lecture 8: optimization and deeper architectures deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2017 - Jan. 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

outline

optimizers initialization normalization deeper architectures

optimizers

gradient descent

update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

where

$$\mathbf{g}^{(\tau)} := \nabla f(\mathbf{x}^{(\tau)})$$

 in a (continuous-time) physical analogy, if x^(τ) represents the position of a particle at time τ, then -g^(τ) represents its velocity

$$\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

(where $\frac{d\mathbf{x}}{d\tau} \approx \frac{\mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}}{\epsilon}$)

• in the following, we examine a batch and a stochastic version: in the latter, each update is split into 10 smaller steps, with stochastic noise added to each step (assuming a batch update consists of 10 terms)

gradient descent

update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

where

$$\mathbf{g}^{(\tau)} := \nabla f(\mathbf{x}^{(\tau)})$$

 in a (continuous-time) physical analogy, if x^(τ) represents the position of a particle at time τ, then -g^(τ) represents its velocity

$$\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

(where
$$\frac{d\mathbf{x}}{d\tau} \approx \frac{\mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}}{\epsilon}$$
)

• in the following, we examine a batch and a stochastic version: in the latter, each update is split into 10 smaller steps, with stochastic noise added to each step (assuming a batch update consists of 10 terms)

gradient descent

update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

where

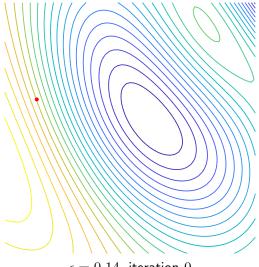
$$\mathbf{g}^{(\tau)} := \nabla f(\mathbf{x}^{(\tau)})$$

 in a (continuous-time) physical analogy, if x^(τ) represents the position of a particle at time τ, then -g^(τ) represents its velocity

$$\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

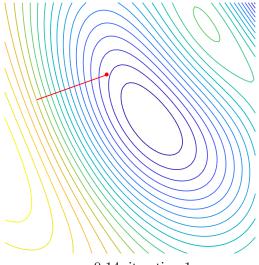
(where $\frac{d\mathbf{x}}{d\tau} \approx \frac{\mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}}{\epsilon}$)

• in the following, we examine a batch and a stochastic version: in the latter, each update is split into 10 smaller steps, with stochastic noise added to each step (assuming a batch update consists of 10 terms)

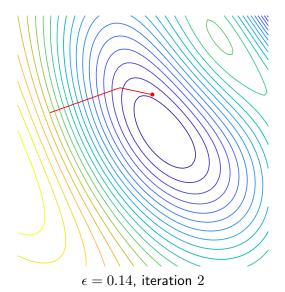


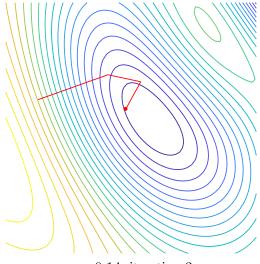
 $\epsilon=0.14,$ iteration 0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



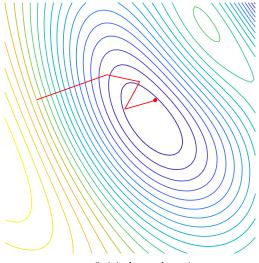
 $\epsilon=0.14,$ iteration 1



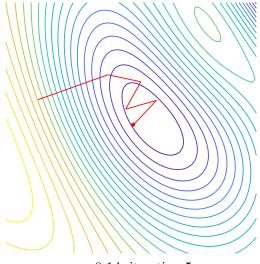


 $\epsilon = 0.14$, iteration 3

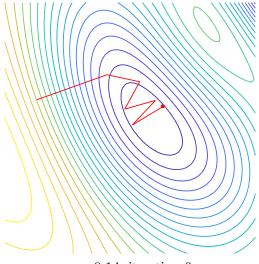
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



 $\epsilon=0.14,$ iteration 4

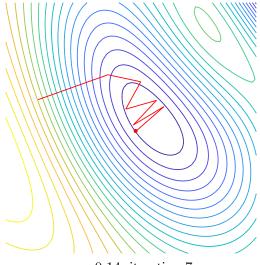


 $\epsilon=0.14,$ iteration 5

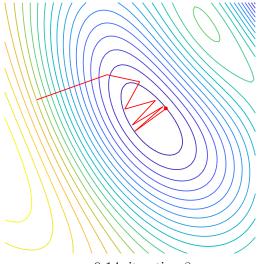


 $\epsilon=0.14,$ iteration 6

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

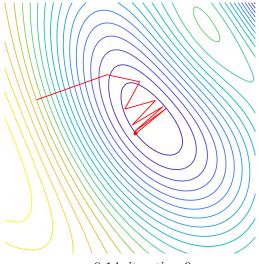


 $\epsilon=0.14,$ iteration 7



 $\epsilon=0.14,$ iteration 8

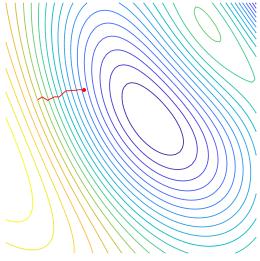
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



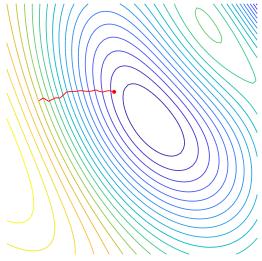
 $\epsilon=0.14,$ iteration 9

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

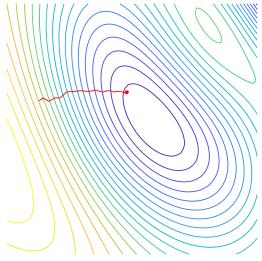
 $\epsilon=0.07,$ iteration 10×0



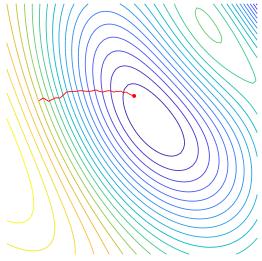
 $\epsilon=0.07,$ iteration 10×1



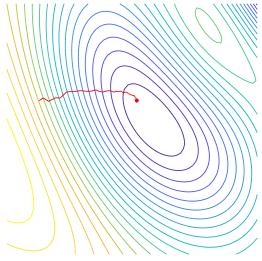
 $\epsilon=0.07,$ iteration 10×2



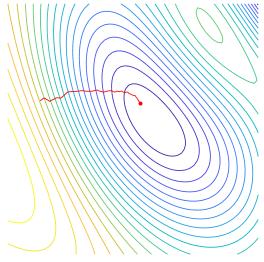
 $\epsilon=0.07,$ iteration 10×3



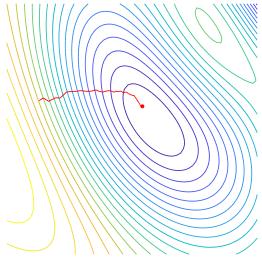
 $\epsilon=0.07,$ iteration 10×4



 $\epsilon=0.07,$ iteration 10×5



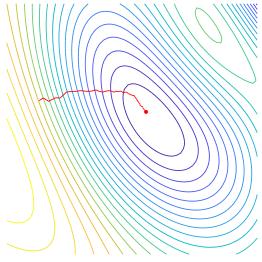
 $\epsilon=0.07,$ iteration 10×6



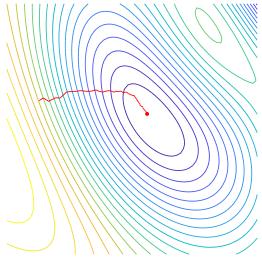
 $\epsilon=0.07,$ iteration 10×7



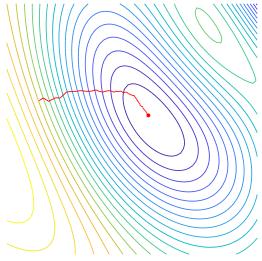
 $\epsilon=0.07,$ iteration 10×8



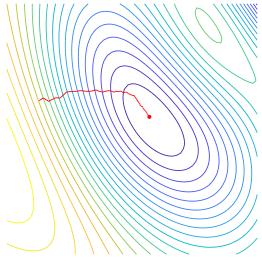
 $\epsilon=0.07,$ iteration 10×9



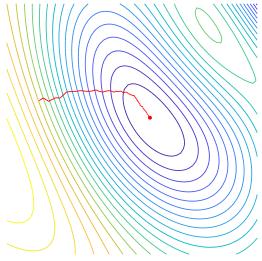
 $\epsilon=0.07,$ iteration 10×10



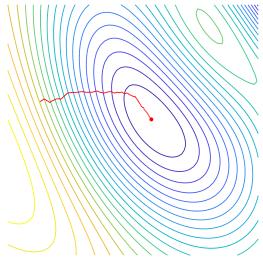
 $\epsilon=0.07,$ iteration 10×11



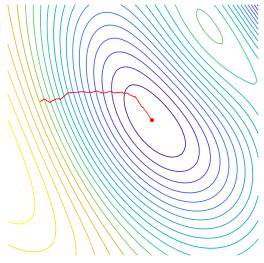
 $\epsilon=0.07,$ iteration 10×12



 $\epsilon=0.07,$ iteration 10×13



 $\epsilon=0.07,$ iteration 10×14



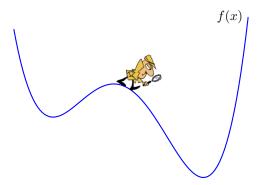
 $\epsilon=0.07,$ iteration 10×15

problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- high condition number: oscillations, divergence
- plateaus, saddle points: no progress
- sensitive to stochastic noise

gradient descent with momentum



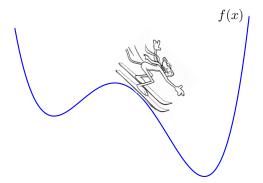
▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

• inspector needs to walk down the hill

it is better to go skiing!

Artwork credit: https://the-fox-after-dark.deviantart.com/

gradient descent with momentum



▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

- inspector needs to walk down the hill
- it is better to go skiing!

Artwork credit: https://the-fox-after-dark.deviantart.com/

gradient descent with momentum

[Rumelhart et al. 1986]

 in the same analogy, if the particle is of mass m and moving in a medium with viscosity μ, now -g represents a (gravitational) force and f the potential energy, proportional to altitude

$$m\frac{d^2\mathbf{x}}{d\tau^2} + \mu\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

this formulation yields the update rule

$$\mathbf{v}^{(\tau+1)} = \alpha \mathbf{v}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} + \mathbf{v}^{(\tau+1)}$$

where $\mathbf{v} := \frac{d\mathbf{x}}{d\tau} \approx \mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}$ represents the velocity, initialized to zero, $\frac{d^2\mathbf{x}}{d\tau^2} \approx \frac{\mathbf{v}^{(\tau+1)} - \mathbf{v}^{(\tau)}}{\delta}$, $\alpha := \frac{m - \mu \delta}{m}$, and $\epsilon := \frac{\delta}{m}$

Qian. NN 1999. On the Momentum Term in Gradient Descent Learning Algorithms.

[Rumelhart et al. 1986]

 in the same analogy, if the particle is of mass m and moving in a medium with viscosity μ, now -g represents a (gravitational) force and f the potential energy, proportional to altitude

$$m\frac{d^2\mathbf{x}}{d\tau^2} + \mu\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

this formulation yields the update rule

$$\mathbf{v}^{(\tau+1)} = \alpha \mathbf{v}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} + \mathbf{v}^{(\tau+1)}$$

where $\mathbf{v} := \frac{d\mathbf{x}}{d\tau} \approx \mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}$ represents the velocity, initialized to zero, $\frac{d^2\mathbf{x}}{d\tau^2} \approx \frac{\mathbf{v}^{(\tau+1)} - \mathbf{v}^{(\tau)}}{\delta}$, $\alpha := \frac{m - \mu \delta}{m}$, and $\epsilon := \frac{\delta}{m}$

Qian. NN 1999. On the Momentum Term in Gradient Descent Learning Algorithms.

[Rumelhart et al. 1986]

• when g is constant, v reaches terminal velocity

$$\mathbf{v}^{(\infty)} = -\epsilon \mathbf{g} \sum_{\tau=0}^{\infty} \alpha^{\tau} = -\frac{\epsilon}{1-lpha} \mathbf{g}$$

e.g. if $\alpha=0.99$, this is 100 times faster than gradient descent

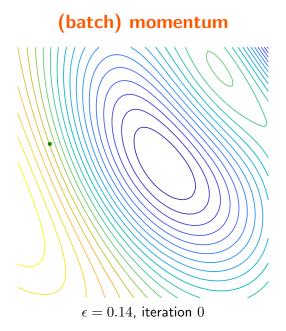
• $\alpha \in [0,1)$ is another hyperparameter with $1-\alpha$ representing viscosity; usually $\alpha = 0.9$

[Rumelhart et al. 1986]

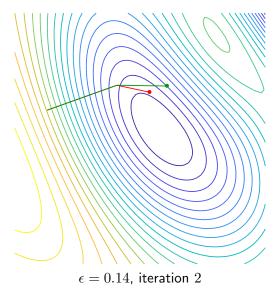
• when g is constant, v reaches terminal velocity

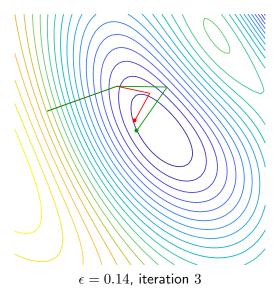
$$\mathbf{v}^{(\infty)} = -\epsilon \mathbf{g} \sum_{\tau=0}^{\infty} \alpha^{\tau} = -\frac{\epsilon}{1-lpha} \mathbf{g}$$

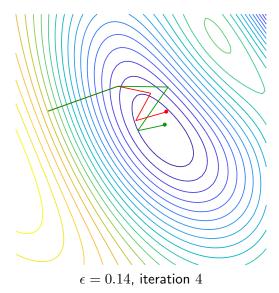
e.g. if $\alpha = 0.99$, this is 100 times faster than gradient descent • $\alpha \in [0, 1)$ is another hyperparameter with $1 - \alpha$ representing viscosity; usually $\alpha = 0.9$

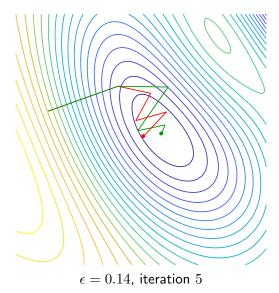


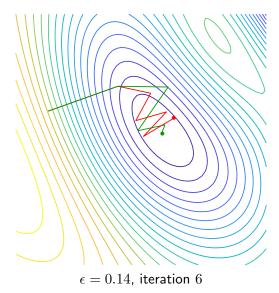
(batch) momentum $\epsilon = 0.14$, iteration 1

