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gradient descent

• update rule
x(τ+1) = x(τ) − εg(τ)

where
g(τ) := ∇f(x(τ))

• in a (continuous-time) physical analogy, if x(τ) represents the position
of a particle at time τ , then −g(τ) represents its velocity

dx

dτ
= −g = −∇f(x)

(where dx
dτ ≈ x(τ+1)−x(τ)

ε )

• in the following, we examine a batch and a stochastic version: in the
latter, each update is split into 10 smaller steps, with stochastic noise
added to each step (assuming a batch update consists of 10 terms)
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(stochastic) gradient descent

ε = 0.07, iteration 10× 15



problems

• high condition number: oscillations, divergence

• plateaus, saddle points: no progress

• sensitive to stochastic noise



gradient descent with momentum

f(x)

• inspector needs to walk down the hill

• it is better to go skiing!

Artwork credit: https://the-fox-after-dark.deviantart.com/

https://the-fox-after-dark.deviantart.com/
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gradient descent with momentum
[Rumelhart et al. 1986]

• in the same analogy, if the particle is of mass m and moving in a
medium with viscosity µ, now −g represents a (gravitational) force
and f the potential energy, proportional to altitude

m
d2x

dτ2
+ µ

dx

dτ
= −g = −∇f(x)

• this formulation yields the update rule

v(τ+1) = αv(τ) − εg(τ)

x(τ+1) = x(τ) + v(τ+1)

where v := dx
dτ ≈ x(τ+1) − x(τ) represents the velocity, initialized to

zero, d2x
dτ2
≈ v(τ+1)−v(τ)

δ , α := m−µδ
m , and ε := δ

m

Qian. NN 1999. On the Momentum Term in Gradient Descent Learning Algorithms.
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gradient descent with momentum
[Rumelhart et al. 1986]

• when g is constant, v reaches terminal velocity

v(∞) = −εg
∞∑

τ=0

ατ = − ε

1− αg

e.g. if α = 0.99, this is 100 times faster than gradient descent

• α ∈ [0, 1) is another hyperparameter with 1− α representing viscosity;
usually α = 0.9

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.
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gradient descent with momentum

• good for high condition number: damps oscillations by its viscosity

• good for plateaus/saddle points: accelerates in directions with
consistent gradient signs

• insensitive to stochastic noise, due to averaging

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



adaptive learning rates

• the partial derivative with respect to each parameter may be very
different, especially e.g. for units with different fan-in or for different
layers

• we need separate, adaptive learning rate per parameter

• for batch learning, we can

• just use the the gradient sign
• Rprop: also adjust the learning rate of each parameter depending

on the agreement of gradient signs between iterations

Riedmiller and Braun. IV 1992. RPROP - A Fast Adaptive Learning Algorithm.
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RMSprop
[Tieleman and Hinton 2012]

• for mini-batch or online methods, we need to average over iterations

• sgng can be written as g/|g| (element-wise) and we can replace |g|
by an average

• maintain a moving average b of the squared gradient g2, then divide
g by

√
b

b(τ+1) = βb(τ) + (1− β)
(
g(τ)

)2

x(τ+1) = x(τ) − ε

δ +
√
b(τ+1)

g(τ)

where all operations are taken element-wise

• e.g. β = 0.9, δ = 10−8

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Adam
[Kingma and Ba 2015]

• momentum is averaging the gradient: 1st order moment

• RMSprop is averaging the squared gradient: 2nd order moment

• combine both: maintain moving average a (b) of gradient g (squared
gradient g2), then update by a/

√
b

a(τ+1) = αa(τ) + (1− α)g(τ)

b(τ+1) = βb(τ) + (1− β)
(
g(τ)

)2

x(τ+1) = x(τ) − ε

δ +
√
b(τ+1)

g(τ)

where all operations are taken element-wise

• e.g. α = 0.9, β = 0.999, δ = 10−8

• bias correction for small τ not shown here

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.
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(batch) Adam

ε = 0.14, iteration 0
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(stochastic) Adam

ε = 0.07, iteration 10× 0
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ε = 0.07, iteration 10× 20
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learning rate

• remember

• all these methods need to determine the learning rate
• to converge, the learning rate needs to be reduced during learning

• set a fixed learning rate schedule, e.g.

ετ = ε0e
−γτ

or, halve the learning rate every 10 epochs

• adjust to the current behavior, manually or automatically

• if the error is decreasing slowly and consistently, try increasing ε
• if it is increasing, fluctuating, or stabilizing, try decreasing ε
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second order optimization

• remember, the gradient descent update rule

x(τ+1) = x(τ) − εg(τ)

comes from assuming a second-order Taylor approximation of f
around x(τ) with an fixed, isotropic Hessian Hf(x) = 1

ε I everywhere,
and making its gradient vanish

• if we knew the true Hessian matrix at x(τ), we would get the Newton
update rule instead

x(τ+1) = x(τ) − [H(τ)]−1g(τ)

where

H(τ) := Hf(x(τ))

• unfortunately, computing and inverting H(τ) is not an option
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Hessian-free optimization
[Martens ICML 2010]

• Newton’s method can solve all curvature-related problems

x(τ+1) = x(τ) − [H(τ)]−1g(τ)

Deep learning via Hessian-free optimization

helps. Firstly, while bad local optima do exist in deep-
networks (as they do with shallow ones) in practice they do
not seem to pose a significant threat, at least not to strong
optimizers like ours. Instead of bad local minima, the diffi-
culty associated with learning deep auto-encoders is better
explained by regions of pathological curvature in the ob-
jective function, which to 1st-order optimization methods
resemble bad local minima.

2. Newton’s method

In this section we review the canonical 2nd-order optimiza-
tion scheme, Newton’s method, and discuss its main ben-
efits and why they may be important in the deep-learning
setting. While Newton’s method itself is impractical on
large models due to the quadratic relationship between the
size of the Hessian and the number of parameters in the
model, studying it nevertheless informs us about how its
more practical derivatives (i.e. quasi-Newton methods)
might behave.

Newton’s method, like gradient descent, is an optimization
algorithm which iteratively updates the parametersθ ∈ RN

of an objective functionf by computing search directionsp
and updatingθ asθ+αp for someα. The central idea mo-
tivating Newton’s method is thatf can be locally approxi-
mated around eachθ, up to 2nd-order, by the quadratic:

f(θ + p) ≈ qθ(p) ≡ f(θ) +∇f(θ)>p+ 1

2
p>Bp (1)

whereB = H(θ) is the Hessian matrix off at θ. Find-
ing a good search direction then reduces to minimizing this
quadratic with respect top. Complicating this idea is that
H may be indefinite so this quadratic may not have a mini-
mum, and moreover we don’t necessarily trust it as an ap-
proximation off for large values ofp. Thus in practice the
Hessian is “damped” or re-conditioned so thatB = H+ λI
for some constantλ ≥ 0.

2.1. Scaling and curvature

An important property of Newton’s method is “scale invari-
ance”. By this we mean that it behaves the same for any
linear rescaling of the parameters. To be technically pre-
cise, if we adopt a new parameterizationθ̂ = Aθ for some
invertible matrixA, then the optimal search direction in the
new parameterization iŝp = Ap wherep is the original
optimal search direction. By contrast, the search direction
produced by gradient descent has the opposite response to
linear re-parameterizations:p̂ = A−>p.

Scale invariance is important because, without it, poorly
scaled parameters will be much harder to optimize. It also
eliminates the need to tweak learning rates for individual
parameters and/or anneal global learning-rates according
to arbitrary schedules. Moreover, there is an implicit “scal-
ing” which varies over the entire parameter space and is
determined by the local curvature of the objective function.

