scale
- encode into tensor product $\nabla F \otimes \nabla F = (F_x^2, F_x F_y, F_x F_y, F_y^2)$
- ullet average pooling by window w at integration scale
- ullet compute point-wise nonlinear response function r



- 3-channel RGB input o 1-channel gray-scale
- ullet compute gradient $abla F=(F_x,F_y)$ at derivation scale
- encode into tensor product $\nabla F \otimes \nabla F = (F_x^2, F_x F_y, F_x F_y, F_y^2)$
- ullet average pooling by window w at integration scale
- ullet compute point-wise nonlinear response function r



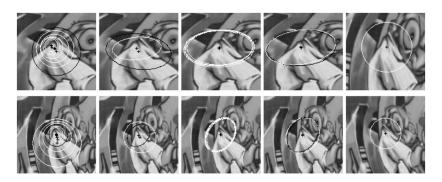
- ullet 3-channel RGB input o 1-channel gray-scale
- compute gradient $\nabla F = (F_x, F_y)$ at derivation scale
- encode into tensor product $\nabla F \otimes \nabla F = (F_x^2, F_x F_y, F_x F_y, F_y^2)$
- ullet average pooling by window w at integration scale
- ullet compute point-wise nonlinear response function r



- ullet 3-channel RGB input o 1-channel gray-scale
- compute gradient $\nabla F = (F_x, F_y)$ at derivation scale
- encode into tensor product $\nabla F \otimes \nabla F = (F_x^2, F_x F_y, F_x F_y, F_y^2)$
- \bullet average pooling by window \boldsymbol{w} at integration scale
- ullet compute point-wise nonlinear response function r

Harris affine & Hessian affine

[Mikolajczyk and Schmid 2004]



- multi-scale Harris or Hessian detection, Laplacian scale selection
- iterative affine shape adaptation, based on Lindeberg
- Hessian-affine de facto standard on image retrieval for several years

spatial matching

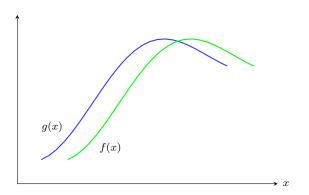
- for each location in an image, find a displacement with respect to another reference image
- appropriate for small displacements, e.g. stereopsis or optical flow

- for each location in an image, find a displacement with respect to another reference image
- appropriate for small displacements, e.g. stereopsis or optical flow

- for each location in an image, find a displacement with respect to another reference image
- appropriate for small displacements, e.g. stereopsis or optical flow

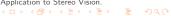
- for each location in an image, find a displacement with respect to another reference image
- appropriate for small displacements, e.g. stereopsis or optical flow

one dimension

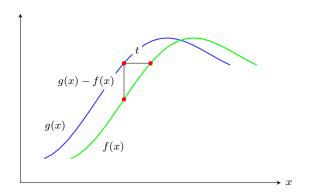


• assuming g(x) = f(x+t) and t is small,

$$\frac{df}{dx}(x) \approx \frac{f(x+t) - f(x)}{t} = \frac{g(x) - f(x)}{t}$$

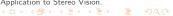


one dimension

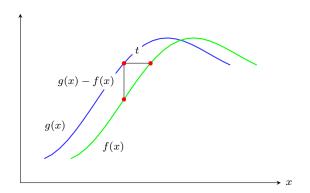


• assuming g(x) = f(x+t) and t is small,

$$\frac{df}{dx}(x) \approx \frac{f(x+t) - f(x)}{t} = \frac{g(x) - f(x)}{t}$$



one dimension



• assuming g(x) = f(x+t) and t is small,

$$\frac{df}{dx}(x) \approx \frac{f(x+t) - f(x)}{t} = \frac{g(x) - f(x)}{t}$$

• again, assume an image patch defined by window w; what is the error between the patch shifted by ${\bf t}$ in reference image f and a patch at the origin in shifted image g?

$$E(\mathbf{t}) = \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x} + \mathbf{t}) - g(\mathbf{x}))^2$$

• error minimized when gradient vanishes

$$\mathbf{0} = \frac{\partial E}{\partial \mathbf{t}} = \sum_{\mathbf{x}} w(\mathbf{x}) 2\nabla f(\mathbf{x}) (f(\mathbf{x}) + \mathbf{t}^{\top} \nabla f(\mathbf{x}) - g(\mathbf{x}))$$

least-squares solution

$$\left(w * (\nabla f)(\nabla f)^{\top}\right)\mathbf{t} = w * ((\nabla f)(g - f))$$

• again, assume an image patch defined by window w; what is the error between the patch shifted by t in reference image f and a patch at the origin in shifted image q?