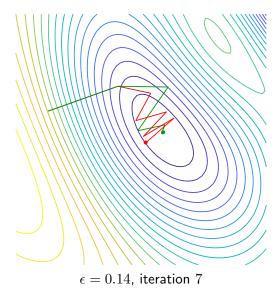


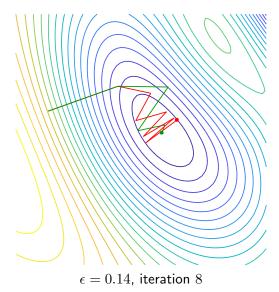


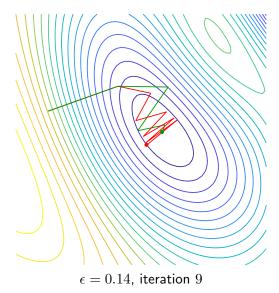


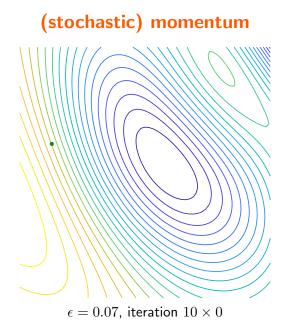


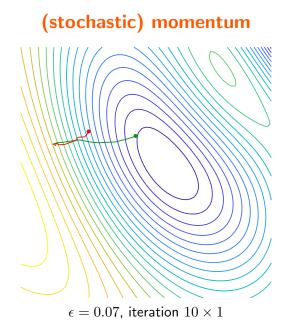






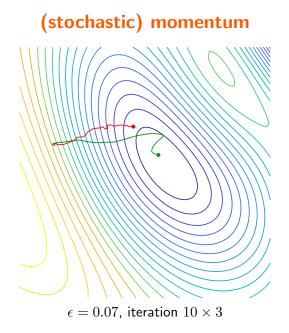


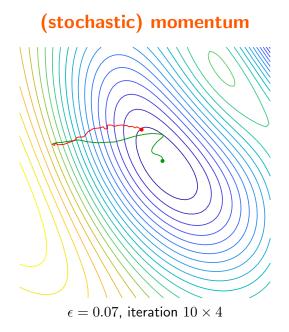


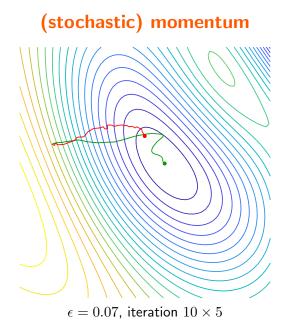


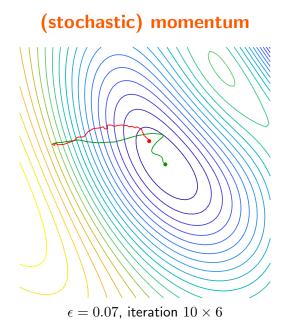
(stochastic) momentum $\epsilon = 0.07$, iteration 10×2

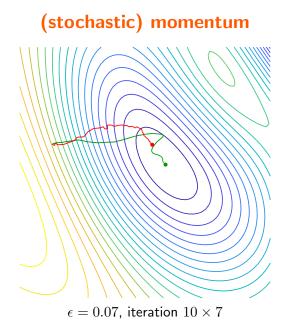
Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.

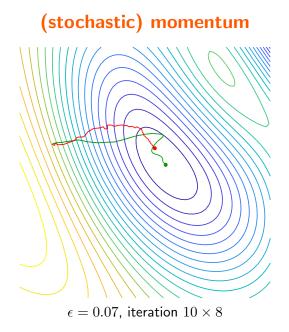


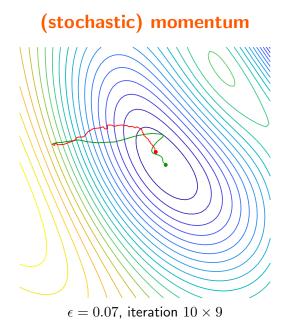


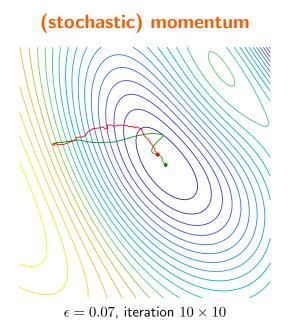


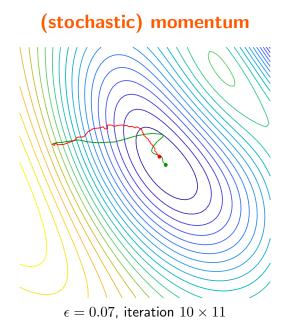


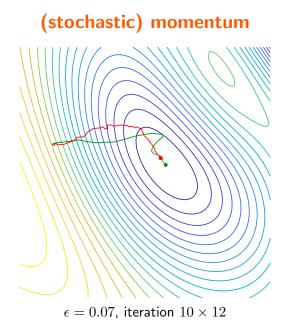


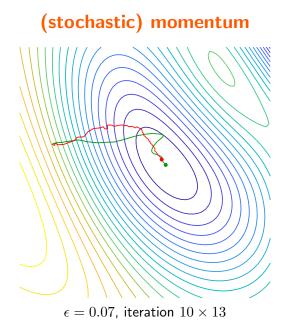


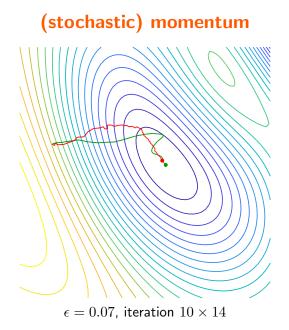




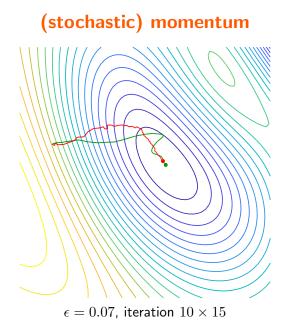








▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ _ 置 _ 釣��?



- good for high condition number: damps oscillations by its viscosity
- good for plateaus/saddle points: accelerates in directions with consistent gradient signs
- insensitive to stochastic noise, due to averaging

adaptive learning rates

- the partial derivative with respect to each parameter may be very different, especially *e.g.* for units with different fan-in or for different layers
- we need separate, adaptive learning rate per parameter
- for batch learning, we can
 - just use the the gradient sign
 - Rprop: also adjust the learning rate of each parameter depending on the agreement of gradient signs between iterations

Riedmiller and Braun. IV 1992. RPROP - A Fast Adaptive Learning Algorithm.

adaptive learning rates

- the partial derivative with respect to each parameter may be very different, especially *e.g.* for units with different fan-in or for different layers
- we need separate, adaptive learning rate per parameter
- for batch learning, we can
 - just use the the gradient sign
 - Rprop: also adjust the learning rate of each parameter depending on the agreement of gradient signs between iterations

Riedmiller and Braun. IV 1992. RPROP - A Fast Adaptive Learning Algorithm.

[Tieleman and Hinton 2012]

- for mini-batch or online methods, we need to average over iterations
- ${\rm sgn}\,{\bf g}$ can be written as ${\bf g}/|{\bf g}|$ (element-wise) and we can replace $|{\bf g}|$ by an average
- maintain a moving average b of the squared gradient $g^2,$ then divide g by \sqrt{b}

$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1-\beta) \left(\mathbf{g}^{(\tau)}\right)^2$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{g}^{(\tau)}$$

where all operations are taken element-wise

• e.g. $\beta = 0.9, \ \delta = 10^{-8}$

RMSprop

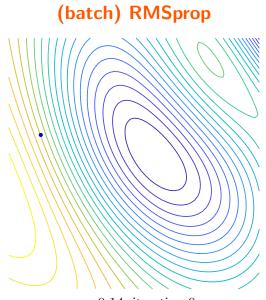
[Tieleman and Hinton 2012]

- for mini-batch or online methods, we need to average over iterations
- ${\rm sgn}\,{\bf g}$ can be written as ${\bf g}/|{\bf g}|$ (element-wise) and we can replace $|{\bf g}|$ by an average
- maintain a moving average b of the squared gradient $g^2,$ then divide g by \sqrt{b}

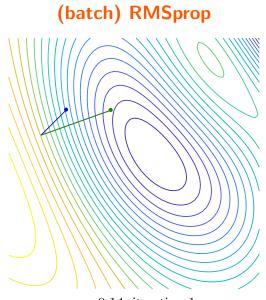
$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1-\beta) \left(\mathbf{g}^{(\tau)}\right)^2$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{g}^{(\tau)}$$

where all operations are taken element-wise

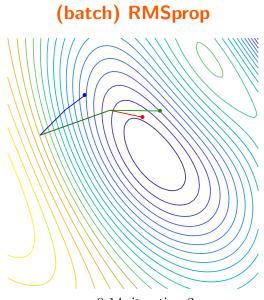
• e.g.
$$\beta = 0.9$$
, $\delta = 10^{-8}$