Figure 1.Optimization in a long narrow valley

By taking the curvature information into account (in the
form of the Hessian), Newton’s method rescales the gradi-
ent so it is a much more sensible direction to follow.

Intuitively, if the curvature is low (and positive) in a par-
ticular descent directiond, this means that the gradient of
the objective changes slowly alongd, and sod will remain
a descent direction over a long distance. It is thus sensi-
ble to choose a search directionp which travels far along
d (i.e. by makingp>d large), even if the amount of reduc-
tion in the objective associated withd (given by−∇f>d) is
relatively small. Similarly if the curvature associated with
d is high, then it is sensible to choosep so that the dis-
tance traveled alongd is smaller. Newton’s method makes
this intuition rigorous by computing the distance to move
alongd as its reduction divided by its associated curvature:
−∇f>d/d>Hd. This is precisely the point alongd after
whichf is predicted by (1) to start increasing.

Not accounting for the curvature when computing search
directions can lead to many undesirable scenarios. First,
the sequence of search directions might constantly move
too far in directions of high curvature, causing an unstable
“bouncing” behavior that is often observed with gradient
descent and is usually remedied by decreasing the learning
rate. Second, directions of low curvature will be explored
much more slowly than they should be, a problem exacer-
bated by lowering the learning rate. And if the only direc-
tions ofsignificantdecrease inf are ones of low curvature,
the optimization may become too slow to be practical and
even appear to halt altogether, creating the false impression
of a local minimum. It is our theory that the under-fitting
problem encountered when optimizing deep nets using 1st-
order techniques is mostly due to such techniques becom-
ing trapped in such false local minima.

Figure 1 visualizes a “pathological curvature scenario”,
where the objective function locally resembles a long nar-
row valley. At the base of the valley is a direction of low
reduction and low curvature that needs to be followed in
order to make progress. The smaller arrows represent the
steps taken by gradient descent with large and small learn-
ing rates respectively, while the large arrow along the base
of the valley represents the step computed by Newton’s
method. What makes this scenario “pathological” is not
the presence of merely low or high curvature directions,

• in practice, solve linear system

H(τ)d = g(τ)

by conjugate gradient (CG) method, where matrix-vector products of
the form H(τ)v are computed by back-propagation

Martens. ICML 2010. Deep Learning via Hessian-Free Optimization.
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.“well begun is half done”.

initialization



remember CIFAR10 experiment?

prepare

• vectorize 32× 32× 3 images into 3072× 1

• split training set e.g. into ntrain = 45000 training samples and
nval = 5000 samples to be used for validation

• center vectors by subtracting mean over the training samples

• initialize network weights as Gaussian with standard deviation 10−4

learn

• train for a few iterations and evaluate accuracy on the validation set
for a number of learning rates ε and regularization strengths λ

• train for 10 epochs on the full training set for the chosen
hyperparameters; mini-batch m = 200

• evaluate accuracy on the test set
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result

• linear classifier: test accuracy 38%

• two-layer classifier, 200 hidden units, relu: test accuracy 51%

• eight-layer classifier, 100 hidden units per layer, relu: nothing works
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affine layer initialization

• k × k′ weight matrix W , k′ × 1 bias vector b

a =W>x+ b, x′ = h(a) = h(W>x+ b)

weights

• each element w of W can be drawn at random, e.g.

• Gaussian w ∼ N (0, σ2), with Var(w) = σ2

• uniform w ∼ U(−a, a), with Var(w) = σ2 = a2

3

• in any case, it is important to determine the standard deviation σ,
which we call weight scale

biases

• can be again Gaussian or uniform

• more commonly, constant e.g. zero

• the constant depends on the activation function h and should be
chosen such that h does not saturate or ‘die’
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weight scale sensitivity
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• using N (0, σ2), training on a small subset of the training set and
cross-validating σ reveals a narrow peak in validation accuracy



weight scale sensitivity

• to understand why, we measure the distribution of features x in all
layers, starting with Gaussian input ∼ N (0, 1)

• we repeat with and without relu nonlinearity

• in each case, we try three different values of quantity kσ
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linear approximation

• assuming we are in a linear regime of the activation function,
forward-backward relations are, recalling W is k × k′

x′ =W>x+ b, dx =Wdx′, dW = x(dx′)>

• forward: assuming wij are i.i.d, Var(xi) are the same, wij and xi are
independent, and wij , xi are centered, i.e. E(wij) = E(xi) = 0,

Var(x′j) = Var
(
(W>x)j

)
= kVar(w)Var(x) = kσ2Var(x)

• backward, activation: under the same assumptions,

Var(dxi) = Var
(
(Wdx′)i

)
= k′Var(w)Var(dx′) = k′σ2Var(dx′)

• backward, weights: also assuming that xi, dx
′
j are independent,

Var(dwij) = Var(xi)Var(dx
′
j)

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



linear approximation

• assuming we are in a linear regime of the activation function,
forward-backward relations are, recalling W is k × k′

x′ =W>x+ b, dx =Wdx′, dW = x(dx′)>

• forward: assuming wij are i.i.d, Var(xi) are the same, wij and xi are
independent, and wij , xi are centered, i.e. E(wij) = E(xi) = 0,

Var(x′j) = Var
(
(W>x)j

)
= kVar(w)Var(x) = kσ2Var(x)

• backward, activation: under the same assumptions,

Var(dxi) = Var
(
(Wdx′)i

)
= k′Var(w)Var(dx′) = k′σ2Var(dx′)

• backward, weights: also assuming that xi, dx
′
j are independent,

Var(dwij) = Var(xi)Var(dx
′
j)

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



linear approximation

• assuming we are in a linear regime of the activation function,
forward-backward relations are, recalling W is k × k′

x′ =W>x+ b, dx =Wdx′, dW = x(dx′)>

• forward: assuming wij are i.i.d, Var(xi) are the same, wij and xi are
independent, and wij , xi are centered, i.e. E(wij) = E(xi) = 0,

Var(x′j) = Var
(
(W>x)j

)
= kVar(w)Var(x) = kσ2Var(x)

• backward, activation: under the same assumptions,

Var(dxi) = Var
(
(Wdx′)i

)
= k′Var(w)Var(dx′) = k′σ2Var(dx′)

• backward, weights: also assuming that xi, dx
′
j are independent,

Var(dwij) = Var(xi)Var(dx
′
j)

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



linear approximation

• if kσ2 < 1, activations vanish forward; if kσ2 > 1 they explode,
possibly driving nonlinearities to saturation

• if k′σ2 < 1, activation gradients vanish backward; if k′σ2 > 1 they
explode, and everything is linear backwards

• interestingly, weight gradients are stable (why?), but only at
initialization

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



“Xavier” initialization
[Glorot and Bengio 2010]

• forward requirement is σ2 = 1/k

• backward requirement is σ2 = 1/k′

• as a compromise, initialize according to

σ2 =
2

k + k′

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



a simpler alternative
[LeCun et al. 1998]

• however, any of these alternatives would do

σ2 =
1

k
, or σ2 =

1

k′

in the sense that if the forward signal is properly initialized, then so is
the backward signal, and vice versa (why?)