$$\begin{split} E(\mathbf{t}) &= \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x} + \mathbf{t}) - g(\mathbf{x}))^2 \\ &\approx \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x}) + \mathbf{t}^{\top} \nabla f(\mathbf{x}) - g(\mathbf{x}))^2 \end{split}$$

$$\mathbf{0} = \frac{\partial E}{\partial \mathbf{t}} = \sum_{\mathbf{x}} w(\mathbf{x}) 2\nabla f(\mathbf{x}) (f(\mathbf{x}) + \mathbf{t}^{\top} \nabla f(\mathbf{x}) - g(\mathbf{x}))$$

$$\left(w * (\nabla f)(\nabla f)^{\top}\right)\mathbf{t} = w * ((\nabla f)(g - f))$$

• again, assume an image patch defined by window w; what is the error between the patch shifted by ${\bf t}$ in reference image f and a patch at the origin in shifted image g?

$$E(\mathbf{t}) = \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x} + \mathbf{t}) - g(\mathbf{x}))^2$$
$$\approx \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x}) + \mathbf{t}^{\top} \nabla f(\mathbf{x}) - g(\mathbf{x}))^2$$

error minimized when gradient vanishes

$$\mathbf{0} = \frac{\partial E}{\partial \mathbf{t}} = \sum_{\mathbf{x}} w(\mathbf{x}) 2\nabla f(\mathbf{x}) (f(\mathbf{x}) + \mathbf{t}^{\top} \nabla f(\mathbf{x}) - g(\mathbf{x}))$$

least-squares solution

$$\left(w*(\nabla f)(\nabla f)^{\top}\right)\mathbf{t} = w*((\nabla f)(g-f))$$

• again, assume an image patch defined by window w; what is the error between the patch shifted by t in reference image f and a patch at the origin in shifted image q?

$$E(\mathbf{t}) = \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x} + \mathbf{t}) - g(\mathbf{x}))^{2}$$
$$\approx \sum_{\mathbf{x}} w(\mathbf{x}) (f(\mathbf{x}) + \mathbf{t}^{\top} \nabla f(\mathbf{x}) - g(\mathbf{x}))^{2}$$

error minimized when gradient vanishes

$$\mathbf{0} = \frac{\partial E}{\partial \mathbf{t}} = \sum_{\mathbf{x}} w(\mathbf{x}) 2\nabla f(\mathbf{x}) (f(\mathbf{x}) + \mathbf{t}^{\top} \nabla f(\mathbf{x}) - g(\mathbf{x}))$$

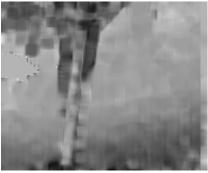
least-squares solution

$$\left(w*(\nabla f)(\nabla f)^{\top}\right)\mathbf{t} = w*((\nabla f)(g-f))$$

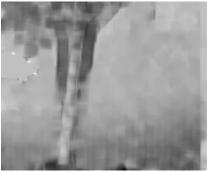


- camera follows background, two objects at opposite horizontal directions
- · motion noisy on uniform regions

- camera follows background, two objects at opposite horizontal directions
- · motion noisy on uniform regions



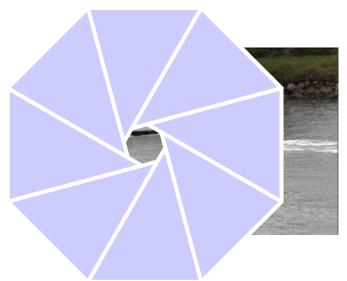
- parallax: tree closer to viewer than background
- stable on textured regions
- window size visible on edges



- parallax: tree closer to viewer than background
- stable on textured regions
- window size visible on edges

the aperture problem

the aperture problem

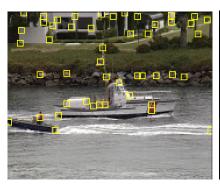


feature point tracking

[Tomasi and Kanade 1991]

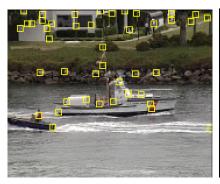
- linear system can be solved reliably if matrix μ is well-conditioned: λ_1/λ_2 is not too large
- detect feature points at local maxima of response $\min(\lambda_1, \lambda_2)$

feature point tracking



- uniform regions are not tracked now
- nearly same response as Harris corners
- Q: why do we need the window? what should the size be?

feature point tracking



- uniform regions are not tracked now
- nearly same response as Harris corners
- Q: why do we need the window? what should the size be?

- in dense registration, we started from a local "template matching" process and found an efficient solution based on a Taylor approximation
- both make sense for small displacements
- in wide-baseline matching, every part of one image may appear anywhere in the other
- we start by pairwise matching of local descriptors without any order and then attempt to enforce some geometric consistency according to a rigid motion model

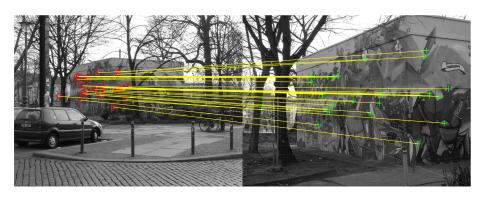
- in dense registration, we started from a local "template matching" process and found an efficient solution based on a Taylor approximation
- both make sense for small displacements
- in wide-baseline matching, every part of one image may appear anywhere in the other
- we start by pairwise matching of local descriptors without any order and then attempt to enforce some geometric consistency according to a rigid motion model