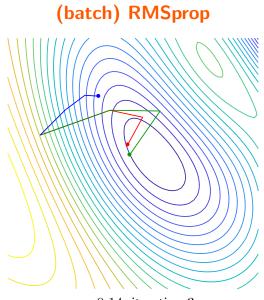


 $\epsilon = 0.14$, iteration 0

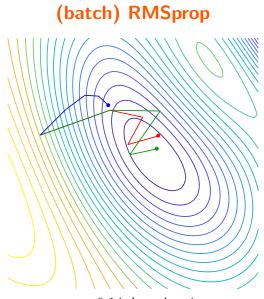


 $\epsilon = 0.14$, iteration 1

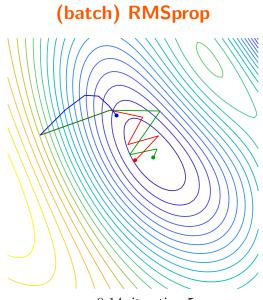


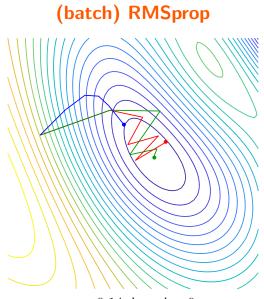


 $\epsilon = 0.14$, iteration 3

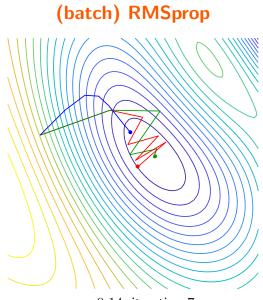


 $\epsilon = 0.14$, iteration 4

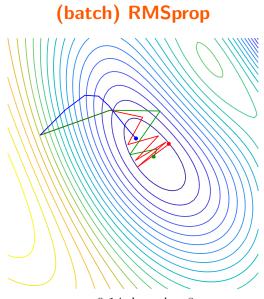




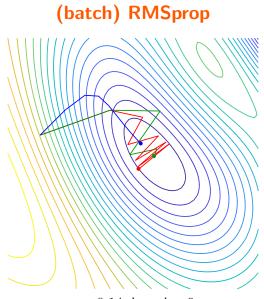
 $\epsilon = 0.14$, iteration 6



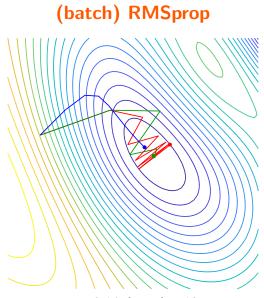
 $\epsilon = 0.14$, iteration 7

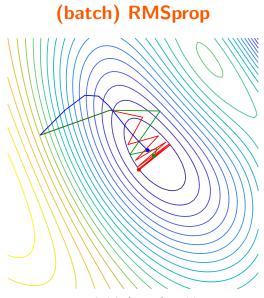


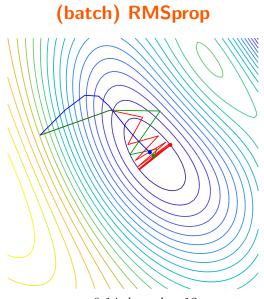
 $\epsilon = 0.14$, iteration 8

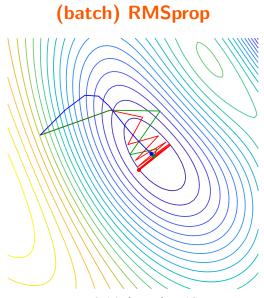


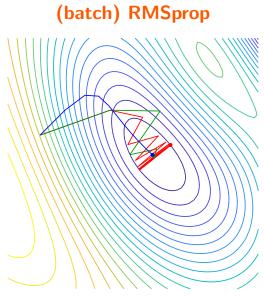
 $\epsilon = 0.14$, iteration 9

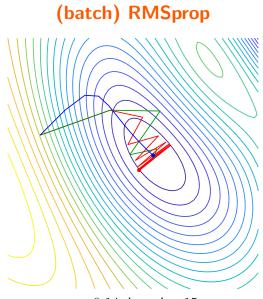


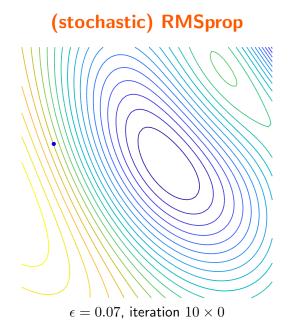


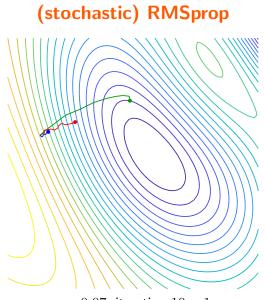


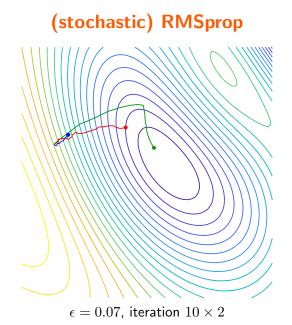


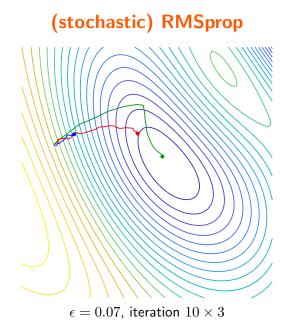


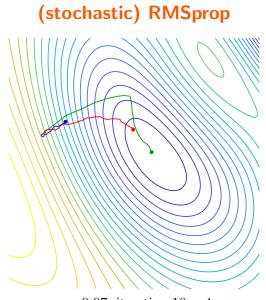


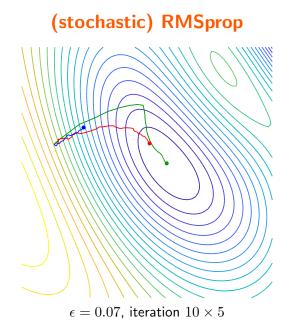


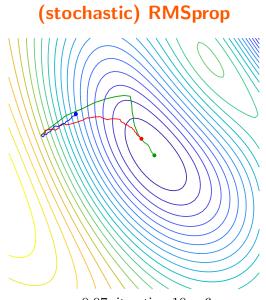


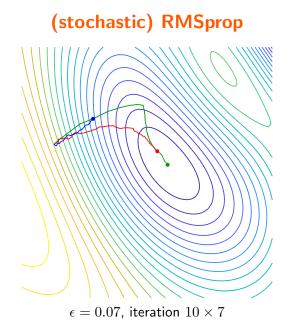


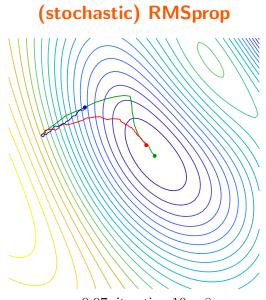


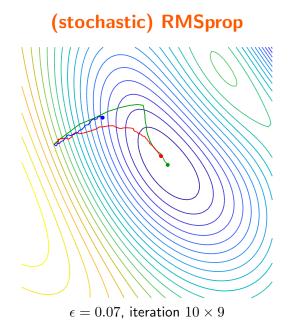


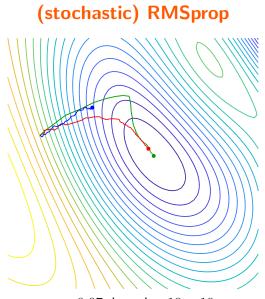


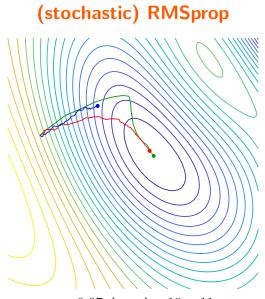


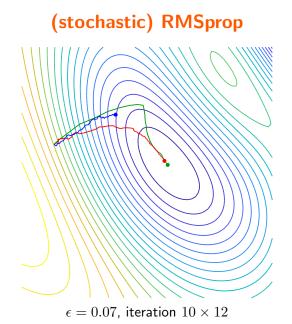


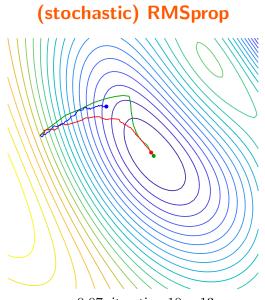


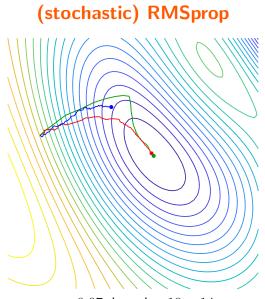


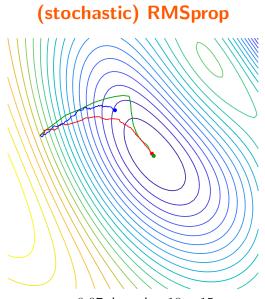


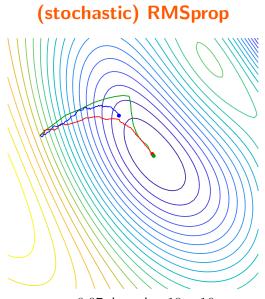


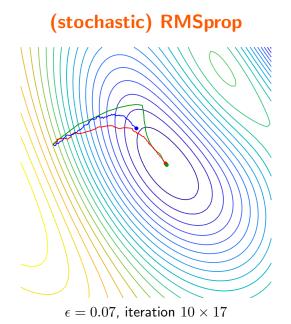


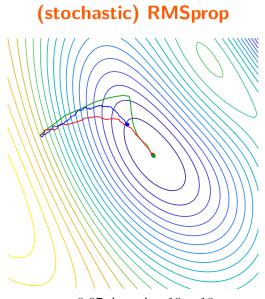


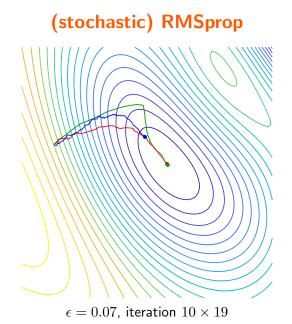


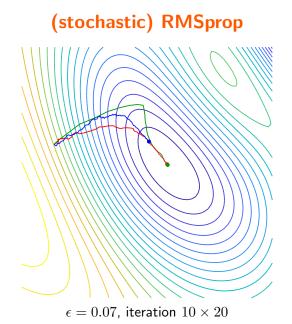












• good for high condition number plateaus/saddle points: gradient is amplified (attenuated) in directions of low (high) curvature

still, sensitive to stochastic noise

- good for high condition number plateaus/saddle points: gradient is amplified (attenuated) in directions of low (high) curvature
- still, sensitive to stochastic noise

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude. https://www.cs.toronto.edu/-tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam [Kingma and Ba 2015]

- momentum is averaging the gradient: 1st order moment
- RMSprop is averaging the squared gradient: 2nd order moment
- combine both: maintain moving average a(b) of gradient g (squared gradient g^2), then update by a/\sqrt{b}

$$\mathbf{a}^{(\tau+1)} = \alpha \mathbf{a}^{(\tau)} + (1 - \alpha) \mathbf{g}^{(\tau)}$$
$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1 - \beta) \left(\mathbf{g}^{(\tau)}\right)^2$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{g}^{(\tau)}$$

where all operations are taken element-wise

- e.g. $\alpha = 0.9, \ \beta = 0.999, \ \delta = 10^{-8}$
- bias correction for small au not shown here

- momentum is averaging the gradient: 1st order moment
- RMSprop is averaging the squared gradient: 2nd order moment
- combine both: maintain moving average \mathbf{a} (\mathbf{b}) of gradient \mathbf{g} (squared gradient \mathbf{g}^2), then update by $\mathbf{a}/\sqrt{\mathbf{b}}$

$$\mathbf{a}^{(\tau+1)} = \alpha \mathbf{a}^{(\tau)} + (1-\alpha)\mathbf{g}^{(\tau)}$$
$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1-\beta)\left(\mathbf{g}^{(\tau)}\right)^2$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{a}^{(\tau+1)}$$

where all operations are taken element-wise

- e.g. $\alpha = 0.9, \ \beta = 0.999, \ \delta = 10^{-3}$
- bias correction for small au not shown here

Adam

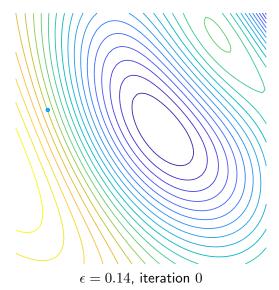
[Kingma and Ba 2015]

- momentum is averaging the gradient: 1st order moment
- RMSprop is averaging the squared gradient: 2nd order moment
- combine both: maintain moving average a~(b) of gradient g (squared gradient $g^2)$, then update by a/\sqrt{b}

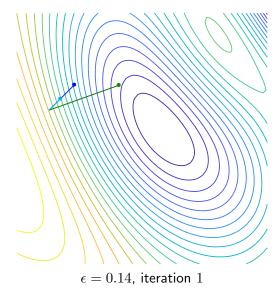
$$\mathbf{a}^{(\tau+1)} = \alpha \mathbf{a}^{(\tau)} + (1-\alpha)\mathbf{g}^{(\tau)}$$
$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1-\beta)\left(\mathbf{g}^{(\tau)}\right)^2$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{a}^{(\tau+1)}$$

where all operations are taken element-wise

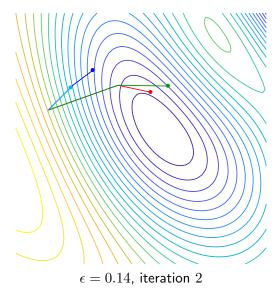
- e.g. $\alpha = 0.9$, $\beta = 0.999$, $\delta = 10^{-8}$
- bias correction for small au not shown here



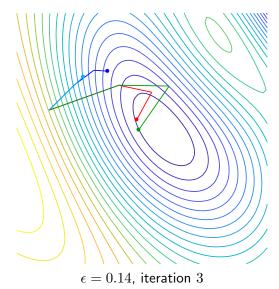
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽のへで



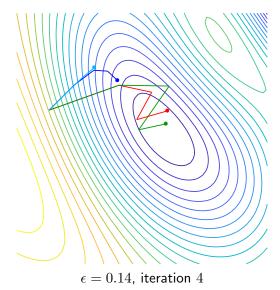
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



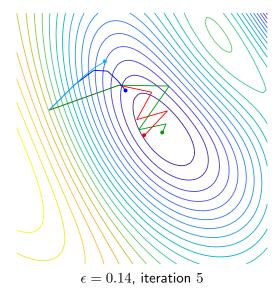
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



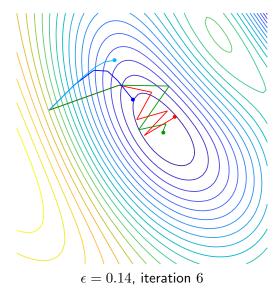
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



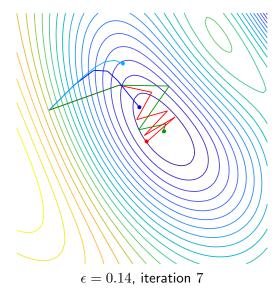
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



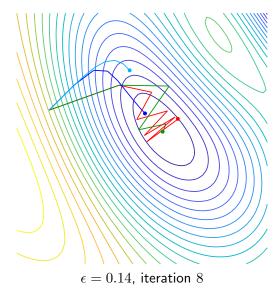
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



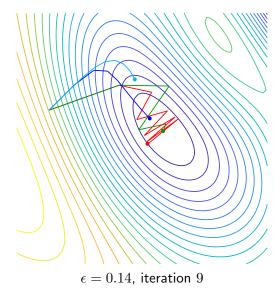
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



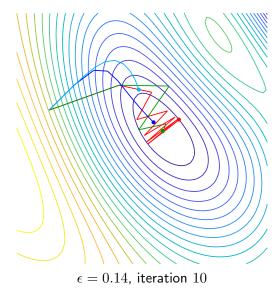
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



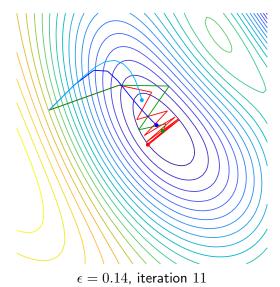
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



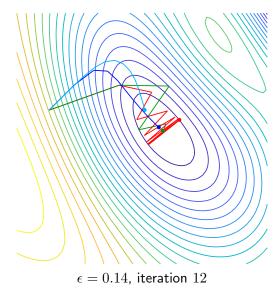
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



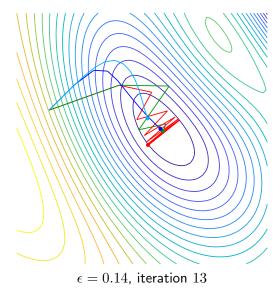
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



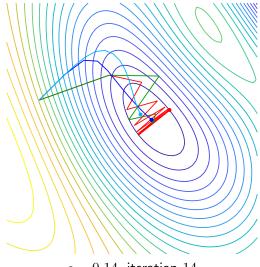
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

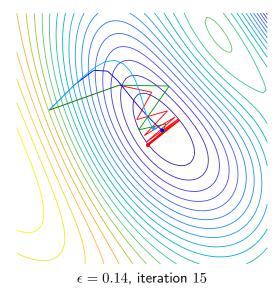


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

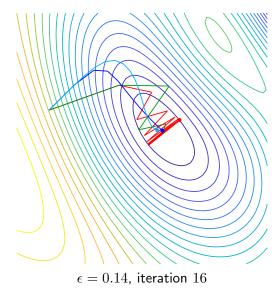


 $\epsilon=0.14,$ iteration 14

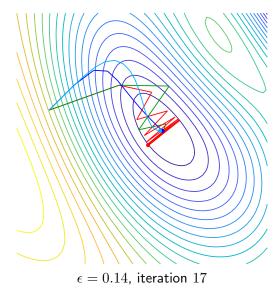
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



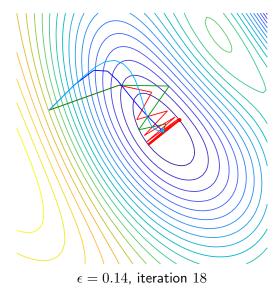
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



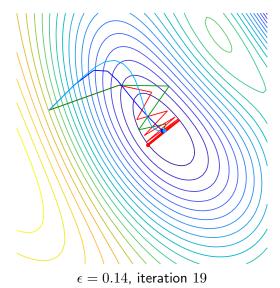
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



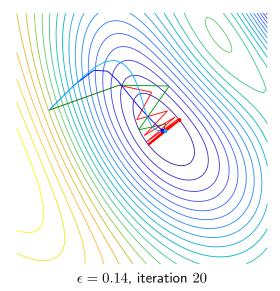
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



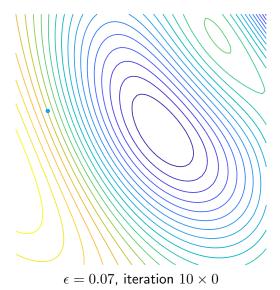
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



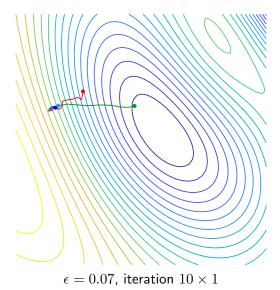
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



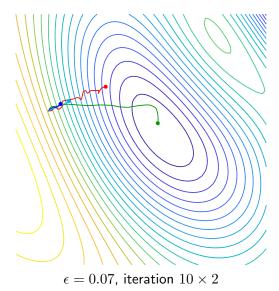
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



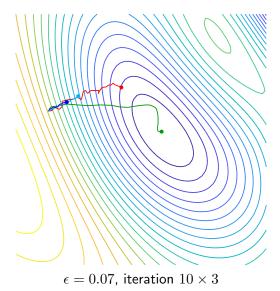
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



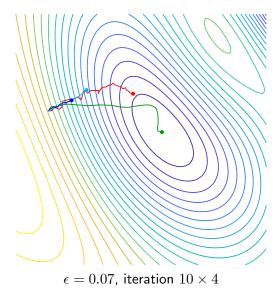
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



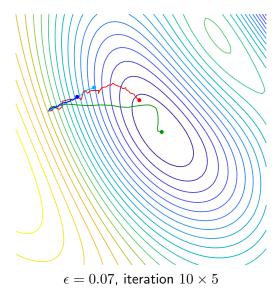
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



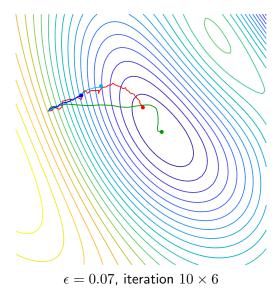
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

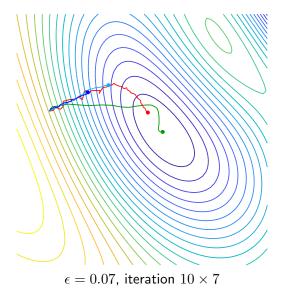


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

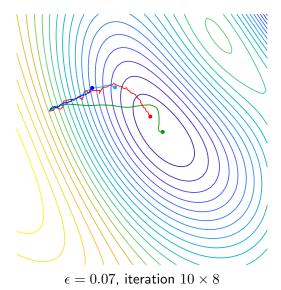


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

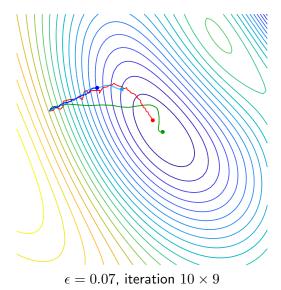


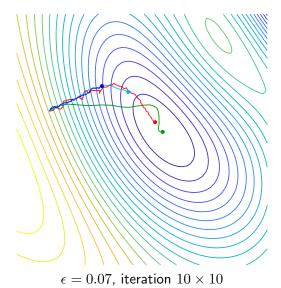


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

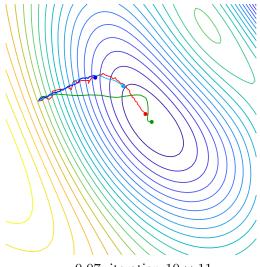


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



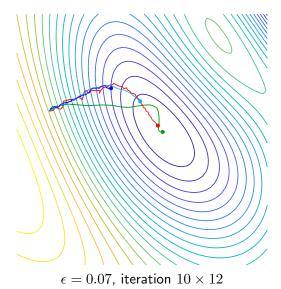


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

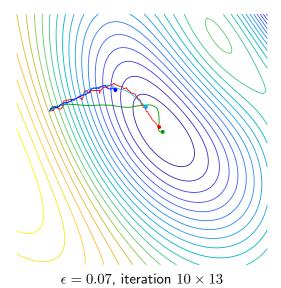


 $\epsilon=0.07,$ iteration 10×11

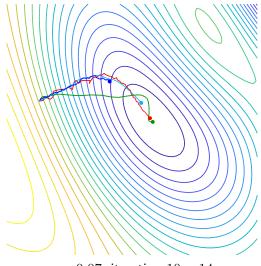
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

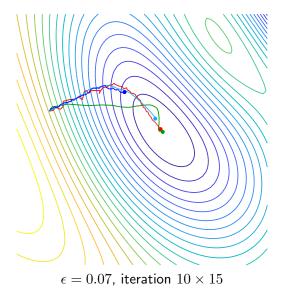


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

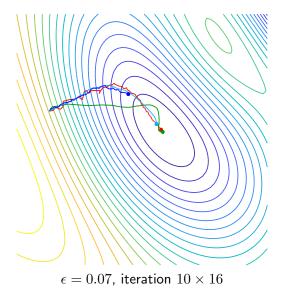


 $\epsilon=0.07,$ iteration 10×14

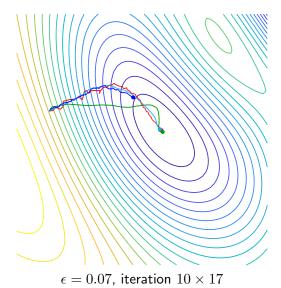
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



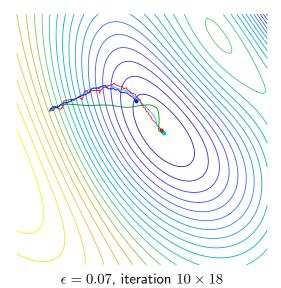
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



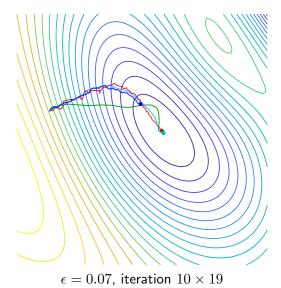
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



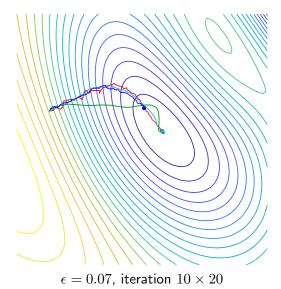
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

learning rate

- remember
 - all these methods need to determine the learning rate
 - to converge, the learning rate needs to be reduced during learning
- set a fixed learning rate schedule, e.g.