• so, initialize according to

σ2 =
1

k

Lecun, Bottou, Orr and Müller. 1998. Efficient Backprop.
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relu (“Kaiming/MSRA”) initialization
[He et al. 2015]

• because relu squeezes half of the volume, a corrective factor of 2
appears in the expectations of both forward and backward

• so any of the following will do

σ2 =
2

k
, or σ2 =

2

k′

He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classifi-
cation.



relu (“Kaiming/MSRA”) initialization

0 0.5 1 1.5 2 2.5 3
0.75

0.8

0.85

0.9

0.95

1

Epoch

E
rr

or

 

 

----------

----------

ours

Xavier

Figure 2. The convergence of a 22-layer large model (B in Ta-
ble 3). The x-axis is the number of training epochs. The y-axis is
the top-1 error of 3,000 random val samples, evaluated on the cen-
ter crop. We use ReLU as the activation for both cases. Both our
initialization (red) and “Xavier” (blue) [7] lead to convergence, but
ours starts reducing error earlier.
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Figure 3. The convergence of a 30-layer small model (see the main
text). We use ReLU as the activation for both cases. Our initial-
ization (red) is able to make it converge. But “Xavier” (blue) [7]
completely stalls - we also verify that its gradients are all dimin-
ishing. It does not converge even given more epochs.

will be rescaled by a factor of βL after L layers, where L
can represent some or all layers. When L is large, if β > 1,
this leads to extremely amplified signals and an algorithm
output of infinity; if β < 1, this leads to diminishing sig-
nals2. In either case, the algorithm does not converge - it
diverges in the former case, and stalls in the latter.

Our derivation also explains why the constant standard
deviation of 0.01 makes some deeper networks stall [25].
We take “model B” in the VGG team’s paper [25] as an
example. This model has 10 conv layers all with 3×3 filters.
The filter numbers (dl) are 64 for the 1st and 2nd layers, 128
for the 3rd and 4th layers, 256 for the 5th and 6th layers, and
512 for the rest. The std computed by Eqn.(14) (

√
2/n̂l) is

0.059, 0.042, 0.029, and 0.021 when the filter numbers are
64, 128, 256, and 512 respectively. If the std is initialized

2In the presence of weight decay (l2 regularization of weights), when
the gradient contributed by the logistic loss function is diminishing, the
total gradient is not diminishing because of the weight decay. A way of
diagnosing diminishing gradients is to check whether the gradient is mod-
ulated only by weight decay.

as 0.01, the std of the gradient propagated from conv10 to
conv2 is 1/(5.9× 4.22 × 2.92 × 2.14) = 1/(1.7× 104) of
what we derive. This number may explain why diminishing
gradients were observed in experiments.

It is also worth noticing that the variance of the input
signal can be roughly preserved from the first layer to the
last. In cases when the input signal is not normalized (e.g.,
it is in the range of [−128, 128]), its magnitude can be
so large that the softmax operator will overflow. A solu-
tion is to normalize the input signal, but this may impact
other hyper-parameters. Another solution is to include a
small factor on the weights among all or some layers, e.g.,
L
√

1/128 on L layers. In practice, we use a std of 0.01 for
the first two fc layers and 0.001 for the last. These numbers
are smaller than they should be (e.g.,

√
2/4096) and will

address the normalization issue of images whose range is
about [−128, 128].

For the initialization in the PReLU case, it is easy to
show that Eqn.(10) becomes:

1

2
(1 + a2)nlVar[wl] = 1, ∀l, (15)

where a is the initialized value of the coefficients. If a = 0,
it becomes the ReLU case; if a = 1, it becomes the linear
case (the same as [7]). Similarly, Eqn.(14) becomes 1

2 (1 +
a2)n̂lVar[wl] = 1.

Comparisons with “Xavier” Initialization [7]

The main difference between our derivation and the
“Xavier” initialization [7] is that we address the rectifier
nonlinearities3. The derivation in [7] only considers the
linear case, and its result is given by nlVar[wl] = 1 (the
forward case), which can be implemented as a zero-mean
Gaussian distribution whose std is

√
1/nl. When there are

L layers, the std will be 1/
√

2
L

of our derived std. This
number, however, is not small enough to completely stall
the convergence of the models actually used in our paper
(Table 3, up to 22 layers) as shown by experiments. Fig-
ure 2 compares the convergence of a 22-layer model. Both
methods are able to make them converge. But ours starts
reducing error earlier. We also investigate the possible im-
pact on accuracy. For the model in Table 2 (using ReLU),
the “Xavier” initialization method leads to 33.90/13.44 top-
1/top-5 error, and ours leads to 33.82/13.34. We have not
observed clear superiority of one to the other on accuracy.

Next, we compare the two methods on extremely deep
models with up to 30 layers (27 conv and 3 fc). We add up
to sixteen conv layers with 256 2×2 filters in the model in

3There are other minor differences. In [7], the derived variance is
adopted for uniform distributions, and the forward and backward cases are
averaged. But it is straightforward to adopt their conclusion for Gaussian
distributions and for the forward or backward case only.
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Our derivation also explains why the constant standard
deviation of 0.01 makes some deeper networks stall [25].
We take “model B” in the VGG team’s paper [25] as an
example. This model has 10 conv layers all with 3×3 filters.
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as 0.01, the std of the gradient propagated from conv10 to
conv2 is 1/(5.9× 4.22 × 2.92 × 2.14) = 1/(1.7× 104) of
what we derive. This number may explain why diminishing
gradients were observed in experiments.

It is also worth noticing that the variance of the input
signal can be roughly preserved from the first layer to the
last. In cases when the input signal is not normalized (e.g.,
it is in the range of [−128, 128]), its magnitude can be
so large that the softmax operator will overflow. A solu-
tion is to normalize the input signal, but this may impact
other hyper-parameters. Another solution is to include a
small factor on the weights among all or some layers, e.g.,
L
√

1/128 on L layers. In practice, we use a std of 0.01 for
the first two fc layers and 0.001 for the last. These numbers
are smaller than they should be (e.g.,

√
2/4096) and will

address the normalization issue of images whose range is
about [−128, 128].

For the initialization in the PReLU case, it is easy to
show that Eqn.(10) becomes:

1

2
(1 + a2)nlVar[wl] = 1, ∀l, (15)

where a is the initialized value of the coefficients. If a = 0,
it becomes the ReLU case; if a = 1, it becomes the linear
case (the same as [7]). Similarly, Eqn.(14) becomes 1

2 (1 +
a2)n̂lVar[wl] = 1.

Comparisons with “Xavier” Initialization [7]

The main difference between our derivation and the
“Xavier” initialization [7] is that we address the rectifier
nonlinearities3. The derivation in [7] only considers the
linear case, and its result is given by nlVar[wl] = 1 (the
forward case), which can be implemented as a zero-mean
Gaussian distribution whose std is

√
1/nl. When there are

L layers, the std will be 1/
√

2
L

of our derived std. This
number, however, is not small enough to completely stall
the convergence of the models actually used in our paper
(Table 3, up to 22 layers) as shown by experiments. Fig-
ure 2 compares the convergence of a 22-layer model. Both
methods are able to make them converge. But ours starts
reducing error earlier. We also investigate the possible im-
pact on accuracy. For the model in Table 2 (using ReLU),
the “Xavier” initialization method leads to 33.90/13.44 top-
1/top-5 error, and ours leads to 33.82/13.34. We have not
observed clear superiority of one to the other on accuracy.

Next, we compare the two methods on extremely deep
models with up to 30 layers (27 conv and 3 fc). We add up
to sixteen conv layers with 256 2×2 filters in the model in

3There are other minor differences. In [7], the derived variance is
adopted for uniform distributions, and the forward and backward cases are
averaged. But it is straightforward to adopt their conclusion for Gaussian
distributions and for the forward or backward case only.