• a region in one image may appear anywhere in the other

• features detected independently in each image



• tentative correspondences by pairwise descriptor matching



• subset of correspondences that are 'inlier' to a rigid transformation

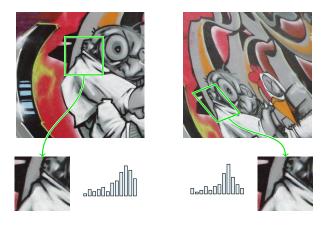
descriptor extraction

for each detected feature in each image

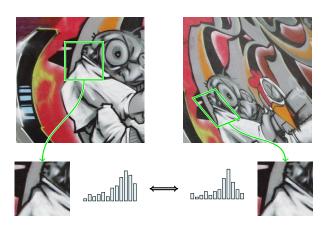
- construct a local histogram of gradient orientations
- find one or more dominant orientations corresponding to peaks in the histogram
- resample local patch at given location, scale, affine shape and orientation
- extract one descriptor for each dominant orientation

detect features

• detect features - find dominant orientation, resample patches



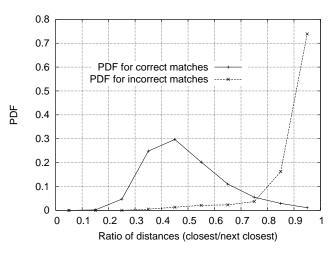
 detect features - find dominant orientation, resample patches - extract descriptors



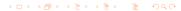
 detect features - find dominant orientation, resample patches - extract descriptors - match pairwise

- for each descriptor in one image, find its two nearest neighbors in the other
- if ratio of distance of first to distance of second is small, make a correspondence
- this yields a list of tentative correspondences

ratio test



 ratio of first to second nearest neighbor distance can determine the probability of a true correspondence



spatial matching

why is it difficult?

- should allow for a geometric transformation
- fitting the model to data (correspondences) is sensitive to outliers: should find a subset of *inliers* first
- finding inliers to a transformation requires finding the transformation in the first place
- correspondences have gross error
- inliers are typically less than 50%

geometric transformations

ullet two images f,f^\prime are equal at points x,x^\prime

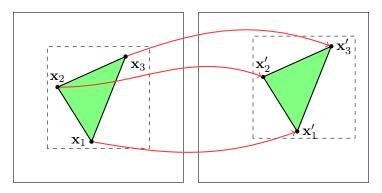
$$f(\mathbf{x}) = f'(\mathbf{x}')$$

• x is mapped to x'

$$\mathbf{x}' = T(\mathbf{x})$$

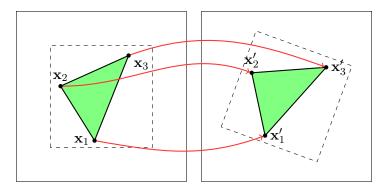
• T is a bijection of \mathbb{R}^2 to itself:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$



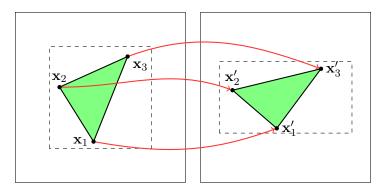
• translation: 2 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$



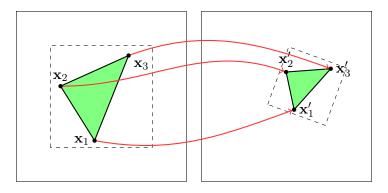
• rotation: 1 degree of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$



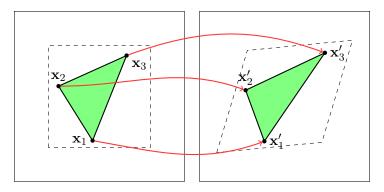
• scale: 2 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$



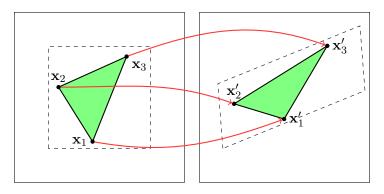
• similarity: 4 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} r\cos\theta & -r\sin\theta & t_x \\ r\sin\theta & r\cos\theta & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$



• shear: 2 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & b_x & 0 \\ b_y & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$



• affine: 6 degrees of freedom

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

however

 details don't matter; in all cases, the problem is transformed to a linear system (why?)

$$Ax = b$$

where A, b contain coordinates of known point correspondences from images f, f' respectively, and x contains our model parameters

- we need $n = \lceil d/2 \rceil$ correspondences, where d are the degrees of freedom of our model
- let's take the simplest model as an example: fit a line to two points

however

 details don't matter; in all cases, the problem is transformed to a linear system (why?)

$$Ax = b$$

where A, b contain coordinates of known point correspondences from images f, f' respectively, and x contains our model parameters