 $\epsilon_{\tau} = \epsilon_0 e^{-\gamma \tau}$

or, halve the learning rate every 10 epochs

- adjust to the current behavior, manually or automatically
 - if the error is decreasing slowly and consistently, try increasing ϵ

• if it is increasing, fluctuating, or stabilizing, try decreasing ϵ

learning rate

- remember
 - all these methods need to determine the learning rate
 - to converge, the learning rate needs to be reduced during learning
- set a fixed learning rate schedule, e.g.

$$\epsilon_{\tau} = \epsilon_0 e^{-\gamma \tau}$$

or, halve the learning rate every 10 epochs

- adjust to the current behavior, manually or automatically
 - if the error is decreasing slowly and consistently, try increasing ϵ

• if it is increasing, fluctuating, or stabilizing, try decreasing ϵ

learning rate

- remember
 - all these methods need to determine the learning rate
 - to converge, the learning rate needs to be reduced during learning
- set a fixed learning rate schedule, e.g.

$$\epsilon_{\tau} = \epsilon_0 e^{-\gamma \tau}$$

or, halve the learning rate every 10 epochs

- adjust to the current behavior, manually or automatically
 - if the error is decreasing slowly and consistently, try increasing ϵ

• if it is increasing, fluctuating, or stabilizing, try decreasing ϵ

second order optimization

• remember, the gradient descent update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

comes from assuming a second-order Taylor approximation of f around $\mathbf{x}^{(\tau)}$ with an fixed, isotropic Hessian $Hf(\mathbf{x}) = \frac{1}{\epsilon}I$ everywhere, and making its gradient vanish

• if we knew the true Hessian matrix at $\mathbf{x}^{(\tau)}$, we would get the Newton update rule instead

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$

where

$$H^{(\tau)} := Hf(\mathbf{x}^{(\tau)})$$

- unfortunately, computing and inverting $H^{(au)}$ is not an option

second order optimization

• remember, the gradient descent update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

comes from assuming a second-order Taylor approximation of f around $\mathbf{x}^{(\tau)}$ with an fixed, isotropic Hessian $Hf(\mathbf{x}) = \frac{1}{\epsilon}I$ everywhere, and making its gradient vanish

- if we knew the true Hessian matrix at $\mathbf{x}^{(\tau)},$ we would get the Newton update rule instead

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$

where

$$H^{(\tau)} := Hf(\mathbf{x}^{(\tau)})$$

ullet unfortunately, computing and inverting $H^{(au)}$ is not an option

second order optimization

• remember, the gradient descent update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

comes from assuming a second-order Taylor approximation of f around $\mathbf{x}^{(\tau)}$ with an fixed, isotropic Hessian $Hf(\mathbf{x}) = \frac{1}{\epsilon}I$ everywhere, and making its gradient vanish

- if we knew the true Hessian matrix at $\mathbf{x}^{(\tau)},$ we would get the Newton update rule instead

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$

where

$$H^{(\tau)} := Hf(\mathbf{x}^{(\tau)})$$

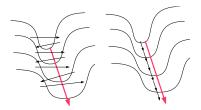
• unfortunately, computing and inverting $H^{(au)}$ is not an option

Hessian-free optimization

[Martens ICML 2010]

• Newton's method can solve all curvature-related problems

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$



• in practice, solve linear system

$$H^{(\tau)}\mathbf{d} = \mathbf{g}^{(\tau)}$$

by conjugate gradient (CG) method, where matrix-vector products of the form $H^{(\tau)}{\bf v}$ are computed by back-propagation

イロト 不得 トイヨト イヨト ヨー うへつ

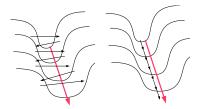
Martens. ICML 2010. Deep Learning via Hessian-Free Optimization.

Hessian-free optimization

[Martens ICML 2010]

• Newton's method can solve all curvature-related problems

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$



• in practice, solve linear system

$$H^{(\tau)}\mathbf{d} = \mathbf{g}^{(\tau)}$$

by conjugate gradient (CG) method, where matrix-vector products of the form $H^{(\tau)}{\bf v}$ are computed by back-propagation

イロト 不得 トイヨト イヨト ヨー うへつ

Martens. ICML 2010. Deep Learning via Hessian-Free Optimization.

"well begun is half done"

initialization

remember CIFAR10 experiment?

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set e.g. into $n_{\text{train}} = 45000$ training samples and $n_{\text{val}} = 5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

• train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ

- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch m=200
- evaluate accuracy on the test set

remember CIFAR10 experiment?

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set e.g. into $n_{\rm train}=45000$ training samples and $n_{\rm val}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

• train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ

- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch $m=200\,$
- evaluate accuracy on the test set

result

- linear classifier: test accuracy 38%
- two-layer classifier, 200 hidden units, $\mathrm{relu:}$ test accuracy 51%
- eight-layer classifier, 100 hidden units per layer, relu: nothing works

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

result

- linear classifier: test accuracy 38%
- two-layer classifier, 200 hidden units, $\mathrm{relu:}$ test accuracy 51%
- eight-layer classifier, 100 hidden units per layer, relu: nothing works

CIFAR10 experiment, again

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set e.g. into $n_{\text{train}} = 45000$ training samples and $n_{\text{val}} = 5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

• train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ

- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch $m=200\,$
- evaluate accuracy on the test set

CIFAR10 experiment, again

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set e.g. into $n_{\rm train}=45000$ training samples and $n_{\rm val}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

• train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ

- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch $m=200\,$
- evaluate accuracy on the test set

affine layer initialization

• $k \times k'$ weight matrix W, $k' \times 1$ bias vector ${f b}$

$$\mathbf{a} = W^{\top} \mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top} \mathbf{x} + \mathbf{b})$$

weights

• each element w of W can be drawn at random, *e.g.*

• Gaussian $w \sim \mathcal{N}(0, \sigma^2)$, with $\operatorname{Var}(w) = \sigma^2$

• uniform $w \sim U(-a, a)$, with $Var(w) = \sigma^2 = \frac{a^2}{3}$

• in any case, it is important to determine the standard deviation σ , which we call weight scale

biases

- can be again Gaussian or uniform
- more commonly, constant *e.g.* zero
- the constant depends on the activation function h and should be chosen such that h does not saturate or 'die'

affine layer initialization

• $k \times k'$ weight matrix W, $k' \times 1$ bias vector ${\bf b}$

$$\mathbf{a} = W^{\top}\mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top}\mathbf{x} + \mathbf{b})$$

weights

- each element w of W can be drawn at random, *e.g.*
 - Gaussian $w \sim \mathcal{N}(0, \sigma^2)$, with $\operatorname{Var}(w) = \sigma^2$

• uniform
$$w \sim U(-a, a)$$
, with $Var(w) = \sigma^2 = \frac{a^2}{3}$

• in any case, it is important to determine the standard deviation σ , which we call weight scale

biases

- can be again Gaussian or uniform
- more commonly, constant *e.g.* zero
- the constant depends on the activation function h and should be chosen such that h does not saturate or 'die'

affine layer initialization

• $k \times k'$ weight matrix W, $k' \times 1$ bias vector ${\bf b}$

$$\mathbf{a} = W^{\top}\mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top}\mathbf{x} + \mathbf{b})$$

weights

- each element w of W can be drawn at random, *e.g.*
 - Gaussian $w \sim \mathcal{N}(0, \sigma^2)$, with $\operatorname{Var}(w) = \sigma^2$

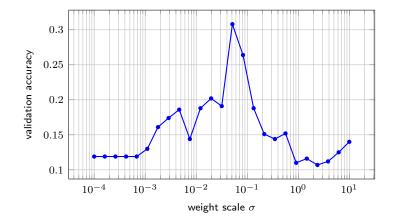
• uniform
$$w \sim U(-a, a)$$
, with $Var(w) = \sigma^2 = \frac{a^2}{3}$

• in any case, it is important to determine the standard deviation σ , which we call weight scale

biases

- can be again Gaussian or uniform
- more commonly, constant e.g. zero
- the constant depends on the activation function h and should be chosen such that h does not saturate or 'die'

weight scale sensitivity

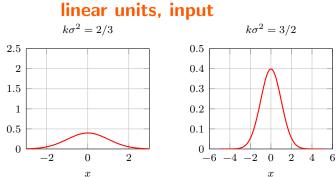


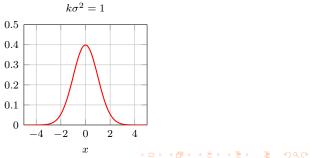
• using $\mathcal{N}(0, \sigma^2)$, training on a small subset of the training set and cross-validating σ reveals a narrow peak in validation accuracy

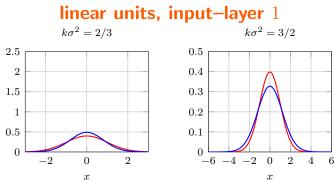
weight scale sensitivity

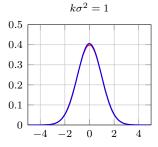
- to understand why, we measure the distribution of features x in all layers, starting with Gaussian input $\sim \mathcal{N}(0,1)$

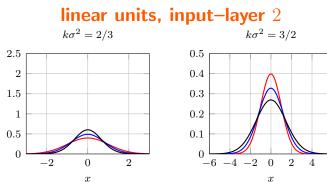
- $\bullet\,$ we repeat with and without $\operatorname{relu}\,$ nonlinearity
- in each case, we try three different values of quantity $k\sigma$



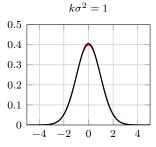


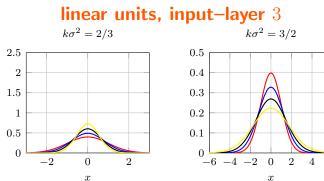




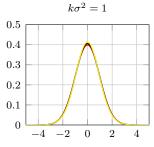


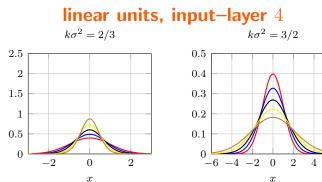
6



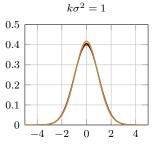


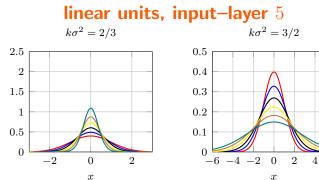
6



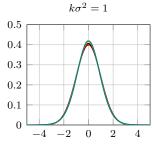


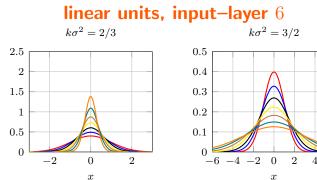
6



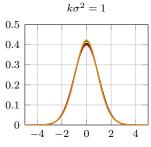


6

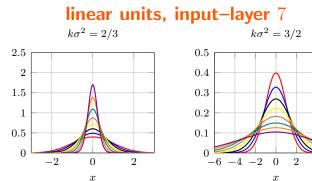




6

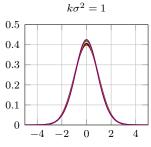


x

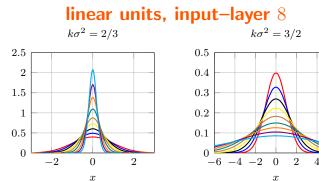


6

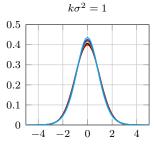
4



x



6



x

• assuming we are in a linear regime of the activation function, forward-backward relations are, recalling W is $k \times k'$

$$\mathbf{x}' = W^{\top}\mathbf{x} + \mathbf{b}, \quad d\mathbf{x} = Wd\mathbf{x}', \quad dW = \mathbf{x}(d\mathbf{x}')^{\top}$$

forward: assuming w_{ij} are i.i.d, Var(x_i) are the same, w_{ij} and x_i are independent, and w_{ij}, x_i are centered, *i.e.* E(w_{ij}) = E(x_i) = 0,

$$\operatorname{Var}(x'_j) = \operatorname{Var}\left((W^{\top}\mathbf{x})_j\right) = k \operatorname{Var}(w) \operatorname{Var}(x) = k\sigma^2 \operatorname{Var}(x)$$

backward, activation: under the same assumptions,

$$\operatorname{Var}(dx_i) = \operatorname{Var}\left((Wd\mathbf{x}')_i\right) = k'\operatorname{Var}(w)\operatorname{Var}(dx') = k'\sigma^2\operatorname{Var}(dx')$$

• backward, weights: also assuming that x_i , dx'_i are independent,

$$\operatorname{Var}(dw_{ij}) = \operatorname{Var}(x_i) \operatorname{Var}(dx'_j)$$

• assuming we are in a linear regime of the activation function, forward-backward relations are, recalling W is $k \times k'$

$$\mathbf{x}' = W^{\top}\mathbf{x} + \mathbf{b}, \quad d\mathbf{x} = Wd\mathbf{x}', \quad dW = \mathbf{x}(d\mathbf{x}')^{\top}$$

forward: assuming w_{ij} are i.i.d, Var(x_i) are the same, w_{ij} and x_i are independent, and w_{ij}, x_i are centered, *i.e.* E(w_{ij}) = E(x_i) = 0,

$$\operatorname{Var}(x'_j) = \operatorname{Var}\left((W^{\top}\mathbf{x})_j\right) = k \operatorname{Var}(w) \operatorname{Var}(x) = k\sigma^2 \operatorname{Var}(x)$$

backward, activation: under the same assumptions,

$$\operatorname{Var}(dx_i) = \operatorname{Var}\left((Wd\mathbf{x}')_i\right) = k'\operatorname{Var}(w)\operatorname{Var}(dx') = k'\sigma^2\operatorname{Var}(dx')$$