5

22 layers 30 layers

• Xavier converges more slowly or not at all

• 30-layer network trained from scratch for the first time, but has worse
performance than a 14-layer network

He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classifi-
cation.



convolutional layer initialization

• a convolutional layer is just an affine layer with a special matrix
structure

• it is actually represented by a 4d tensor w of size r2kk′, where r is the
kernel size and k, k′ the input/output features

• initialization is the same, but with

• fan-in k replaced by r2k
• fan-out k′ replaced by r2k′
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beyond Gaussian matrices

• for linear and relu units, we can now keep the signal variance constant
across layers, both forward and backward

• but this just holds on average

• how exactly are signals amplified or attenuated in each dimension?

• how does that affect the learning speed?

• we return to the linear case and examine the singular values of a
product W8 · · ·W1 of Gaussian matrices
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orthogonal initialization
[Saxe et al. 2014]

• choose k × k′ matrix W to be a random (semi-)orthogonal matrix, i.e.
W>W = I if k ≥ k′ and WW> = I if k < k′

• for instance, with a random Gaussian matrix followed by QR or SVD
decomposition

• a scaled Gaussian matrix has singular values around 1 and preserves
norm on average

Ew∼N (0,1/k)(x
>W>Wx) = x>x

• a random orthogonal matrix has singular values exactly 1 and
preserves norm exactly

x>W>Wx = x>x

• a product of orthogonal matrices remains orthogonal, while a product
of scaled Gaussian matrices becomes strongly non-isotropic

Saxe, McClelland and Ganguli. ICLR 2014. Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks.
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data-dependent initialization

• orthogonal initialization only applies to linear layers

• relu requires analyzing input-output variances to find the corrective
factor of 2

• it is not possible to do this theoretical derivation for any kind of
nonlinearity, e.g. maxout, max-pooling, normalization etc.

• a practical solution is to use actual data at the input of the network
and compute weights according to output statistics



layer-sequential unit-variance (LSUV) initialization
[Mishkin and Matas 2016]

• begin by random orthogonal initialization

• then, for each affine layer (W,b), measure output variance over a
mini-batch (not per feature) and iteratively normalize it to one

def lsuv(batch, (W,b), τ = 0.1):
σ = 0
while |σ − 1| ≥ τ :
X = batch()
Y = dot(X,W ) + b
σ = std(Y )
W =W/σ

return (W,b)

• as given by batch(), we use a new mini-batch per iteration and feed it
forward through the network until we reach the input X of that layer

• X is m× k, W is k × k′, Y is m× k′, where m is the mini-batch size

Mishkin and Matas. ICLR 2016. All You Need Is a Good Init.



within-layer initialization
[Krähenbühl et al. 2016]

• computed on a single mini-batch, non-iterative

• measure both mean and variance, initialize both bias and weights

• measurements are per feature

def within(X, (W,b)):
Y = dot(X,W ) + b
µ,σ = mean0(Y ), std0(Y )
W,b =W/σ,−µ/σ
return (W,b)

• vector operations are element-wise

• matrix-vector operations are broadcasted

Krähenbühl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization

• weights initialized by PCA or (spherical) k-means on mini-batch
samples

• within-layer initialization normalizes affine layer outputs to zero mean,
unit variance

• between-layer initialization iteratively normalizes weights and biases of
different layers

• as a result, all parameters are learned at the same “rate”

Krähenbühl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization: CaffeNetUnder review as a conference paper at ICLR 2016
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Figure 3: Training and validation loss curves for the CaffeNet architecture trained for the ILSVRC-
2012 classification task. The training error is unsmoothed in the topmost plot (10K); smoothed over
one epoch in the others. The validation error is computed over the full validation set every 2000
iterations and is unsmoothed. Our initializations (k-means, Random) handily outperform both the
carefully chosen reference initialization (Jia et al., 2014) and the MSRA initialization (He et al.,
2015) over the first 100,000 iterations, but the other initializations catch up after the second learning
rate drop at iteration 200,000.
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Figure 4: Training and validation loss curves for the GoogLeNet architecture trained for the
ILSVRC-2012 classification task. The training error plot is again smoothed over roughly the length
of an epoch; the validation error (computed every 4000 iterations) is unsmoothed. Note that our
k-means initializations outperform the reference initialization, and the single loss model (lacking
the auxiliary classifiers) learns at roughly the same rate as the model with auxiliary classifiers.

Everingham, Mark, Eslami, SM Ali, Van Gool, Luc, Williams, Christopher KI, Winn, John, and
Zisserman, Andrew. The Pascal Visual Object Classes challenge: A retrospective. IJCV, 111(1):
98–136, 2014. 5, 6

Girshick, Ross. Fast r-cnn. ICCV, 2015. 1, 6
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• data-dependent initialization is better at first 100k iterations

• but random initialization catches up after the second learning rate
drop

Krähenbühl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.
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Figure 2: Comparison of nearest neighbors for the given input image (top row) in the feature spaces
of CaffeNet-based CNNs initialized using our method, the fully supervised CaffeNet, an untrained
CaffeNet using Gaussian initialization, and three unsupervised or self-supervised methods from prior
work. (For Doersch et al. (2015) we display neighbors in fc6 feature space; the rest use the fc7
features.) While our initialization is clearly missing the semantics of CaffeNet, it does preserve
some non-specific texture and shape information, which is often enough for meaningful matches.
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data-dependent initialization

• PCA is orthogonal but data-dependent rather than random

• k-means is non-orthogonal, but centroids are still only weakly
correlated

• we cannot fail to notice that

• codebooks are now the initial weights, computed layer-wise
• bag-of-words representations are now the initial features
• compared to the conventional approach, now the entire pipeline

is optimized end-to-end

Krähenbühl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.
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normalization



input normalization: zero mean, unit variance

• input X is an n× d matrix, where n is the number of samples and d
is the dimension of a vectorized image

• measure empirical mean and variance and normalize per dimension

def norm(X):
µ,σ = mean0(X), std0(X)
return (X − µ)/σ

• measurements are exactly as in within-layer initialization, only now the
input X is normalized, not the parameters W,b
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input normalization: PCA and whitening

• center data to zero mean as before

• using SVD, measure the eigenvalues σ and eigenvectors V of the
covariance matrix 1

nX
>X

• PCA-rotate by V −1 = V > to decorrelate the data

• whiten by 1/σ to unit variance

def whiten(X):
n = X.shape[0]
X −= mean0(X)
U,σ, V = svd(X/sqrt(n))
return dot(X,V >)/σ
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in practice: only centering

• the network is expected to discover nonlinear manifold structure, so in
principle it should have no difficulty discovering the linear PCA +
whitening structure

• in practice, only centering is enough:

• subtract the mean value per pixel (mean image)
• subtract the mean value per color channel (mean color or

intensity, just one or three scalars)
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why is centering important?

• each weight derivative dwi of layer 1 is (da)xi where da is the
derivative of the activation and xi is the corresponding input

• if all inputs are positive, then updates on weights wi are either all
positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)

w1

w2

Q1

Q3

• weights can only all increase or all decrease together for a given sample

• to follow the direction of w, we can only do so by zig-zagging

Lecun, Bottou, Orr and Müller. 1998. Efficient Backprop.
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activation normalization

• if normalization is important at the input, why not at every layer
activation?