- we need $n=\lceil d/2 \rceil$ correspondences, where d are the degrees of freedom of our model
- let's take the simplest model as an example: fit a line to two points

however

 details don't matter; in all cases, the problem is transformed to a linear system (why?)

$$Ax = b$$

where A, b contain coordinates of known point correspondences from images f, f' respectively, and x contains our model parameters

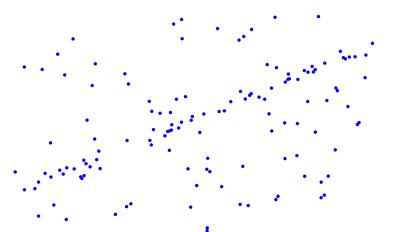
- we need $n=\lceil d/2 \rceil$ correspondences, where d are the degrees of freedom of our model
- let's take the simplest model as an example: fit a line to two points

• clean data, no outliers : least squares fit ok

• clean data, no outliers : least squares fit ok

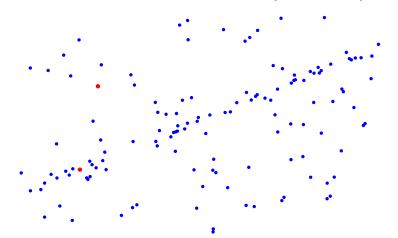
• one gross outlier : least squares fit fails

• one gross outlier : least squares fit fails



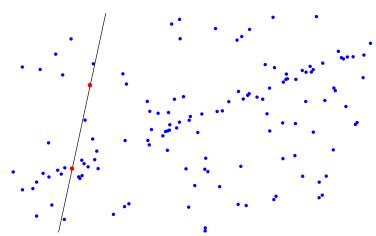
 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.



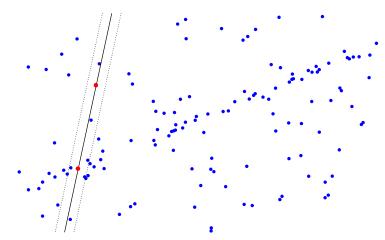
 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

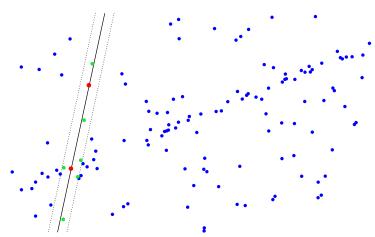


 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

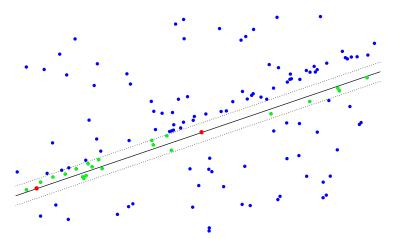
Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

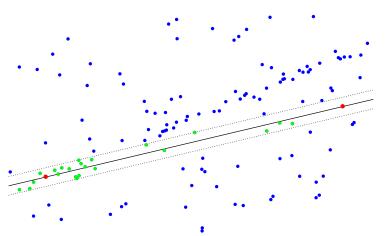


 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points



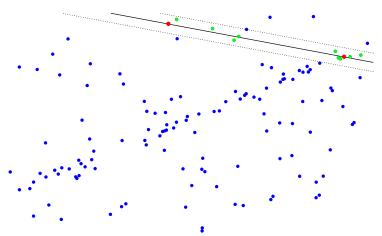
 data with outliers - pick two points at random - draw line through them - set margin on either side - count inlier points

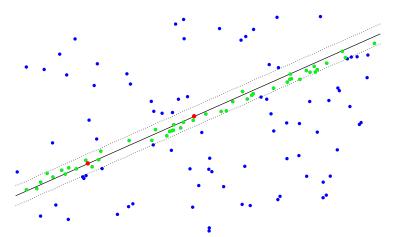


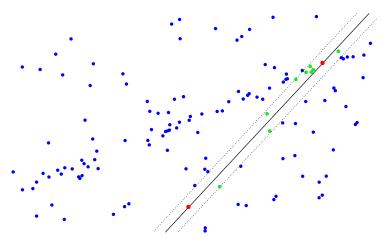


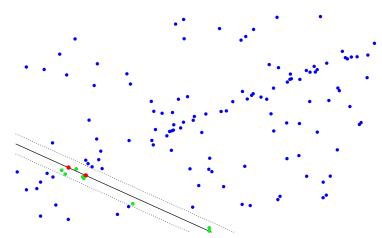
 repeat: pick two points at random, draw line through them, count inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis









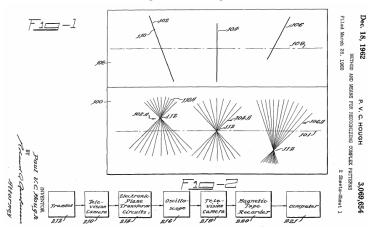
[Fischler and Bolles 1981]