• backward, weights: also assuming that x_i , dx'_i are independent,

$$\operatorname{Var}(dw_{ij}) = \operatorname{Var}(x_i) \operatorname{Var}(dx'_j)$$

• assuming we are in a linear regime of the activation function, forward-backward relations are, recalling W is $k \times k'$

$$\mathbf{x}' = W^{\top}\mathbf{x} + \mathbf{b}, \quad d\mathbf{x} = Wd\mathbf{x}', \quad dW = \mathbf{x}(d\mathbf{x}')^{\top}$$

forward: assuming w_{ij} are i.i.d, Var(x_i) are the same, w_{ij} and x_i are independent, and w_{ij}, x_i are centered, *i.e.* E(w_{ij}) = E(x_i) = 0,

$$\operatorname{Var}(x'_j) = \operatorname{Var}\left((W^{\top}\mathbf{x})_j\right) = k \operatorname{Var}(w) \operatorname{Var}(x) = k\sigma^2 \operatorname{Var}(x)$$

• backward, activation: under the same assumptions,

$$\operatorname{Var}(dx_i) = \operatorname{Var}\left((Wd\mathbf{x}')_i\right) = k'\operatorname{Var}(w)\operatorname{Var}(dx') = k'\sigma^2\operatorname{Var}(dx')$$

• backward, weights: also assuming that x_i , dx'_i are independent,

$$\operatorname{Var}(dw_{ij}) = \operatorname{Var}(x_i) \operatorname{Var}(dx'_j)$$

- if $k\sigma^2 < 1$, activations vanish forward; if $k\sigma^2 > 1$ they explode, possibly driving nonlinearities to saturation
- if $k'\sigma^2 < 1$, activation gradients vanish backward; if $k'\sigma^2 > 1$ they explode, and everything is linear backwards
- interestingly, weight gradients are stable (why?), but only at initialization

"Xavier" initialization

[Glorot and Bengio 2010]

- forward requirement is $\sigma^2 = 1/k$
- backward requirement is $\sigma^2=1/k^\prime$
- as a compromise, initialize according to

$$\sigma^2 = \frac{2}{k+k'}$$

a simpler alternative

[LeCun et al. 1998]

however, any of these alternatives would do

$$\sigma^2 = \frac{1}{k}, \quad \text{or} \quad \sigma^2 = \frac{1}{k'}$$

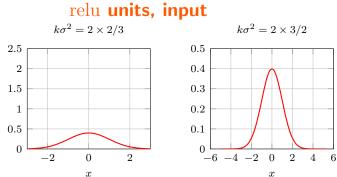
in the sense that if the forward signal is properly initialized, then so is the backward signal, and vice versa (why?)

so, initialize according to

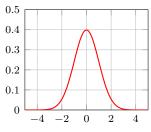
$$\sigma^2 = \frac{1}{k}$$

ション 人口 マイビン トレート シックション

Lecun, Bottou, Orr and Müller. 1998. Efficient Backprop.

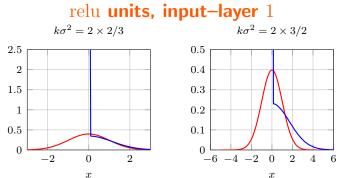


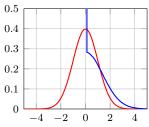
 $k\sigma^2 = 2$

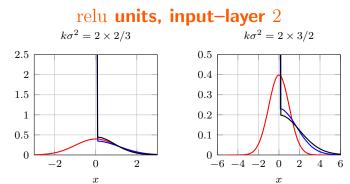


x

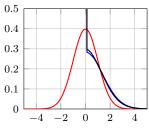
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ



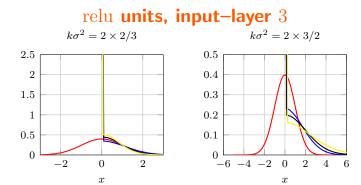


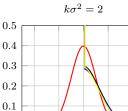


 $k\sigma^2 = 2$



x



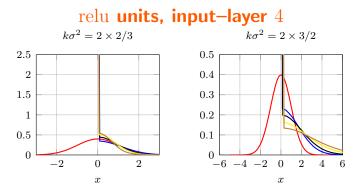


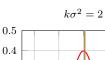
-2

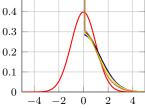
0

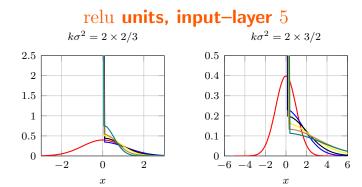
-4

0 x $\mathbf{2}$ 4

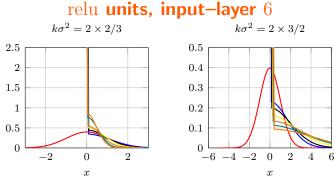


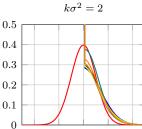






 $k\sigma^2 = 2$ 0.5 0.4 0.3 0.2 0.1 0 -4 -2 0 2 4



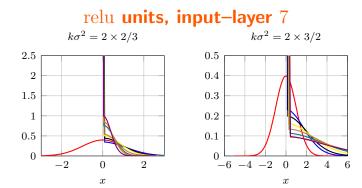


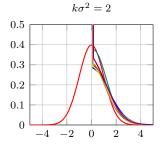
0 x

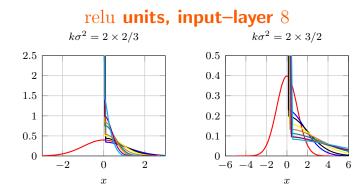
 $\mathbf{2}$ 4

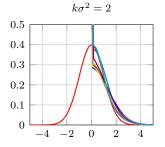
-2

-4









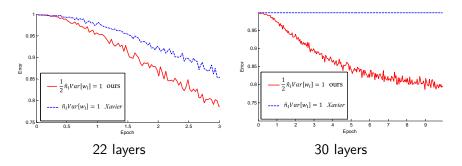
relu ("Kaiming/MSRA") initialization [He et al. 2015]

- because relu squeezes half of the volume, a corrective factor of 2 appears in the expectations of both forward and backward
- so any of the following will do

$$\sigma^2 = \frac{2}{k}, \quad \text{or} \quad \sigma^2 = \frac{2}{k'}$$

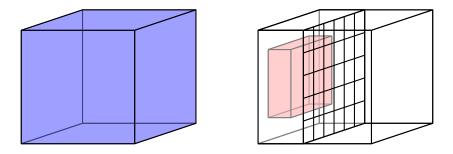
He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification.

relu ("Kaiming/MSRA") initialization



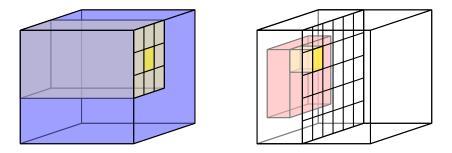
- Xavier converges more slowly or not at all
- 30-layer network trained from scratch for the first time, but has worse performance than a 14-layer network

He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification.



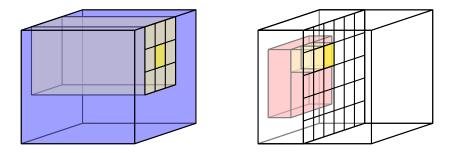
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



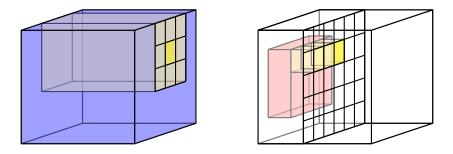
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



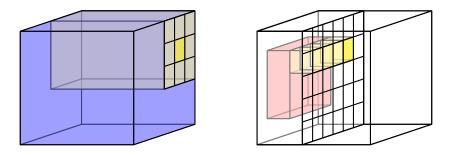
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



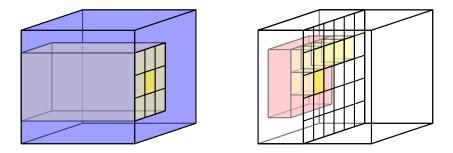
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



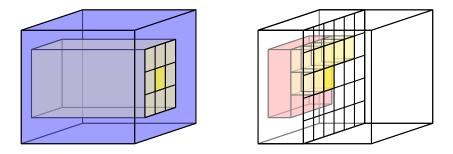
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



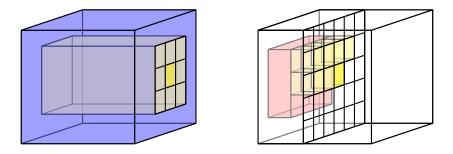
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



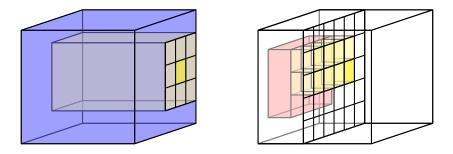
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



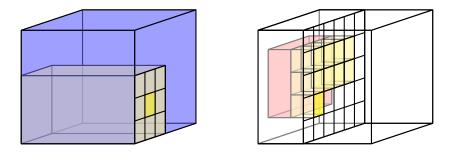
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



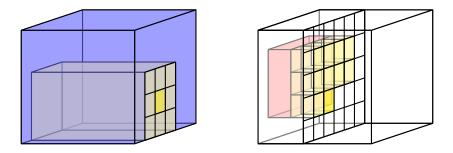
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



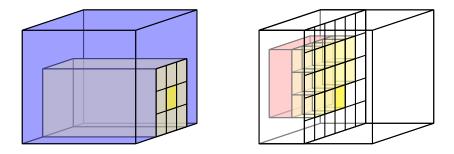
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



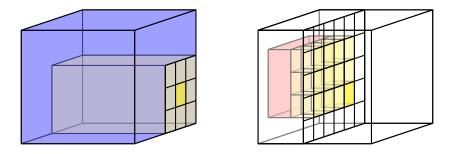
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features

- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'

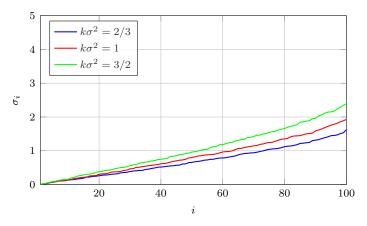
beyond Gaussian matrices

- for linear and ${\rm relu}$ units, we can now keep the signal variance constant across layers, both forward and backward
- but this just holds on average
- how exactly are signals amplified or attenuated in each dimension?
- how does that affect the learning speed?
- we return to the linear case and examine the singular values of a product $W_8 \cdots W_1$ of Gaussian matrices

beyond Gaussian matrices

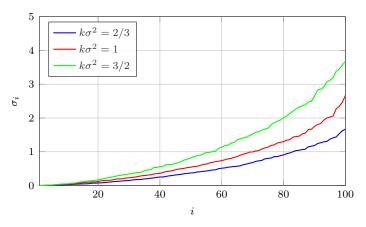
- for linear and ${\rm relu}$ units, we can now keep the signal variance constant across layers, both forward and backward
- but this just holds on average
- how exactly are signals amplified or attenuated in each dimension?
- how does that affect the learning speed?
- we return to the linear case and examine the singular values of a product $W_8 \cdots W_1$ of Gaussian matrices

matrices as numbers

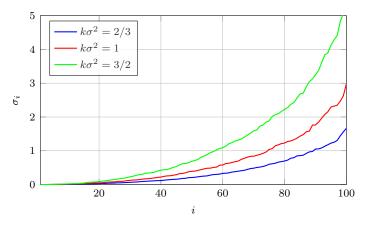


• singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$

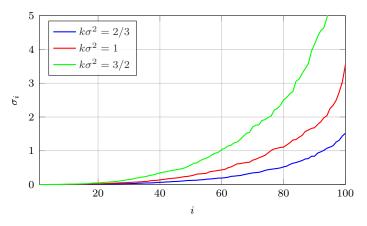
 a product W₁ ··· W₁ of ℓ = 1 such matrices has the same behavior as raising a scalar w^ℓ: vanishing for w < 1, exploding for w > 1



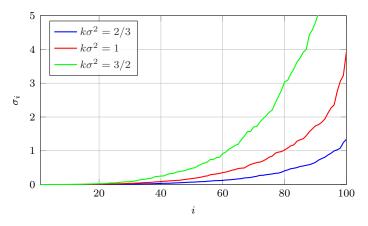
- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product W₂ · · · W₁ of ℓ = 2 such matrices has the same behavior as raising a scalar w^ℓ: vanishing for w < 1, exploding for w > 1



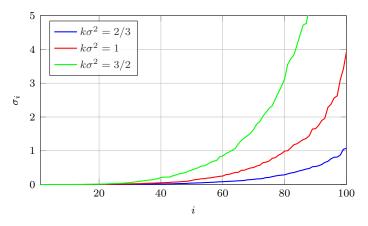
- singular values of $k\times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0,\sigma^2)$, for k=100 and for different values of $k\sigma^2$
- a product W₃ · · · W₁ of ℓ = 3 such matrices has the same behavior as raising a scalar w^ℓ: vanishing for w < 1, exploding for w > 1



- singular values of $k\times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0,\sigma^2)$, for k=100 and for different values of $k\sigma^2$
- a product W₄ · · · W₁ of ℓ = 4 such matrices has the same behavior as raising a scalar w^ℓ: vanishing for w < 1, exploding for w > 1

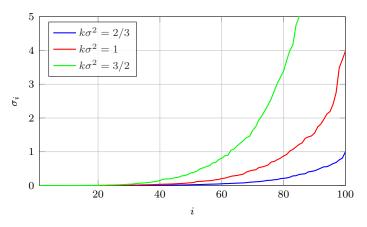


- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product W₅ · · · W₁ of ℓ = 5 such matrices has the same behavior as raising a scalar w^ℓ: vanishing for w < 1, exploding for w > 1

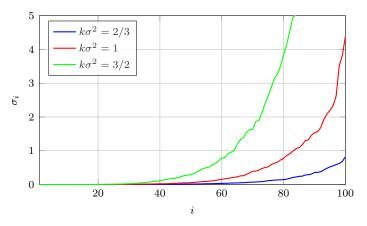


• singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$

 a product W₆ · · · W₁ of ℓ = 6 such matrices has the same behavior as raising a scalar w^ℓ: vanishing for w < 1, exploding for w > 1



- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product W₇ · · · W₁ of ℓ = 7 such matrices has the same behavior as raising a scalar w^ℓ: vanishing for w < 1, exploding for w > 1



- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_8 \cdots W_1$ of $\ell = 8$ such matrices has the same behavior as raising a scalar w^{ℓ} : vanishing for w < 1, exploding for w > 1

orthogonal initialization

[Saxe et al. 2014]

- choose $k \times k'$ matrix W to be a random (semi-)orthogonal matrix, *i.e.* $W^{\top}W = I$ if $k \ge k'$ and $WW^{\top} = I$ if k < k'
- for instance, with a random Gaussian matrix followed by QR or SVD decomposition
- a scaled Gaussian matrix has singular values around 1 and preserves norm on average

$$\mathbb{E}_{w \sim \mathcal{N}(0,1/k)}(\mathbf{x}^{\top} W^{\top} W \mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$$

• a random orthogonal matrix has singular values exactly 1 and preserves norm exactly

$$\mathbf{x}^\top W^\top W \mathbf{x} = \mathbf{x}^\top \mathbf{x}$$

• a product of orthogonal matrices remains orthogonal, while a product of scaled Gaussian matrices becomes strongly non-isotropic