• this is even more important in the presence of saturating nonlinearities:
given a wrong offset or scale, activation functions can ‘die’

• and even more important in the presence of stochastic updates, where
statistics change at every mini-batch and at every update (internal
covariate shift)



activation functions
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activation functions: non-localized
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activation functions: centering
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activation functions: centering
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x, if x > 0
α(ex − 1), if x ≤ 0

f(x) = λ

{
x, if x > 0
α(ex − 1), if x ≤ 0

exponential linear unit (ELU) scaled ELU (λ > 1)

Nair and Hinton. ICML 2010. Rectified Linear Units Improve Restricted Boltzmann Machines.



activation functions: centering
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activation functions: centering
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activation functions: centering
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activation functions: centering
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activation functions: self-normalizing!
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batch normalization (BN)
[Ioffe and Szegedy 2015]

conv(5, 32)

BN

relu

pool(2)

conv(5, 64)

BN

relu

fc(100)

BN

relu

• if x = (x1, . . . , xk) is the activation or feature
at any layer, normalize it element-wise

x̂j =
xj − E(xj)√

Var(xj)

to have zero-mean, unit-variance, where E and
Var are empirical over the training set

• insert this layer after convolutional or
fully-connected layers and before nonlinear
activation functions (although this is not clear)

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.
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batch normalization: parameters

• normalized features may remain in the linear regime of the following
nonlinearity, limiting the representational power of the network

• introduce parameters β = (β1, . . . , βk), γ = (γ1, . . . , γk) and let the
output of the BN layer be y = (y1, . . . , yk) with

yj = γj x̂j + βj

or, element-wise,
y = γx̂+ β

• then, with

βj = E(xj), γj =
√

Var(xj)

we can recover the identity mapping if needed

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.
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batch normalization: training

• as the name suggests, BN learns using the mini-batch statistics

• given an index set I of mini-batch samples with |I| = m, the BN layer
with parameters β, γ yields, for each sample feature xi with i ∈ I,

yi = BNβ,γ(xi) := γ
xi − µI√
vI + δ

+ β

(element-wise), where µI , vI are the mini-batch mean and variance

µI :=
1

m

∑

i∈I
xi

vI :=
1

m

∑

i∈I
(xi − µI)

2

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: inference

• at inference, BN operates with global statistics

• given a test sample feature x, the BN layer with parameters β,γ
yields (element-wise)

y = BNinf
β,γ(x) := γ

x− µ√
v + δ

+ β

where µ, v are moving averages of the training set mean and
variance, updated at every mini-batch I during training as

µ(τ+1) := αµ(τ) + (1− α)µI
v(τ+1) := αv(τ) + (1− α)vI

so they track the accuracy of the model as it trains

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: derivatives

• input mini-batch m× k matrix X, output m× k matrix Y

• forward
Y = BN(X, (β,γ))

• backward: exercise

dX = . . . dY . . .

dβ = . . . dY . . .

dγ = . . . dY . . .

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.
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batch normalization: convolution

• same as fully-connected, only now mean and variance are computed
per feature map rather than per feature

• i.e. we average over mini-batch samples and spatial positions

• if feature map volumes are w × h× k, the effective mini-batch size at
training becomes m′ = mwh, and

µI :=
1

m′
∑

i∈I

∑

n

xi[n]

vI :=
1

m′
∑

i∈I

∑

n

(xi[n]− µI)
2

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



remember weight scale sensitivity?
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• using N (0, σ2), training on a small subset of the training set and
cross-validating σ reveals a narrow peak in validation accuracy

• BN allows convergence over a much wider range of weight scales
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batch normalization: weight scale

• if BN is connected at the output activation of an affine layer

a =W>x+ b, x′ = h(a) = h(W>x+ b)

the bias b is absorbed into β and the layer is replaced by

x′ = h(BN(W>x))

• the layer and its Jacobian are then unaffected by weight scale

BN(aW>x) = BN(W>x)

∂BN(aW>x)
∂x

=
∂BN(W>x)

∂x

• moreover, larger weights yield smaller gradients, stabilizing growth

∂BN(aW>x)
∂(aW )

=
1

a

∂BN(W>x)
∂W

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift
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batch normalization: modified GoogLeNet
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Inception
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BN−x5
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BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%

BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:

Inception: the network described at the beginning of
Section 4.2, trained with the initial learning rate of 0.0015.

BN-Baseline: Same as Inception with Batch Normal-
ization before each nonlinearity.

BN-x5: Inception with Batch Normalization and the
modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.

BN-x30: Like BN-x5, but with the initial learning rate
0.045 (30 times that of Inception).

BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-
linearity g(t) = 1

1+exp(−x) instead of ReLU. We also at-
tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.

In Figure 2, we show the validation accuracy of the
networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.

By only using Batch Normalization (BN-Baseline), we
match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network.BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhatslower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.

We also verified that the reduction in internal covari-
ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed,BN-x5-Sigmoidachieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).

For our ensemble, we used 6 networks. Each was based
onBN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).

We demonstrate in Fig. 4 that batch normalization al-
lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion

We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-
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• allows to

• increase learning rate, accelerate learning rate decay
• reduce weight decay, reduce or remove dropout
• remove data augmentation such as photometric distortions
• remove local response normalization

Ioffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift



layer normalization
[Ba et al. 2016]

• the LN layer with parameters β, γ yields, for each sample feature
x = (x1, . . . , xk),

y = LNβ,γ(x) := γ
x− µ√
v + δ

+ β

(element-wise), where µ, v are the sample mean and variance

µ :=
1

k

k∑

j=1

xj

v :=
1

k

k∑

j=1

(xj − µ)2

• training and inference are now identical and independent of mini-batch

Ba, Kiros and Hinton 2016. Layer Normalization.



weight normalization
[Salimans and Kingma 2016]

• considering a single affine unit y = h(w>x+ b), weights w are
re-parametrized

w = g
v

‖v‖
• its derivatives are given by

dg = dw>
v

‖v‖ , dv> =
g

‖v‖dw
>
(
I − vv>

‖v‖2
)

• dw is scaled by g
‖v‖ and projected in a direction normal to v (and w)

• during learning, ‖v‖ increases monotonically:
∥∥v(τ+1)

∥∥ ≥
∥∥v(τ)

∥∥
• if ‖dv‖ is large, the scaling factor g

‖v‖ decreases; and if it is small,

‖v‖ stops increasing: the effect is similar to RMSprop

Salimans and Kingma. NIPS 2016. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural
Networks.



summary (so far)

• the deeper the network, the more we need to learn all parameters at
the same rate

• in the absence of second order derivatives, optimizers attempt to do
so by moving averages and normalization over the training iterations

• initialization should be designed such that activations, their derivatives
and parameter derivatives are initially well balanced

• it is more effective to modify the objective function itself such that
these properties are maintained during optimization
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going even deeper

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8×
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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places on the tasks of ImageNet detection, ImageNet local-
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and the leading results [41, 44, 13, 16] on the challenging
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has higher training error, and thus test error. Similar phenomena
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Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
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• when initialization, normalization and optimization are appropriately
addressed, we can train networks with 50 layers “from scratch”

• a degradation of test error is now exposed with increasing depth,
which looks like overfitting (CIFAR10 shown here)

• however, the same degradation appears also at training error

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.
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Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8×
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1 

 [
cs

.C
V

] 
 1

0 
D

ec
 2

01
5

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract
Deeper neural networks are more difficult to train. We
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of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8×
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also
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on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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• when initialization, normalization and optimization are appropriately
addressed, we can train networks with 50 layers “from scratch”

• a degradation of test error is now exposed with increasing depth,
which looks like overfitting (CIFAR10 shown here)

• however, the same degradation appears also at training error

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.
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• GoogLeNet has two auxiliary
classifiers that are discarded at
inference

• these classifiers inject gradient
signal deeper backwards

• we now transform the network in
ways that are not necessarily
equivalent, but maintain this
backward flow pattern

• the result is two skip
connections that can be
maintained at inference
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skip connections are not new

MULTI-LAYER PERCEPTRONS WITH FIXED PRETERMINAL 

NETWORKS 

The perceptrons considered in Part II have all consisted 

of three "layers" of signal generating elements: a sensory layer,  a single 

layer of association units, and a layer of R-units (containing only a single 

unit in the case of simple perceptrons).   A perceptron with additional layers 

of A-units between S and R-units will be called a multi-layer system.    Thus 

the network diagram: 

represents a four-layer series-coupled system,  whereas the diagram 

represents a three-layer cross coupled system,   since all A-units are at 

least the same logical distance from the sensory units (see Definition 18, 

Chapter 4).    The three-layer structure of the second diagram can be made 

clearer if it is drawn in the form: 

•313 

Rosenblatt 1962. Principles of Neurodynamics.