- X: data (tentative correspondences)
- n: minimum number of samples to fit a model
- $s(x;\theta)$: score of sample x given model parameters θ
- repeat
 - hypothesis
 - draw n samples $H \subset X$ at random
 - fit model to H, compute parameters θ
 - verification
 - are data consistent with hypothesis? compute score $S = \sum_{x \in X} s(x; \theta)$
 - if $S^* > S$, store solution $\theta^* := \theta$, $S^* := S$

issues

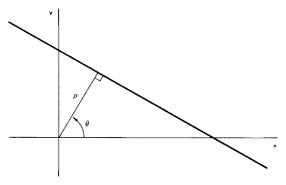
- inlier ratio w unknown
- too expensive when minimum number of samples is large (e.g. n>6) and inlier ratio is small e.g. w<10%): 10^6 iterations for 1% probability of failure

[Hough 1962]



- detect lines by a voting process in parameter space
- slope-intercept parametrization unbounded for vertical lines

[Duda and Hart 1972]



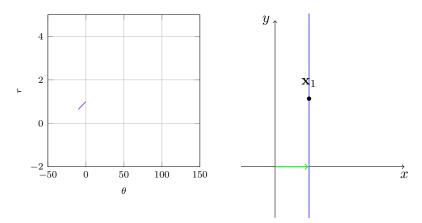
- polar parametrization makes parameter space bounded
- discusses generalization to analytic curves; space exponential in number of parameters
- equivalent to Radon transform, but makes sense for sparse input

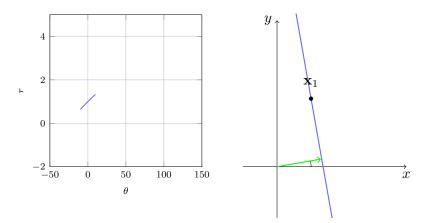
idea

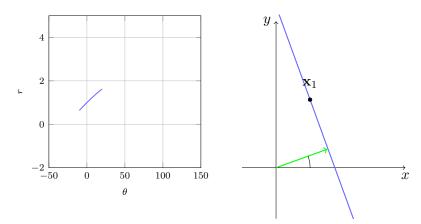
- n samples are needed to fit a model (e.g. 2 points for a line)
- but even one sample brings some information
- in the space of all possible models, vote for the ones that satisfy a given sample
- collect votes from all samples, and seek for consensus

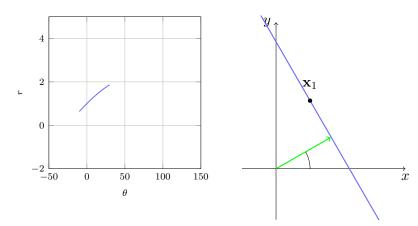
idea

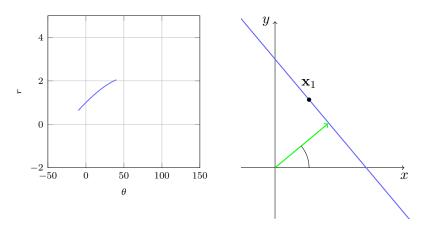
- n samples are needed to fit a model (e.g. 2 points for a line)
- but even one sample brings some information
- in the space of all possible models, vote for the ones that satisfy a given sample
- collect votes from all samples, and seek for consensus