Saxe, McClelland and Ganguli. ICLR 2014. Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks.

orthogonal initialization

[Saxe et al. 2014]

- choose $k \times k'$ matrix W to be a random (semi-)orthogonal matrix, *i.e.* $W^{\top}W = I$ if $k \ge k'$ and $WW^{\top} = I$ if k < k'
- for instance, with a random Gaussian matrix followed by QR or SVD decomposition
- a scaled Gaussian matrix has singular values around 1 and preserves norm on average

$$\mathbb{E}_{w \sim \mathcal{N}(0, 1/k)}(\mathbf{x}^\top W^\top W \mathbf{x}) = \mathbf{x}^\top \mathbf{x}$$

• a random orthogonal matrix has singular values exactly 1 and preserves norm exactly

$$\mathbf{x}^\top W^\top W \mathbf{x} = \mathbf{x}^\top \mathbf{x}$$

• a product of orthogonal matrices remains orthogonal, while a product of scaled Gaussian matrices becomes strongly non-isotropic

Saxe, McClelland and Ganguli. ICLR 2014. Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks.

orthogonal initialization

[Saxe et al. 2014]

- choose $k \times k'$ matrix W to be a random (semi-)orthogonal matrix, *i.e.* $W^{\top}W = I$ if $k \ge k'$ and $WW^{\top} = I$ if k < k'
- for instance, with a random Gaussian matrix followed by QR or SVD decomposition
- a scaled Gaussian matrix has singular values around 1 and preserves norm on average

$$\mathbb{E}_{w \sim \mathcal{N}(0, 1/k)}(\mathbf{x}^\top W^\top W \mathbf{x}) = \mathbf{x}^\top \mathbf{x}$$

• a random orthogonal matrix has singular values exactly 1 and preserves norm exactly

$$\mathbf{x}^\top W^\top W \mathbf{x} = \mathbf{x}^\top \mathbf{x}$$

• a product of orthogonal matrices remains orthogonal, while a product of scaled Gaussian matrices becomes strongly non-isotropic

Saxe, McClelland and Ganguli. ICLR 2014. Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks.

data-dependent initialization

- orthogonal initialization only applies to linear layers
- relu requires analyzing input-output variances to find the corrective factor of 2
- it is not possible to do this theoretical derivation for any kind of nonlinearity, *e.g.* maxout, max-pooling, normalization *etc*.
- a practical solution is to use actual data at the input of the network and compute weights according to output statistics

layer-sequential unit-variance (LSUV) initialization

[Mishkin and Matas 2016]

- begin by random orthogonal initialization
- then, for each affine layer (W, \mathbf{b}) , measure output variance over a mini-batch (not per feature) and iteratively normalize it to one

```
def lsuv(batch, (W, \mathbf{b}), \tau = 0.1):

\sigma = 0

while |\sigma - 1| \ge \tau:

X = \text{batch}()

Y = \text{dot}(X, W) + \mathbf{b}

\sigma = \text{std}(Y)

W = W/\sigma

return (W, \mathbf{b})
```

- as given by batch(), we use a new mini-batch per iteration and feed it forward through the network until we reach the input X of that layer
- X is $m\times k$, W is $k\times k',$ Y is $m\times k',$ where m is the mini-batch size

Mishkin and Matas. ICLR 2016. All You Need Is a Good Init.

within-layer initialization

[Krähenbühl et al. 2016]

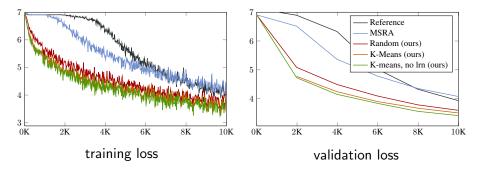
- computed on a single mini-batch, non-iterative
- measure both mean and variance, initialize both bias and weights
- measurements are per feature

def within $(X, (W, \mathbf{b}))$: $Y = \operatorname{dot}(X, W) + \mathbf{b}$ $\mu, \sigma = \operatorname{mean}_0(Y), \operatorname{std}_0(Y)$ $W, \mathbf{b} = W/\sigma, -\mu/\sigma$ return (W, \mathbf{b})

- vector operations are element-wise
- matrix-vector operations are broadcasted

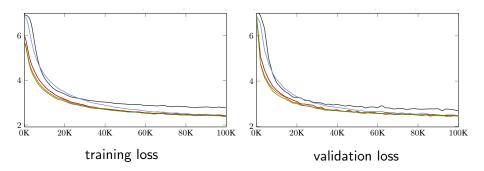
data-dependent initialization

- weights initialized by PCA or (spherical) *k*-means on mini-batch samples
- within-layer initialization normalizes affine layer outputs to zero mean, unit variance
- between-layer initialization iteratively normalizes weights and biases of different layers
- as a result, all parameters are learned at the same "rate"



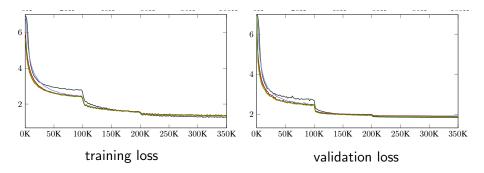
• data-dependent initialization is better at first 100k iterations

 but random initialization catches up after the second learning rate drop

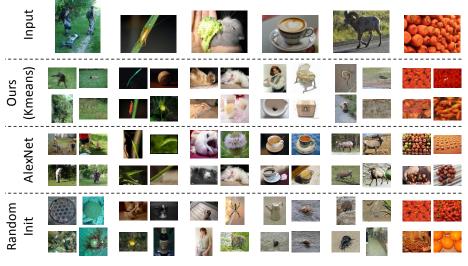


• data-dependent initialization is better at first 100k iterations

 but random initialization catches up after the second learning rate drop



- data-dependent initialization is better at first 100k iterations
- but random initialization catches up after the second learning rate drop



nearest neighbors of given input image in feature space

data-dependent initialization

- PCA is orthogonal but data-dependent rather than random
- *k*-means is non-orthogonal, but centroids are still only weakly correlated
- we cannot fail to notice that
 - codebooks are now the initial weights, computed layer-wise
 - bag-of-words representations are now the initial features
 - compared to the conventional approach, now the entire pipeline is optimized end-to-end

data-dependent initialization

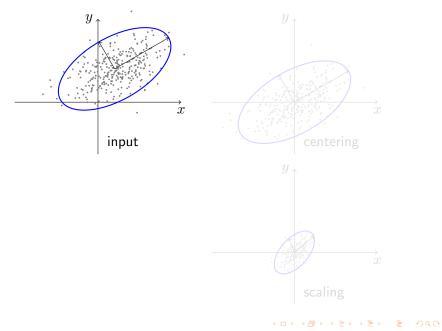
- PCA is orthogonal but data-dependent rather than random
- *k*-means is non-orthogonal, but centroids are still only weakly correlated
- we cannot fail to notice that
 - · codebooks are now the initial weights, computed layer-wise
 - bag-of-words representations are now the initial features
 - compared to the conventional approach, now the entire pipeline is optimized end-to-end

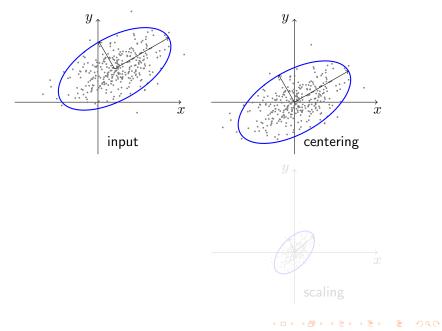
normalization

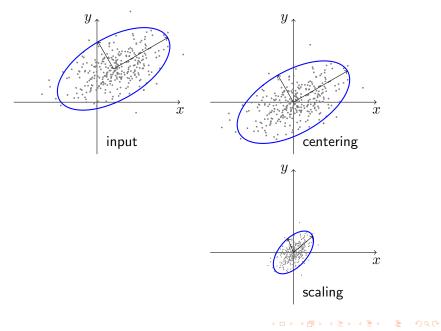
- input X is an $n\times d$ matrix, where n is the number of samples and d is the dimension of a vectorized image
- measure empirical mean and variance and normalize per dimension

def norm(X): $\mu, \sigma = \text{mean}_0(X), \text{std}_0(X)$ return $(X - \mu)/\sigma$

 measurements are exactly as in within-layer initialization, only now the input X is normalized, not the parameters W, b

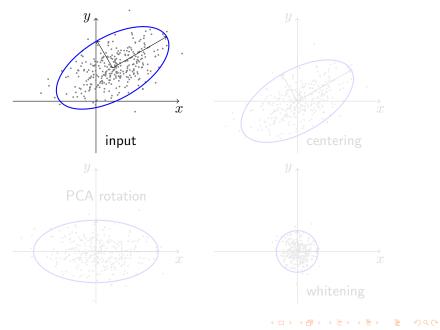


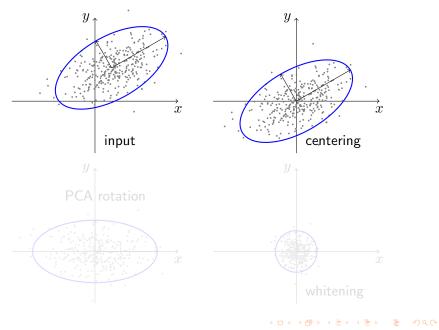


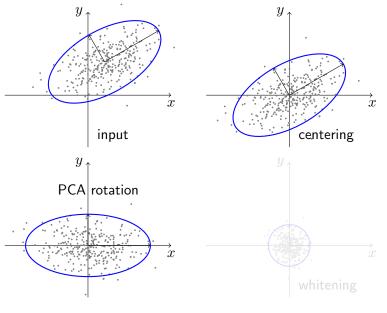


- center data to zero mean as before
- using SVD, measure the eigenvalues $\pmb{\sigma}$ and eigenvectors V of the covariance matrix $\frac{1}{n}X^\top X$
- PCA-rotate by $V^{-1} = V^\top$ to decorrelate the data
- whiten by $1/{oldsymbol \sigma}$ to unit variance

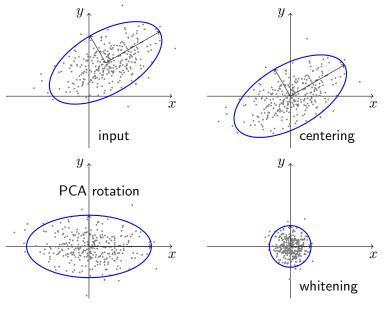
$$\begin{aligned} & \textbf{def whiten}(X): \\ & n = X.\text{shape}[0] \\ & X - = \text{mean}_0(X) \\ & U, \boldsymbol{\sigma}, V = \text{svd}(X/\text{sqrt}(n)) \\ & \textbf{return } \det(X, V^{\top}) / \boldsymbol{\sigma} \end{aligned}$$







◆□ ▶ ◆□ ▶ ★ 三 ▶ ◆ 三 ▶ ● 三 ● ● ● ●



◆□ ▶ ◆□ ▶ ★ 三 ▶ ◆ 三 ▶ ● 三 ● ● ● ●

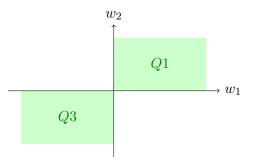
in practice: only centering

- the network is expected to discover nonlinear manifold structure, so in principle it should have no difficulty discovering the linear PCA + whitening structure
- in practice, only centering is enough:
 - subtract the mean value per pixel (mean image)
 - subtract the mean value per color channel (mean color or intensity, just one or three scalars)

in practice: only centering

- the network is expected to discover nonlinear manifold structure, so in principle it should have no difficulty discovering the linear PCA + whitening structure
- in practice, only centering is enough:
 - subtract the mean value per pixel (mean image)
 - subtract the mean value per color channel (mean color or intensity, just one or three scalars)

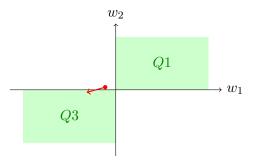
- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



• weights can only all increase or all decrease together for a given sample

• to follow the direction of ${f w}$, we can only do so by zig-zagging

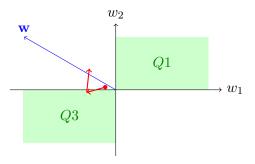
- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



• weights can only all increase or all decrease together for a given sample

• to follow the direction of \mathbf{w} , we can only do so by zig-zagging

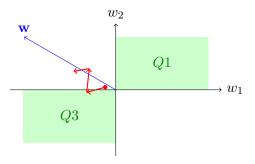
- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



• weights can only all increase or all decrease together for a given sample

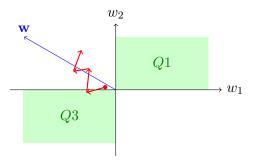
• to follow the direction of \mathbf{w} , we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



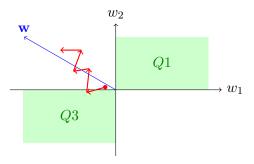
- weights can only all increase or all decrease together for a given sample
- to follow the direction of \mathbf{w} , we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



- weights can only all increase or all decrease together for a given sample
- to follow the direction of \mathbf{w} , we can only do so by zig-zagging

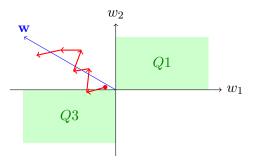
- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



• weights can only all increase or all decrease together for a given sample

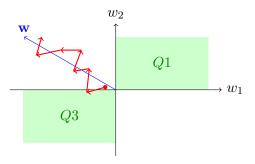
• to follow the direction of \mathbf{w} , we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



- weights can only all increase or all decrease together for a given sample
- to follow the direction of \mathbf{w} , we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



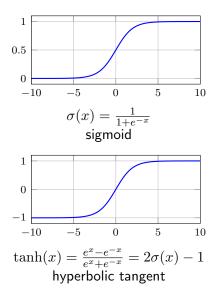
- weights can only all increase or all decrease together for a given sample
- to follow the direction of \mathbf{w} , we can only do so by zig-zagging

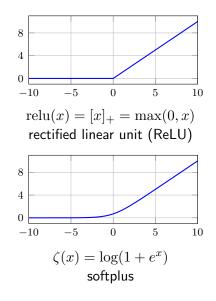
activation normalization

- if normalization is important at the input, why not at every layer activation?
- this is even more important in the presence of saturating nonlinearities: given a wrong offset or scale, activation functions can 'die'
- and even more important in the presence of stochastic updates, where statistics change at every mini-batch and at every update (internal covariate shift)

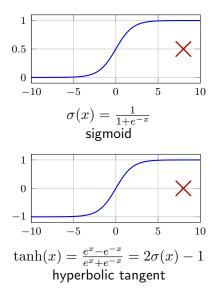
(日)、(型)、(E)、(E)、(E)、(O)()

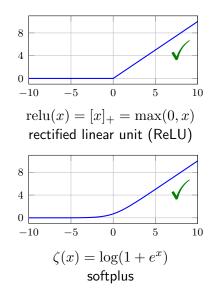
activation functions



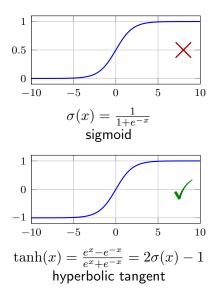


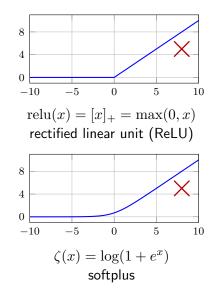
activation functions: non-localized



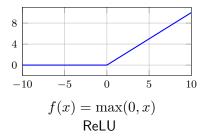


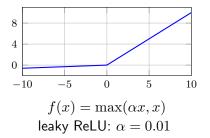
(日)、(型)、(E)、(E)、(E)、(O)()



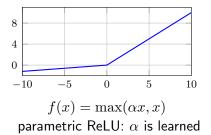


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

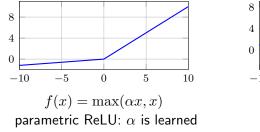


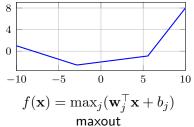


Maas, Hannun and Ng. ICML 2013. Rectifier Nonlinearities Improve Neural Network Acoustic Models. (ロト・イラト・イミト・イミト ミークへぐ

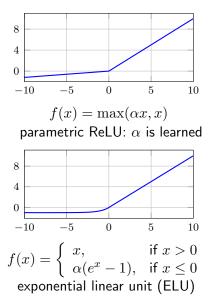


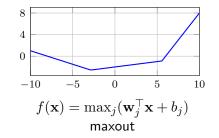
He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification.