ImageNet classification performance

2010 2011 2012 2013 2014 2015

0

5

10

15

20

25

30 SVC+SVM

FV+SVM

AlexNet

ZFNet

GoogLeNet

ResNet

to
p

-5
er

ro
r

%

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



residual networks
[He et al. 2016]
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1×1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224×224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60× 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

• 3.57% top-5 error on ILSVRC’15

• won first place on several
ILSVRC and COCO 2015 tasks

• depth increased to 152 layers,
kernel size mostly 3× 3

• residual unit repeated up to 50
times

• 1× 1 kernels used as
“bottleneck” layers

• up to 10× more operations but
same parameters as AlexNet

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



skip connections and residual

f

+

x

y

• “plain” unit: f is the mapping

y = f(x)

• residual unit: f is the residual

y = x+ f(x)

• by copying the features of a shallow model and setting the new
mapping to the identity, a deeper model performs at least as well as
the shallow one

• “if an identity mapping were optimal, it would be easier to push a
residual to zero than to fit an identity mapping by a stack of nonlinear
layers”

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.
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residual unit

input(56, 64)

conv(3, 64)

down(2)

relu

conv(1, 128, s2)

conv(3, 64)

conv(1, 128)

+

relu

res(3, 64)

• “plain” unit, with nonlinearities shown separately, and batch
normalization included in each convolutional layers

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

input(56, 64)

conv(3, 64)

down(2)

relu

conv(1, 128, s2)

conv(3, 64)

conv(1, 128)

+

relu

res(3, 64)

• residual unit, with a skip connection over the two convolutional layers
and the relu between them

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

input(56, 64)

conv(3, 64, s2) down(2)

relu

conv(1, 128, s2)

conv(3, 64)

conv(1, 128)

+

relu

res(3, 64, s2)

• stride 2 in the first convolutional layer, along with downsampling on
the skip connection

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

input(28, 64)

conv(3, 128, s2) down(2)

relu

conv(1, 128, s2)

conv(3, 128) conv(1, 128)

+

relu

res(3, 128, s2)

• increasing the number of features, along with a 1× 1 convolution on
the skip connection to project to the new feature space

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

input(28, 64)

conv(3, 128, s2)

down(2)

relu conv(1, 128, s2)

conv(3, 128)

conv(1, 128)

+

relu

res(3, 128, s2)

• which is the same as a single 1× 1 convolution with stride 2, both
downsampling and projecting

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual bottleneck unit

input(56, 64)

conv(1, 64)

relu

conv(3, 64)

conv(1, 256)

relu

conv(1, 256)

+

relu

res(3, (64, 256))

• “plain” bottleneck unit, with 1× 1 convolutions

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual bottleneck unit

input(56, 64)

conv(1, 64)

relu

conv(3, 64) conv(1, 256)

relu

conv(1, 256)

+

relu

res(3, (64, 256))

• residual bottleneck unit with a skip connection, always projecting

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual bottleneck unit

input(56, 64)

conv(1, 64, s2)

relu

conv(3, 64) conv(1, 256, s2)

relu

conv(1, 256)

+

relu

res(3, (64, 256), s2)

• stride 2 in the first convolutional and the skip layer

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet-34

parameters operations volume

input(224, 3) 0 0 224× 224× 3

conv(7, 64, p3, s2) 9, 472 118, 816, 768 112× 112× 64

pool(3, 2, p1) 0 802, 816 56× 56× 64

3× res(3, 64) 221, 568 694, 837, 248 56× 56× 64

res(3, 128, s2) 229, 760 180, 182, 016 28× 28× 128

3× res(3, 128) 885, 504 694, 235, 136 28× 28× 128

res(3, 256, s2) 918, 272 180, 006, 400 14× 14× 256

5×22× res(3, 256) 5, 900, 80024, 544, 256 1, 156, 556, 8004, 810, 674, 176 14× 14× 25614× 14× 1024

res(3, 512, s2) 3, 671, 552 179, 918, 592 7× 7× 512

2× res(3, 512) 9, 439, 232 462, 522, 368 7× 7× 512

avg(7) 0 25, 088 512

fc(1000) 513, 000 513, 000 1000

softmax 0 1, 000 1000

• 3× more operations but 3× less parameters comparing to AlexNet

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet-101

parameters operations volume

input(224, 3) 0 0 224× 224× 3

conv(7, 64, p3, s2) 9, 472 118, 816, 768 112× 112× 64

pool(3, 2, p1) 0 802, 816 56× 56× 64

3× res(3, (64, 256)) 214, 400 672, 358, 400 56× 56× 256

res(3, (128, 512), s2) 378, 112 296, 640, 512 28× 28× 512

3× res(3, (128, 512)) 837, 888 656, 904, 192 28× 28× 512

res(3, (256, 1024), s2) 1, 509, 888 296, 038, 400 14× 14× 1024

22× res(3, (256, 1024)) 24, 544, 256 4, 810, 674, 176 14× 14× 1024

res(3, (512, 2048), s2) 6, 034, 432 295, 737, 344 7× 7× 2048

2× res(3, (512, 2048)) 8, 919, 040 437, 032, 960 7× 7× 2048

avg(7) 0 100, 352 2048

fc(1000) 2, 049, 000 2, 049, 000 1000

softmax 0 1, 000 1000

• 7× more operations but 1.5× less parameters comparing to AlexNet

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet-34: ImageNet

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6




1×1, 256
3×3, 256
1×1, 1024


×6




1×1, 256
3×3, 256
1×1, 1024


×23




1×1, 256
3×3, 256

1×1, 1024


×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3




1×1, 512
3×3, 512
1×1, 2048


×3




1×1, 512
3×3, 512

1×1, 2048


×3




1×1, 512
3×3, 512
1×1, 2048


×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

• a plain network exhibits degradation with increasing depth

• while a residual network gains from increasing depth

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet models

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2
[

3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3




1×1, 64
3×3, 64

1×1, 256


×3

conv3 x 28×28
[

3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×4




1×1, 128
3×3, 128
1×1, 512


×8

conv4 x 14×14
[

3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×6




1×1, 256
3×3, 256
1×1, 1024


×6




1×1, 256
3×3, 256
1×1, 1024


×23




1×1, 256
3×3, 256

1×1, 1024


×36

conv5 x 7×7
[

3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×3




1×1, 512
3×3, 512
1×1, 2048


×3




1×1, 512
3×3, 512

1×1, 2048


×3




1×1, 512
3×3, 512
1×1, 2048


×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3×3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer

3We have experimented with more training iterations (3×) and still ob-
served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