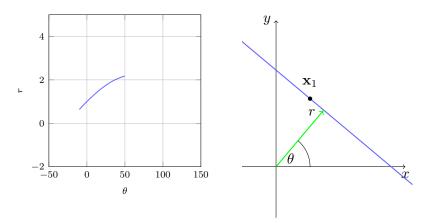


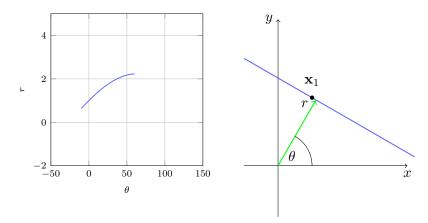


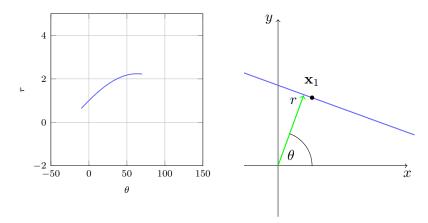


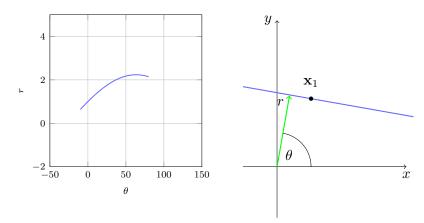


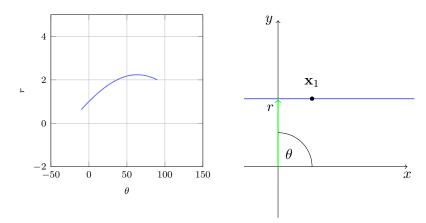


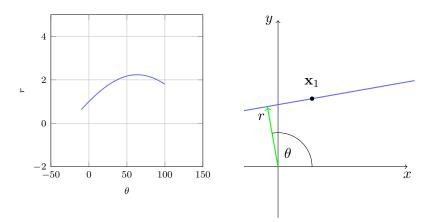


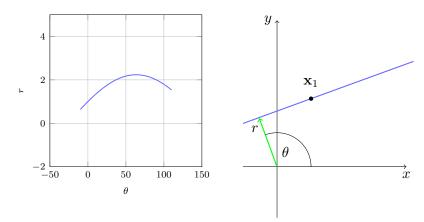


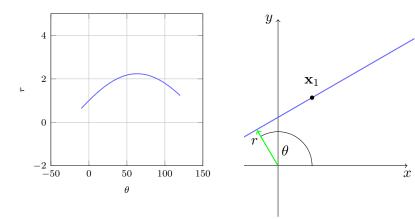


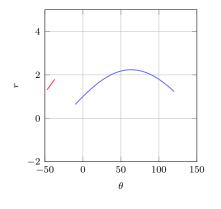


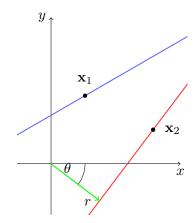


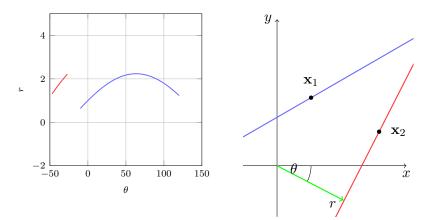


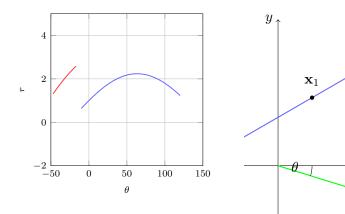








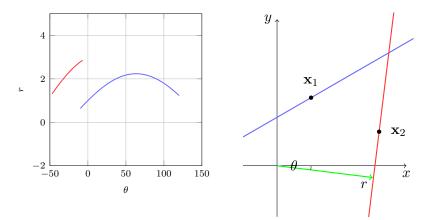


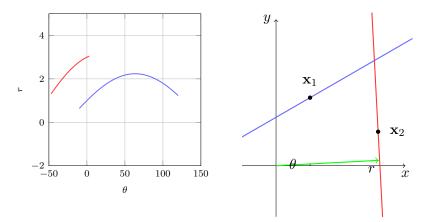


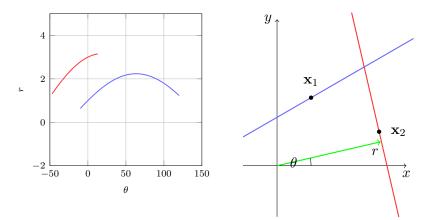
• all lines through $\mathbf{x}_2=(x_2,y_2)$ are defined by (r,θ) that satisfy $r=x_2\cos(\theta)+y_2\sin(\theta)$