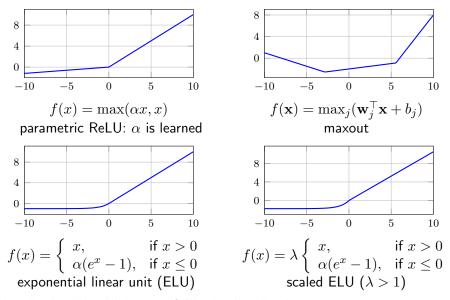
Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.





Clevert, Unterthiner and Hochreiter 2015. Fast and Accurate Deep Network Learning By Exponential Linear Units (ELUs).

activation functions: self-normalizing!

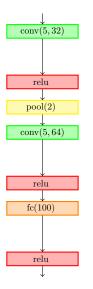


Klambauer, Unterthiner, Mayr and Hochreiter 2017. Self-Normalizing Neural Networks.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

batch normalization (BN)

[loffe and Szegedy 2015]



• if $\mathbf{x} = (x_1, \dots, x_k)$ is the activation or feature at any layer, normalize it element-wise

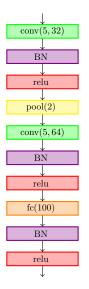
$$\hat{x}_j = \frac{x_j - \mathbb{E}(x_j)}{\sqrt{\operatorname{Var}(x_j)}}$$

to have zero-mean, unit-variance, where ${\mathbb E}$ and Var are empirical over the training set

 insert this layer after convolutional or fully-connected layers and before nonlinear activation functions (although this is not clear)

batch normalization (BN)

[loffe and Szegedy 2015]



• if $\mathbf{x} = (x_1, \dots, x_k)$ is the activation or feature at any layer, normalize it element-wise

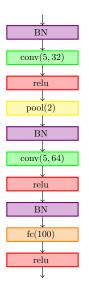
$$\hat{x}_j = \frac{x_j - \mathbb{E}(x_j)}{\sqrt{\operatorname{Var}(x_j)}}$$

to have zero-mean, unit-variance, where $\mathbb E$ and Var are empirical over the training set

 insert this layer after convolutional or fully-connected layers and before nonlinear activation functions (although this is not clear)

batch normalization (BN)

[loffe and Szegedy 2015]



• if $\mathbf{x} = (x_1, \dots, x_k)$ is the activation or feature at any layer, normalize it element-wise

$$\hat{x}_j = \frac{x_j - \mathbb{E}(x_j)}{\sqrt{\operatorname{Var}(x_j)}}$$

to have zero-mean, unit-variance, where $\mathbb E$ and Var are empirical over the training set

 insert this layer after convolutional or fully-connected layers and before nonlinear activation functions (although this is not clear)

batch normalization: parameters

- normalized features may remain in the linear regime of the following nonlinearity, limiting the representational power of the network
- introduce parameters β = (β₁,..., β_k), γ = (γ₁,..., γ_k) and let the output of the BN layer be y = (y₁,..., y_k) with

$$y_j = \gamma_j \hat{x}_j + \beta_j$$

or, element-wise,

$$\mathbf{y} = \boldsymbol{\gamma}\hat{\mathbf{x}} + \boldsymbol{\beta}$$

• then, with

$$\beta_j = \mathbb{E}(x_j), \quad \gamma_j = \sqrt{\operatorname{Var}(x_j)}$$

we can recover the identity mapping if needed

batch normalization: parameters

- normalized features may remain in the linear regime of the following nonlinearity, limiting the representational power of the network
- introduce parameters $\beta = (\beta_1, \dots, \beta_k)$, $\gamma = (\gamma_1, \dots, \gamma_k)$ and let the output of the BN layer be $\mathbf{y} = (y_1, \dots, y_k)$ with

$$y_j = \gamma_j \hat{x}_j + \beta_j$$

or, element-wise,

$$\mathbf{y} = oldsymbol{\gamma}\hat{\mathbf{x}} + oldsymbol{eta}$$

then, with

$$\beta_j = \mathbb{E}(x_j), \quad \gamma_j = \sqrt{\operatorname{Var}(x_j)}$$

we can recover the identity mapping if needed

batch normalization: parameters

- normalized features may remain in the linear regime of the following nonlinearity, limiting the representational power of the network
- introduce parameters $\beta = (\beta_1, \dots, \beta_k)$, $\gamma = (\gamma_1, \dots, \gamma_k)$ and let the output of the BN layer be $\mathbf{y} = (y_1, \dots, y_k)$ with

$$y_j = \gamma_j \hat{x}_j + \beta_j$$

or, element-wise,

$$\mathbf{y} = \boldsymbol{\gamma}\hat{\mathbf{x}} + \boldsymbol{\beta}$$

• then, with

$$\beta_j = \mathbb{E}(x_j), \quad \gamma_j = \sqrt{\operatorname{Var}(x_j)}$$

we can recover the identity mapping if needed

batch normalization: training

- as the name suggests, BN learns using the mini-batch statistics
- given an index set I of mini-batch samples with |I| = m, the BN layer with parameters β, γ yields, for each sample feature x_i with i ∈ I,

$$\mathbf{y}_i = \mathrm{BN}_{oldsymbol{eta},oldsymbol{\gamma}}(\mathbf{x}_i) := oldsymbol{\gamma} rac{\mathbf{x}_i - oldsymbol{\mu}_I}{\sqrt{\mathbf{v}_I + \delta}} + oldsymbol{eta}$$

(element-wise), where μ_I , \mathbf{v}_I are the mini-batch mean and variance

$$\boldsymbol{\mu}_I := \frac{1}{m} \sum_{i \in I} \mathbf{x}_i$$
$$\mathbf{v}_I := \frac{1}{m} \sum_{i \in I} (\mathbf{x}_i - \boldsymbol{\mu}_I)^2$$

batch normalization: inference

- at inference, BN operates with global statistics
- given a test sample feature ${f x}$, the BN layer with parameters eta,γ yields (element-wise)

$$\mathbf{y} = BN_{\boldsymbol{\beta},\boldsymbol{\gamma}}^{inf}(\mathbf{x}) := \boldsymbol{\gamma} \frac{\mathbf{x} - \boldsymbol{\mu}}{\sqrt{\mathbf{v} + \delta}} + \boldsymbol{\beta}$$

where μ , \mathbf{v} are moving averages of the training set mean and variance, updated at every mini-batch I during training as

$$\boldsymbol{\mu}^{(\tau+1)} := \alpha \boldsymbol{\mu}^{(\tau)} + (1-\alpha) \boldsymbol{\mu}_I$$
$$\mathbf{v}^{(\tau+1)} := \alpha \mathbf{v}^{(\tau)} + (1-\alpha) \mathbf{v}_I$$

so they track the accuracy of the model as it trains

batch normalization: derivatives

- input mini-batch $m \times k$ matrix X, output $m \times k$ matrix Y
- forward

$$Y = BN(X, (\boldsymbol{\beta}, \boldsymbol{\gamma}))$$

• backward: exercise

 $dX = \dots \ dY \dots$ $d\beta = \dots \ dY \dots$ $d\gamma = \dots \ dY \dots$

batch normalization: derivatives

- input mini-batch $m \times k$ matrix X, output $m \times k$ matrix Y
- forward

$$Y = BN(X, (\boldsymbol{\beta}, \boldsymbol{\gamma}))$$

• backward: exercise

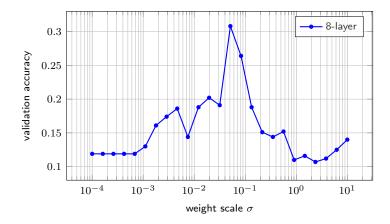
 $dX = \dots \ dY \dots$ $d\beta = \dots \ dY \dots$ $d\gamma = \dots \ dY \dots$

batch normalization: convolution

- same as fully-connected, only now mean and variance are computed per feature map rather than per feature
- *i.e.* we average over mini-batch samples and spatial positions
- if feature map volumes are $w\times h\times k,$ the effective mini-batch size at training becomes m'=mwh, and

$$\boldsymbol{\mu}_{I} := \frac{1}{m'} \sum_{i \in I} \sum_{\mathbf{n}} \mathbf{x}_{i}[\mathbf{n}]$$
$$\mathbf{v}_{I} := \frac{1}{m'} \sum_{i \in I} \sum_{\mathbf{n}} (\mathbf{x}_{i}[\mathbf{n}] - \boldsymbol{\mu}_{I})^{2}$$

remember weight scale sensitivity?

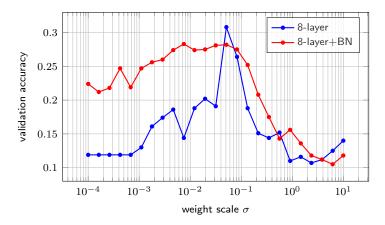


• using $\mathcal{N}(0,\sigma^2)$, training on a small subset of the training set and cross-validating σ reveals a narrow peak in validation accuracy

BN allows convergence over a much wider range of weight scales

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

remember weight scale sensitivity?



- using $\mathcal{N}(0, \sigma^2)$, training on a small subset of the training set and cross-validating σ reveals a narrow peak in validation accuracy
- BN allows convergence over a much wider range of weight scales

batch normalization: weight scale

if BN is connected at the output activation of an affine layer

$$\mathbf{a} = W^{\top}\mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top}\mathbf{x} + \mathbf{b})$$

the bias ${\bf b}$ is absorbed into ${\boldsymbol \beta}$ and the layer is replaced by ${\bf x}'=h({\rm BN}(W^\top{\bf x}))$

the layer and its Jacobian are then unaffected by weight scale

$$\frac{\mathrm{BN}(aW^{\top}\mathbf{x}) = \mathrm{BN}(W^{\top}\mathbf{x})}{\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial \mathbf{x}}} = \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\frac{\partial \mathrm{X}}{\partial \mathbf{x}}}$$

• moreover, larger weights yield smaller gradients, stabilizing growth

$$\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial(aW)} = \frac{1}{a} \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial W}$$

batch normalization: weight scale

• if BN is connected at the output activation of an affine layer

$$\mathbf{a} = W^{\top}\mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top}\mathbf{x} + \mathbf{b})$$

the bias ${f b}$ is absorbed into m eta and the layer is replaced by

$$\mathbf{x}' = h(\mathrm{BN}(W^{\top}\mathbf{x}))$$

• the layer and its Jacobian are then unaffected by weight scale

$$\frac{\mathrm{BN}(aW^{\top}\mathbf{x}) = \mathrm{BN}(W^{\top}\mathbf{x})}{\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial \mathbf{x}}} = \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}}$$

• moreover, larger weights yield smaller gradients, stabilizing growth $\frac{\partial BN(aW^{\top}\mathbf{x})}{\partial(aW)} = \frac{1}{a} \frac{\partial BN(W^{\top}\mathbf{x})}{\partial W}$

batch normalization: weight scale

• if BN is connected at the output activation of an affine layer

$$\mathbf{a} = W^{\top}\mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top}\mathbf{x} + \mathbf{b})$$

the bias ${f b}$ is absorbed into eta and the layer is replaced by

$$\mathbf{x}' = h(\mathrm{BN}(W^{\top}\mathbf{x}))$$

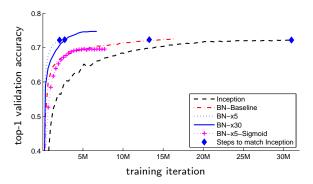
• the layer and its Jacobian are then unaffected by weight scale

$$\frac{\mathrm{BN}(aW^{\top}\mathbf{x}) = \mathrm{BN}(W^{\top}\mathbf{x})}{\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial \mathbf{x}}} = \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}}$$

• moreover, larger weights yield smaller gradients, stabilizing growth

$$\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial(aW)} = \frac{1}{a} \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial W}$$

batch normalization: modified GoogLeNet



- allows to
 - increase learning rate, accelerate learning rate decay
 - reduce weight decay, reduce or remove dropout
 - remove data augmentation such as photometric distortions
 - remove local response normalization

layer normalization

[Ba et al. 2016]

• the LN layer with parameters $\boldsymbol{\beta}$, $\boldsymbol{\gamma}$ yields, for each sample feature $\mathbf{x}=(x_1,\ldots,x_k)$,

$$\mathbf{y} = LN_{\boldsymbol{\beta}, \boldsymbol{\gamma}}(\mathbf{x}) := \boldsymbol{\gamma} \frac{\mathbf{x} - \mu}{\sqrt{v + \delta}} + \boldsymbol{\beta}$$

(element-wise), where μ , v are the sample mean and variance

$$\mu := \frac{1}{k} \sum_{j=1}^{k} x_j$$
$$v := \frac{1}{k} \sum_{j=1}^{k} (x_j - \mu)^2$$

training and inference are now identical and independent of mini-batch

Ba, Kiros and Hinton 2016. Layer Normalization.

weight normalization

[Salimans and Kingma 2016]

• considering a single affine unit $\mathbf{y} = h(\mathbf{w}^{\top}\mathbf{x} + b)$, weights \mathbf{w} are re-parametrized

$$\mathbf{w} = g \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

• its derivatives are given by

$$dg = d\mathbf{w}^{\top} \frac{\mathbf{v}}{\|\mathbf{v}\|}, \quad d\mathbf{v}^{\top} = \frac{g}{\|\mathbf{v}\|} d\mathbf{w}^{\top} \left(I - \frac{\mathbf{v}\mathbf{v}^{\top}}{\|\mathbf{v}\|^{2}}\right)$$

- $d\mathbf{w}$ is scaled by $\frac{g}{\|\mathbf{v}\|}$ and projected in a direction normal to \mathbf{v} (and \mathbf{w})
- during learning, $\|\mathbf{v}\|$ increases monotonically: $\|\mathbf{v}^{(\tau+1)}\| \ge \|\mathbf{v}^{(\tau)}\|$
- if ||dv|| is large, the scaling factor ^g/||v|| decreases; and if it is small, ||v|| stops increasing: the effect is similar to RMSprop

Salimans and Kingma. NIPS 2016. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks.

summary (so far)

- the deeper the network, the more we need to learn all parameters at the same rate
- in the absence of second order derivatives, optimizers attempt to do so by moving averages and normalization over the training iterations
- initialization should be designed such that activations, their derivatives and parameter derivatives are initially well balanced

(日)、(型)、(E)、(E)、(E)、(O)()

• it is more effective to modify the objective function itself such that these properties are maintained during optimization

summary (so far)