• downsampling by 2 at layers conv3 1, conv4 1, conv5 1

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.
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identity mappings
[He et al. 2016]

conv

BN

relu

conv

BN

+

relu

fi

xi

xi+1

• original residual unit, with relu and BN
shown separately, where h is relu

xi+1 = h(xi + fi(xi))

• re-designed unit, with a more direct
path through skip connections, and relu
and BN acting as pre-activation

xi+1 = xi + fi(xi)

• recursively, there is a residual between
any units `1, `2

x`2 = x`1 +

`2−1∑

i=`1

fi(xi)

He, Zhang, Ren and Sun. ECCV 2016. Identity Mappings in Deep Residual Networks.
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residual networks as ensembles
[Veit et al. 2016]

f1

f1 f1 f1

+

+ + +

f2

f2

+

+

f2

+

• residual network with identity
mappings

• “unraveled” view where residual
units are duplicated

• ensemble of networks of different
lengths, with cardinality exponential
in network depth

• dropping a layer is just zeroing half
of the paths

• in a network of 110 layer, most
gradient comes from paths that are
10-34 layers deep

Veit, Wilber and Belongie. NIPS 2016. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.
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residual networks as ensembles
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networks with stochastic depth
[Huang et al. 2016]

f1 + f2 + f3 + f4 + f5 +

×p1 ×p2 ×p3 ×p4 ×p5

• (original) residual network

• at each training iteration, randomly drop a subset of layers

xi+1 = h(xi + bifi(xi))

where bi ∈ {0, 1} a Bernoulli random variable

• at inference, use all layers weighted by survival probabilities pi = E(bi)

xi+1 = h(xi + pifi(xi))

• speeds up training, reduces test error

Huang, Sun, Liu, Sedra and Weinberger. ECCV 2016. Deep Networks with Stochastic Depth.
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densely connected networks
[Huang et al. 2017]

BN

relu

conv

BN

relu

conv

+

concat

fi

xi

xi+1

• residual unit with identity mapping: add

xi+1 = xi + fi(xi)

• densely connected unit: concatenate

xi+1 = (xi, fi(xi))

• feature map dimension increases by
growth rate k at each unit

• a dense block is a chain of densely
connected units

• a transition layer reduces feature map
dimension by a factor θ = 2

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.
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Abstract

Recent work has shown that convolutional networks can
be substantially deeper, more accurate, and efficient to train
if they contain shorter connections between layers close to
the input and those close to the output. In this paper, we
embrace this observation and introduce the Dense Convo-
lutional Network (DenseNet), which connects each layer
to every other layer in a feed-forward fashion. Whereas
traditional convolutional networks with L layers have L
connections—one between each layer and its subsequent
layer—our network has L(L+1)

2 direct connections. For
each layer, the feature-maps of all preceding layers are
used as inputs, and its own feature-maps are used as inputs
into all subsequent layers. DenseNets have several com-
pelling advantages: they alleviate the vanishing-gradient
problem, strengthen feature propagation, encourage fea-
ture reuse, and substantially reduce the number of parame-
ters. We evaluate our proposed architecture on four highly
competitive object recognition benchmark tasks (CIFAR-10,
CIFAR-100, SVHN, and ImageNet). DenseNets obtain sig-
nificant improvements over the state-of-the-art on most of
them, whilst requiring less computation to achieve high per-
formance. Code and pre-trained models are available at
https://github.com/liuzhuang13/DenseNet.

1. Introduction

Convolutional neural networks (CNNs) have become
the dominant machine learning approach for visual object
recognition. Although they were originally introduced over
20 years ago [18], improvements in computer hardware and
network structure have enabled the training of truly deep
CNNs only recently. The original LeNet5 [19] consisted of
5 layers, VGG featured 19 [28], and only last year Highway

∗Authors contributed equally
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Figure 1: A 5-layer dense block with a growth rate of k = 4.
Each layer takes all preceding feature-maps as input.

Networks [33] and Residual Networks (ResNets) [11] have
surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new research
problem emerges: as information about the input or gra-
dient passes through many layers, it can vanish and “wash
out” by the time it reaches the end (or beginning) of the
network. Many recent publications address this or related
problems. ResNets [11] and Highway Networks [33] by-
pass signal from one layer to the next via identity connec-
tions. Stochastic depth [13] shortens ResNets by randomly
dropping layers during training to allow better information
and gradient flow. FractalNets [17] repeatedly combine sev-
eral parallel layer sequences with different number of con-
volutional blocks to obtain a large nominal depth, while
maintaining many short paths in the network. Although
these different approaches vary in network topology and
training procedure, they all share a key characteristic: they
create short paths from early layers to later layers.
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• dense block followed by transition layer
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DenseNet models

Layers Output Size DenseNet-121(k = 32) DenseNet-169(k = 32) DenseNet-201(k = 32) DenseNet-161(k = 48)

Convolution 112 × 112 7 × 7 conv, stride 2
Pooling 56 × 56 3 × 3 max pool, stride 2

Dense Block
(1)

56 × 56
[

1 × 1 conv
3 × 3 conv

]
× 6

[
1 × 1 conv
3 × 3 conv

]
× 6

[
1 × 1 conv
3 × 3 conv

]
× 6

[
1 × 1 conv
3 × 3 conv

]
× 6

Transition Layer
(1)

56 × 56 1 × 1 conv
28 × 28 2 × 2 average pool, stride 2

Dense Block
(2)

28 × 28
[

1 × 1 conv
3 × 3 conv

]
× 12

[
1 × 1 conv
3 × 3 conv

]
× 12

[
1 × 1 conv
3 × 3 conv

]
× 12

[
1 × 1 conv
3 × 3 conv

]
× 12

Transition Layer
(2)

28 × 28 1 × 1 conv
14 × 14 2 × 2 average pool, stride 2

Dense Block
(3)

14 × 14
[

1 × 1 conv
3 × 3 conv

]
× 24

[
1 × 1 conv
3 × 3 conv

]
× 32

[
1 × 1 conv
3 × 3 conv

]
× 48

[
1 × 1 conv
3 × 3 conv

]
× 36

Transition Layer
(3)

14 × 14 1 × 1 conv
7 × 7 2 × 2 average pool, stride 2

Dense Block
(4)

7 × 7
[

1 × 1 conv
3 × 3 conv

]
× 16

[
1 × 1 conv
3 × 3 conv

]
× 32

[
1 × 1 conv
3 × 3 conv

]
× 32

[
1 × 1 conv
3 × 3 conv

]
× 24

Classification
Layer

1 × 1 7 × 7 global average pool
1000D fully-connected, softmax

Table 1: DenseNet architectures for ImageNet. The growth rate for the first 3 networks is k = 32, and k = 48 for DenseNet-161. Note
that each “conv” layer shown in the table corresponds the sequence BN-ReLU-Conv.

obtain state-of-the-art results on the datasets that we tested
on. One explanation for this is that each layer has access
to all the preceding feature-maps in its block and, therefore,
to the network’s “collective knowledge”. One can view the
feature-maps as the global state of the network. Each layer
adds k feature-maps of its own to this state. The growth
rate regulates how much new information each layer con-
tributes to the global state. The global state, once written,
can be accessed from everywhere within the network and,
unlike in traditional network architectures, there is no need
to replicate it from layer to layer.

Bottleneck layers. Although each layer only produces k
output feature-maps, it typically has many more inputs. It
has been noted in [36, 11] that a 1×1 convolution can be in-
troduced as bottleneck layer before each 3×3 convolution
to reduce the number of input feature-maps, and thus to
improve computational efficiency. We find this design es-
pecially effective for DenseNet and we refer to our network
with such a bottleneck layer, i.e., to the BN-ReLU-Conv(1×
1)-BN-ReLU-Conv(3×3) version of Hℓ, as DenseNet-B. In
our experiments, we let each 1×1 convolution produce 4k
feature-maps.