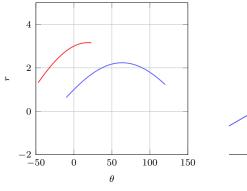
 \mathbf{x}_2

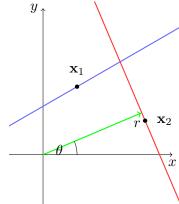
x

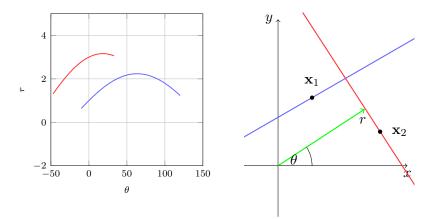


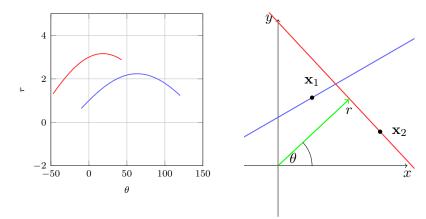


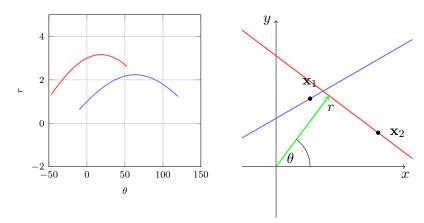


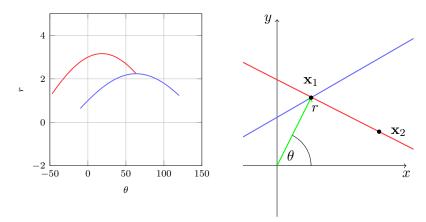


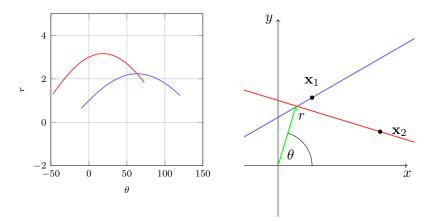


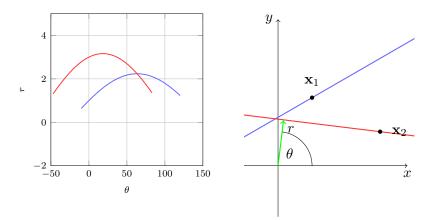


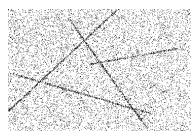




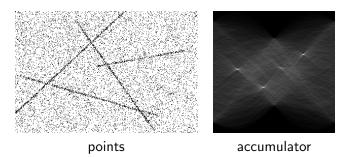


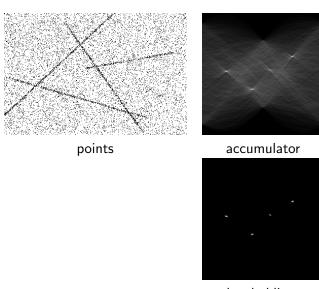




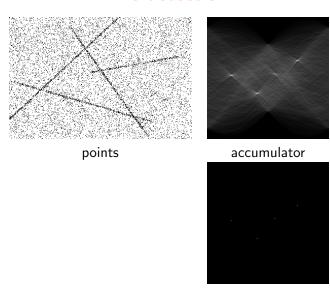


points

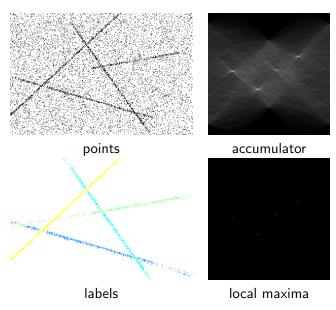




thresholding



local maxima



 ${\sf Duda\ and\ Hart.\ CACM\ 1972\ Use\ of\ the\ Hough\ Transformation\ to\ Detect\ Lines\ and\ Curves\ in\ pictures.}$

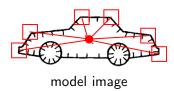
Hough voting

- *X*: data
- n: number of model parameters
- A: n-dimensional accumulator array, initially zero
- hypotheses: for each sample $x \in X$
 - for each set of model parameters θ consistent with x
 - voting: increment $A[\theta]$
- "verification":
 - threshold A, relative to maximum
 - non-maxima suppression: detect local maxima

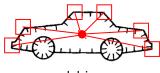
generalized Hough transform

[Ballard 1981]

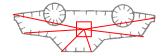
- generalize to arbitrary shapes
- similarity transformation, 4d parameter space: translation, scaling, rotation
- use gradient orientation to reduce number of votes per sample



- model: record coordinates relative to reference point
- test: each point votes for all possible coordinates of reference point, which are reversed

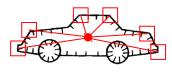


model image

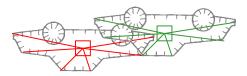


test image

- model: record coordinates relative to reference point
- test: each point votes for all possible coordinates of reference point, which are reversed

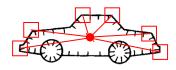


model image

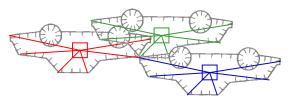


test image

- model: record coordinates relative to reference point
- test: each point votes for all possible coordinates of reference point, which are reversed

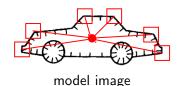


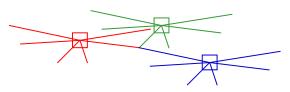
model image



test image

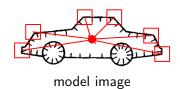
- model: record coordinates relative to reference point
- test: each point votes for all possible coordinates of reference point, which are reversed

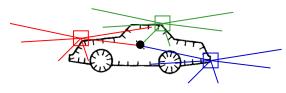




test image

- model: record coordinates relative to reference point
- test: each point votes for all possible coordinates of reference point, which are reversed





test image

- model: record coordinates relative to reference point
- test: each point votes for all possible coordinates of reference point, which are reversed

Eiffel tower detection

model image

test image

Eiffel tower detection

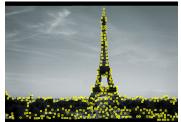
model image points

test image points

Eiffel tower detection

model image points

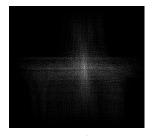
accumulator



test image points

Eiffel tower detection

model image points



accumulator

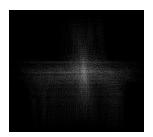
test image points

local maxima

Eiffel tower detection

model image points

detected location



accumulator

local maxima

ullet model points H, test points X as signals

$$h[\mathbf{n}] = \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - \mathbf{h}]$$
$$x[\mathbf{n}] = \sum_{\mathbf{x} \in X} \delta[\mathbf{n} - \mathbf{x}]$$

- for each test point $\mathbf{x} \in X$
 - ullet for each translation ${f x}-{f h}$ consistent with ${f x}$ (for ${f h}\in H$)
 - \circ voting: increment accumulator A at x-h
- in symbols

$$A = \sum_{\mathbf{x} \in Y} \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - (\mathbf{x} - \mathbf{h})]$$

ullet model points H, test points X as signals

$$h[\mathbf{n}] = \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - \mathbf{h}]$$
$$x[\mathbf{n}] = \sum_{\mathbf{x} \in X} \delta[\mathbf{n} - \mathbf{x}]$$

- for each test point $\mathbf{x} \in X$
 - for each translation $\mathbf{x} \mathbf{h}$ consistent with \mathbf{x} (for $\mathbf{h} \in H$)
 - voting: increment accumulator A at x h
- in symbols

$$A = \sum_{\mathbf{x} \in X} \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - (\mathbf{x} - \mathbf{h})]$$

ullet model points H, test points X as signals

$$h[\mathbf{n}] = \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - \mathbf{h}]$$
$$x[\mathbf{n}] = \sum_{\mathbf{x} \in X} \delta[\mathbf{n} - \mathbf{x}]$$

- for each test point $\mathbf{x} \in X$
 - for each translation x h consistent with x (for $h \in H$)
 - voting: increment accumulator A at $\mathbf{x} \mathbf{h}$
- in symbols

$$A = \sum_{\mathbf{x} \in X} \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - (\mathbf{x} - \mathbf{h})]$$

model points H, test points X as signals

$$h[\mathbf{n}] = \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - \mathbf{h}]$$
$$x[\mathbf{n}] = \sum_{\mathbf{x} \in X} \delta[\mathbf{n} - \mathbf{x}]$$

- for each test point $\mathbf{x} \in X$
 - for each translation x h consistent with x (for $h \in H$)
 - ullet voting: increment accumulator A at ${f x}-{f h}$
- in symbols

$$A = \sum_{\mathbf{x} \in X} \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - (\mathbf{x} - \mathbf{h})]$$

model points H, test points X as signals

$$h[\mathbf{n}] = \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - \mathbf{h}]$$
$$x[\mathbf{n}] = \sum_{\mathbf{x} \in X} \delta[\mathbf{n} - \mathbf{x}]$$

- for each test point $\mathbf{x} \in X$
 - for each translation x h consistent with x (for $h \in H$)
 - ullet voting: increment accumulator A at ${f x}-{f h}$
- in symbols try it!

$$A = \sum_{\mathbf{x} \in X} \sum_{\mathbf{h} \in H} \delta[\mathbf{n} - (\mathbf{x} - \mathbf{h})] = \sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{k} - \mathbf{n}]$$

local shape

[Lowe 2004]

- a SIFT feature is determined by location, scale and orientation; a single feature correspondence can yield a 4-dof similarity transformation
- hypotheses: sparse Hough voting in 4-dimensional space; each correspondence casts a single vote in a hash table
- verification: on each bin with at least 3 votes, find inliers, form linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ and fit a 6-dof affine transformation by least-squares

$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b}$$

local shape

[Lowe 2004]

- a SIFT feature is determined by location, scale and orientation; a single feature correspondence can yield a 4-dof similarity transformation
- hypotheses: sparse Hough voting in 4-dimensional space; each correspondence casts a single vote in a hash table
- verification: on each bin with at least 3 votes, find inliers, form linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ and fit a 6-dof affine transformation by least-squares

$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b}$$

local shape

[Lowe 2004]

- a SIFT feature is determined by location, scale and orientation; a single feature correspondence can yield a 4-dof similarity transformation
- hypotheses: sparse Hough voting in 4-dimensional space; each correspondence casts a single vote in a hash table
- verification: on each bin with at least 3 votes, find inliers, form linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ and fit a 6-dof affine transformation by least-squares

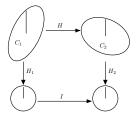
$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b}$$

object recognition

fast spatial matching

[Philbin et al. 2007]

Transformation	dof	Matrix
translation + isotropic scale	3	$\begin{bmatrix} a & 0 & t_x \\ 0 & a & t_y \end{bmatrix}$
translation + anisotropic scale	4	$\begin{bmatrix} a & 0 & t_x \\ 0 & b & t_y \end{bmatrix}$
translation + vertical shear	5	$\begin{bmatrix} a & 0 & t_x \\ b & c & t_y \end{bmatrix}$



- same idea, a single feature correspondence can yield a transformation that can be 3,4,5-dof
- but now use RANSAC where there is only one hypothesis per correspondence; all hypotheses can be enumerated and verified
- again, 6-dof fitting on inliers in the end
- so Hough can be seen as filtering of hypotheses by agreement

object retrieval

- image retrieval based on a bag-of-words representation
- fast spatial verification performed on top-ranking images

summary

- derivatives as convolution
- edges: gradient magnitude and Laplacian
- scale-space and scale selection
- blobs: normalized Laplacian
- corners/junctions: windowed second moment matrix
- dense registration / sparse feature tracking
- wide-baseline matching by local features
- robust fitting: RANSAC, Hough
- Hough as cross-correlation
- local shape for global transformation hypotheses