Compression. To further improve model compactness,
we can reduce the number of feature-maps at transition
layers. If a dense block contains m feature-maps, we let
the following transition layer generate ⌊θm⌋ output feature-
maps, where 0 <θ ≤1 is referred to as the compression fac-
tor. When θ=1, the number of feature-maps across transi-
tion layers remains unchanged. We refer the DenseNet with
θ<1 as DenseNet-C, and we set θ = 0.5 in our experiment.
When both the bottleneck and transition layers with θ < 1
are used, we refer to our model as DenseNet-BC.

Implementation Details. On all datasets except Ima-
geNet, the DenseNet used in our experiments has three
dense blocks that each has an equal number of layers. Be-
fore entering the first dense block, a convolution with 16 (or
twice the growth rate for DenseNet-BC) output channels is
performed on the input images. For convolutional layers
with kernel size 3×3, each side of the inputs is zero-padded
by one pixel to keep the feature-map size fixed. We use 1×1
convolution followed by 2×2 average pooling as transition
layers between two contiguous dense blocks. At the end of
the last dense block, a global average pooling is performed
and then a softmax classifier is attached. The feature-map
sizes in the three dense blocks are 32× 32, 16×16, and
8×8, respectively. We experiment with the basic DenseNet
structure with configurations {L = 40, k = 12}, {L =
100, k = 12} and {L = 100, k = 24}. For DenseNet-
BC, the networks with configurations {L = 100, k = 12},
{L=250, k=24} and {L=190, k=40} are evaluated.

In our experiments on ImageNet, we use a DenseNet-BC
structure with 4 dense blocks on 224×224 input images.
The initial convolution layer comprises 2k convolutions of
size 7×7 with stride 2; the number of feature-maps in all
other layers also follow from setting k. The exact network
configurations we used on ImageNet are shown in Table 1.

4. Experiments
We empirically demonstrate DenseNet’s effectiveness on

several benchmark datasets and compare with state-of-the-
art architectures, especially with ResNet and its variants.

4.1. Datasets

CIFAR. The two CIFAR datasets [15] consist of colored
natural images with 32×32 pixels. CIFAR-10 (C10) con-
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• input is 224× 224; first convolutional layer produces 2k features;
transition layer reduces dimension and resolution by 2
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DenseNet vs. ResNet: ImageNet

Model top-1 top-5

DenseNet-121 (k=32) 25.02 (23.61) 7.71 (6.66)

DenseNet-169 (k=32) 23.80 (22.08) 6.85 (5.92)

DenseNet-201 (k=32) 22.58 (21.46) 6.34 (5.54)

DenseNet-161 (k=48) 22.33 (20.85) 6.15 (5.30)

Table 3: The top-1 and top-5 error rates on the
ImageNet validation set, with single-crop (10-
crop) testing.
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Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop
testing) on the ImageNet validation dataset as a function of learned parameters (left)
and FLOPs during test-time (right).

4.3. Classification Results on CIFAR and SVHN

We train DenseNets with different depths, L, and growth
rates, k. The main results on CIFAR and SVHN are shown
in Table 2. To highlight general trends, we mark all results
that outperform the existing state-of-the-art in boldface and
the overall best result in blue.

Accuracy. Possibly the most noticeable trend may orig-
inate from the bottom row of Table 2, which shows that
DenseNet-BC with L = 190 and k = 40 outperforms
the existing state-of-the-art consistently on all the CIFAR
datasets. Its error rates of 3.46% on C10+ and 17.18% on
C100+ are significantly lower than the error rates achieved
by wide ResNet architecture [41]. Our best results on
C10 and C100 (without data augmentation) are even more
encouraging: both are close to 30% lower than Fractal-
Net with drop-path regularization [17]. On SVHN, with
dropout, the DenseNet with L = 100 and k = 24 also
surpasses the current best result achieved by wide ResNet.
However, the 250-layer DenseNet-BC doesn’t further im-
prove the performance over its shorter counterpart. This
may be explained by that SVHN is a relatively easy task,
and extremely deep models may overfit to the training set.

Capacity. Without compression or bottleneck layers,
there is a general trend that DenseNets perform better as
L and k increase. We attribute this primarily to the corre-
sponding growth in model capacity. This is best demon-
strated by the column of C10+ and C100+. On C10+, the
error drops from 5.24% to 4.10% and finally to 3.74% as
the number of parameters increases from 1.0M, over 7.0M
to 27.2M. On C100+, we observe a similar trend. This sug-
gests that DenseNets can utilize the increased representa-
tional power of bigger and deeper models. It also indicates
that they do not suffer from overfitting or the optimization
difficulties of residual networks [11].

Parameter Efficiency. The results in Table 2 indicate that
DenseNets utilize parameters more efficiently than alterna-
tive architectures (in particular, ResNets). The DenseNet-
BC with bottleneck structure and dimension reduction at

transition layers is particularly parameter-efficient. For ex-
ample, our 250-layer model only has 15.3M parameters, but
it consistently outperforms other models such as FractalNet
and Wide ResNets that have more than 30M parameters. We
also highlight that DenseNet-BC with L= 100 and k= 12
achieves comparable performance (e.g., 4.51% vs 4.62% er-
ror on C10+, 22.27% vs 22.71% error on C100+) as the
1001-layer pre-activation ResNet using 90% fewer parame-
ters. Figure 4 (right panel) shows the training loss and test
errors of these two networks on C10+. The 1001-layer deep
ResNet converges to a lower training loss value but a similar
test error. We analyze this effect in more detail below.

Overfitting. One positive side-effect of the more efficient
use of parameters is a tendency of DenseNets to be less
prone to overfitting. We observe that on the datasets without
data augmentation, the improvements of DenseNet architec-
tures over prior work are particularly pronounced. On C10,
the improvement denotes a 29% relative reduction in error
from 7.33% to 5.19%. On C100, the reduction is about 30%
from 28.20% to 19.64%. In our experiments, we observed
potential overfitting in a single setting: on C10, a 4× growth
of parameters produced by increasing k=12 to k=24 lead
to a modest increase in error from 5.77% to 5.83%. The
DenseNet-BC bottleneck and compression layers appear to
be an effective way to counter this trend.

4.4. Classification Results on ImageNet

We evaluate DenseNet-BC with different depths and
growth rates on the ImageNet classification task, and com-
pare it with state-of-the-art ResNet architectures. To ensure
a fair comparison between the two architectures, we elimi-
nate all other factors such as differences in data preprocess-
ing and optimization settings by adopting the publicly avail-
able Torch implementation for ResNet by [8]1. We simply
replace the ResNet model with the DenseNet-BC network,
and keep all the experiment settings exactly the same as
those used for ResNet. The only exception is our largest
DenseNet model is trained with a mini-batch size of 128

1https://github.com/facebook/fb.resnet.torch
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• top-1 single-crop ImageNet validation error

• encourages feature re-use and reduces the number of parameters
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summary

• optimizers: gradient descent, momentum, RMSprop, Adam,
Hessian-free

• initialization: Gaussian matrices, unit variance, orthogonal,
data-dependent

• normalization: input, activation (batch), activation (layer), weight

• deeper architectures: residual networks, identity mappings, networks
with stochastic depth, densely connected networks

• all parameters should be learned at the same rate, and all features
computed by some layer should be re-used by the following layers

• initialization, normalization and architecture should be designed such
that these properties hold initially and are maintained during training
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