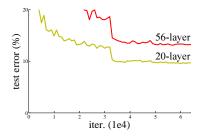
- the deeper the network, the more we need to learn all parameters at the same rate
- in the absence of second order derivatives, optimizers attempt to do so by moving averages and normalization over the training iterations
- initialization should be designed such that activations, their derivatives and parameter derivatives are initially well balanced

(日)、(型)、(E)、(E)、(E)、(O)()

• it is more effective to modify the objective function itself such that these properties are maintained during optimization

deeper architectures

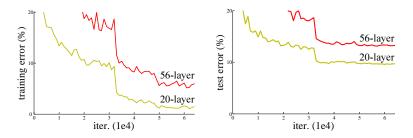
going even deeper



イロン 不得 とくほう イロン しゅう

- when initialization, normalization and optimization are appropriately addressed, we can train networks with 50 layers "from scratch"
- a degradation of test error is now exposed with increasing depth, which looks like overfitting (CIFAR10 shown here)
- however, the same degradation appears also at training error

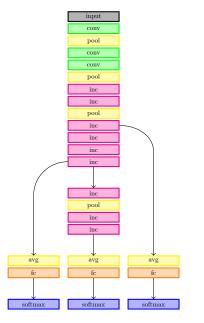
going even deeper



• when initialization, normalization and optimization are appropriately addressed, we can train networks with 50 layers "from scratch"

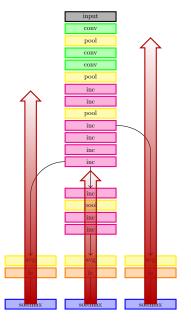
イロト 不得 トイヨト イヨト 三日

- a degradation of test error is now exposed with increasing depth, which looks like overfitting (CIFAR10 shown here)
- however, the same degradation appears also at training error



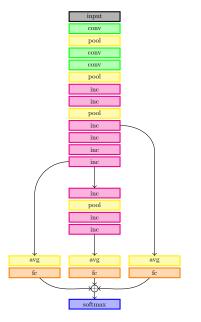
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~



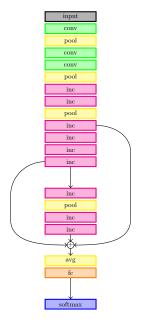
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern

イロト 不得 トイヨト イヨト ヨー うへつ



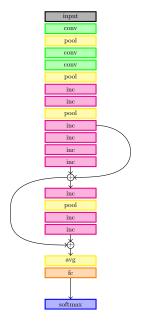
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●



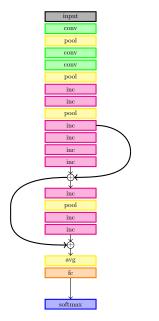
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern

(日)、(型)、(E)、(E)、(E)、(O)()



- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern

(日)、(型)、(E)、(E)、(E)、(O)()

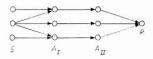


- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern

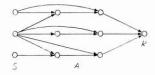
▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

skip connections are not new

the network diagram:



represents a four-layer series-coupled system, whereas the diagram

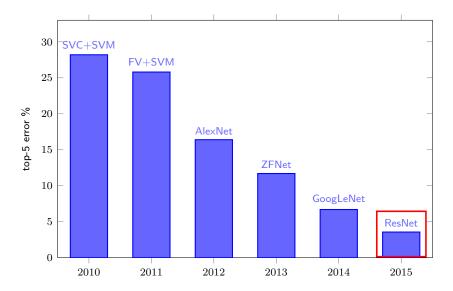


represents a three-layer cross coupled system, since all A-units are at least the same logical distance from the sensory units (see Definition 18,

Rosenblatt 1962. Principles of Neurodynamics.

◆□> ◆圖> ◆国> ◆国> 「国」の文化

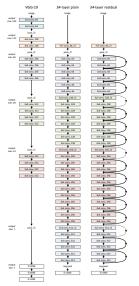
ImageNet classification performance



Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

residual networks

[He et al. 2016]



- + 3.57% top-5 error on <code>ILSVRC'15</code>
- won first place on several ILSVRC and COCO 2015 tasks
- depth increased to 152 layers, kernel size mostly 3×3
- residual unit repeated up to 50 times
- 1×1 kernels used as "bottleneck" layers
- up to $10 \times$ more operations but same parameters as AlexNet

イロト 不得 トイヨト イヨト 三日

"plain" unit: f is the mapping

$$\mathbf{y}=f(\mathbf{x})$$

residual unit: f is the residual

 $\mathbf{y} = \mathbf{x} + f(\mathbf{x})$

- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear layers"

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.

 \mathbf{x}

у

x f y • "plain" unit: f is the mapping

$$\mathbf{y} = f(\mathbf{x})$$

residual unit: f is the residual

 $\mathbf{y} = \mathbf{x} + f(\mathbf{x})$

- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear layers"

• "plain" unit: f is the mapping

$$\mathbf{y} = f(\mathbf{x})$$

residual unit: f is the residual

$$\mathbf{y} = \mathbf{x} + f(\mathbf{x})$$

- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear layers"

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.

x

• "plain" unit: f is the mapping

$$\mathbf{y} = f(\mathbf{x})$$

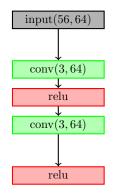
residual unit: f is the residual

 $\mathbf{y} = \mathbf{x} + f(\mathbf{x})$

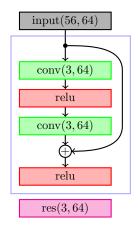
- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear layers"

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.

x

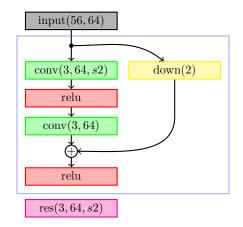


• "plain" unit, with nonlinearities shown separately, and batch normalization included in each convolutional layers

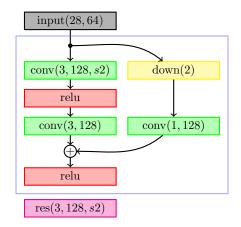


- residual unit, with a skip connection over the two convolutional layers and the ${\rm relu}$ between them

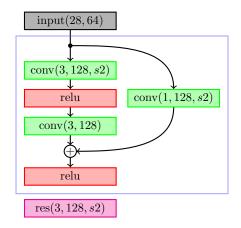
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ



• stride 2 in the first convolutional layer, along with downsampling on the skip connection



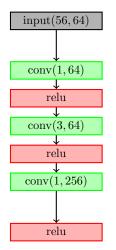
• increasing the number of features, along with a 1×1 convolution on the skip connection to project to the new feature space



- which is the same as a single 1×1 convolution with stride 2, both downsampling and projecting

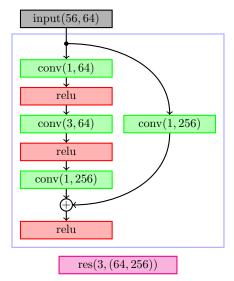
residual bottleneck unit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ



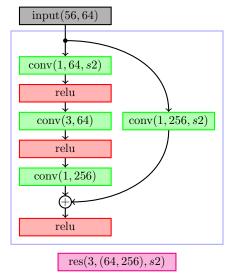
• "plain" bottleneck unit, with 1×1 convolutions

residual bottleneck unit



· residual bottleneck unit with a skip connection, always projecting

residual bottleneck unit



• stride 2 in the first convolutional and the skip layer

ResNet-34

		parameters	operations	volume
	input(224,3)	0	0	$224\times224\times3$
	$\operatorname{conv}(7, 64, p3, s2)$	9,472	118, 816, 768	$112\times112\times64$
	$\operatorname{pool}(3,2,p1)$	0	802, 816	$56\times 56\times 64$
$3 \times$	res(3, 64)	221,568	694, 837, 248	$56\times 56\times 64$
	res(3, 128, s2)	229,760	180, 182, 016	$28\times28\times128$
$3 \times$	res(3, 128)	885,504	694, 235, 136	$28\times 28\times 128$
	res(3, 256, s2)	918,272	180,006,400	$14\times14\times256$
$5 \times$	res(3, 256)	5,900,800	1, 156, 556, 800	$14\times14\times256$
	res(3, 512, s2)	3,671,552	179,918,592	$7\times7\times512$
$2 \times$	res(3, 512)	9,439,232	462, 522, 368	$7\times7\times512$
	avg(7)	0	25,088	512
	fc(1000)	513,000	513,000	1000
	softmax	0	1,000	1000

• $3 \times$ more operations but $3 \times$ less parameters comparing to AlexNet

・ロト ・ 国 ト ・ ヨト ・ ヨー ・ のへで

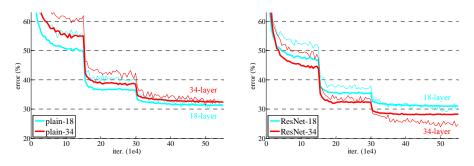
ResNet-101

		parameters	operations	volume
	input(224,3)	0	0	$224\times224\times3$
	$\operatorname{conv}(7, 64, p3, s2)$	9,472	118, 816, 768	$112\times112\times64$
	$\operatorname{pool}(3,2,p1)$	0	802, 816	$56\times 56\times 64$
$3 \times$	res(3, (64, 256))	214,400	672, 358, 400	$56\times 56\times 256$
	res(3, (128, 512), s2)	378, 112	296, 640, 512	$28\times28\times512$
$3 \times$	res(3, (128, 512))	837,888	656,904,192	$28\times28\times512$
	$\mathrm{res}(3,(256,1024),s2)$	1,509,888	296,038,400	$14\times14\times1024$
$22\times$	res(3, (256, 1024))	24, 544, 256	4,810,674,176	$14\times14\times1024$
	res(3, (512, 2048), s2)	6,034,432	295,737,344	$7\times7\times2048$
$2 \times$	res(3, (512, 2048))	8,919,040	437,032,960	$7\times7\times2048$
	avg(7)	0	100, 352	2048
	fc(1000)	2,049,000	2,049,000	1000
	softmax	0	1,000	1000

• $7 \times$ more operations but $1.5 \times$ less parameters comparing to AlexNet

・ロト ・ 国 ト ・ ヨト ・ ヨー ・ のへで

ResNet-34: ImageNet



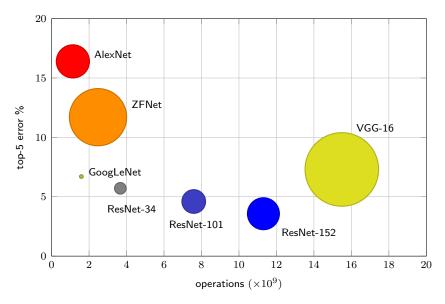
- a plain network exhibits degradation with increasing depth
- while a residual network gains from increasing depth

ResNet models

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^{9}	11.3×10^9	

• downsampling by 2 at layers conv3_1, conv4_1, conv5_1

network performance



Canziani, Culurciello and Paszke. 2016. An Analysis of Deep Neural Network Models for Practical Applications.

▲ロト ▲圖 → ▲ ヨ ト ▲ ヨ ト 一 ヨ - ・ の ۹ ()

identity mappings

[He et al. 2016]

- \mathbf{x}_i conv BN f_i relu conv BN relu \mathbf{x}_{i+1}
- original residual unit, with relu and BN shown separately, where *h* is relu

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + f_i(\mathbf{x}_i))$$

• re-designed unit, with a more direct path through skip connections, and relu and BN acting as pre-activation

$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

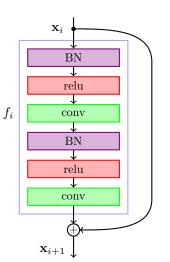
• recursively, there is a residual between any units $\ell_1,\,\ell_2$

$$\mathbf{x}_{\ell_2} = \mathbf{x}_{\ell_1} + \sum_{i=\ell_1}^{\ell_2-1} f_i(\mathbf{x}_i)$$

He, Zhang, Ren and Sun. ECCV 2016. Identity Mappings in Deep Residual Networks.

identity mappings

[He et al. 2016]



• original residual unit, with relu and BN shown separately, where h is relu

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + f_i(\mathbf{x}_i))$$

• re-designed unit, with a more direct path through skip connections, and relu and BN acting as pre-activation

$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

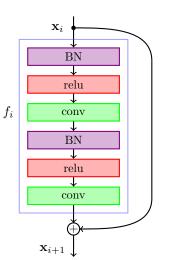
• recursively, there is a residual between any units $\ell_1, \, \ell_2$

$$\mathbf{x}_{\ell_2} = \mathbf{x}_{\ell_1} + \sum_{i=\ell_1}^{\ell_2-1} f_i(\mathbf{x}_i)$$

He, Zhang, Ren and Sun. ECCV 2016. Identity Mappings in Deep Residual Networks.

identity mappings

[He et al. 2016]



• original residual unit, with relu and BN shown separately, where *h* is relu

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + f_i(\mathbf{x}_i))$$

• re-designed unit, with a more direct path through skip connections, and relu and BN acting as pre-activation

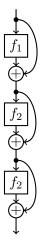
$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

• recursively, there is a residual between any units ℓ_1 , ℓ_2

$$\mathbf{x}_{\ell_2} = \mathbf{x}_{\ell_1} + \sum_{i=\ell_1}^{\ell_2-1} f_i(\mathbf{x}_i)$$

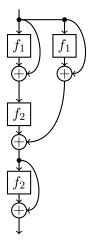
He, Zhang, Ren and Sun. ECCV 2016. Identity Mappings in Deep Residual Networks.

[Veit et al. 2016]



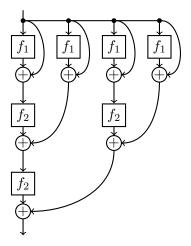
- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layer, most gradient comes from paths that are 10-34 layers deep

[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layer, most gradient comes from paths that are 10-34 layers deep

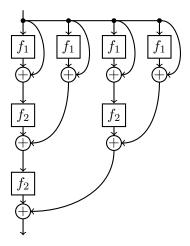
[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layer, most gradient comes from paths that are 10-34 layers deep

Veit, Wilber and Belongie. NIPS 2016. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.

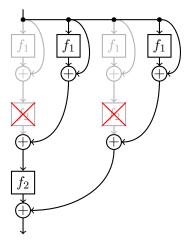
[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layer, most gradient comes from paths that are 10-34 layers deep

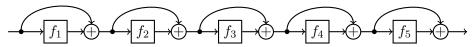
Veit, Wilber and Belongie. NIPS 2016. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.

[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layer, most gradient comes from paths that are 10-34 layers deep

[Huang et al. 2016]



- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{b}_i f_i(\mathbf{x}_i))$$

where $b_i \in \{0, 1\}$ a Bernoulli random variable

• at inference, use all layers weighted by survival probabilities $p_i = \mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

[Huang et al. 2016]

- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \frac{\mathbf{b}_i}{f_i}(\mathbf{x}_i))$$

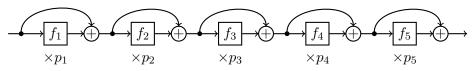
where $b_i \in \{0, 1\}$ a Bernoulli random variable

ullet at inference, use all layers weighted by survival probabilities $p_i = \mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

[Huang et al. 2016]



- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \frac{\mathbf{b}_i}{f_i}(\mathbf{x}_i))$$

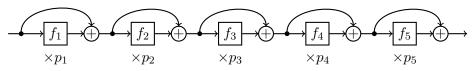
where $b_i \in \{0,1\}$ a Bernoulli random variable

• at inference, use all layers weighted by survival probabilities $p_i = \mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

[Huang et al. 2016]



- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \frac{\mathbf{b}_i}{f_i}(\mathbf{x}_i))$$

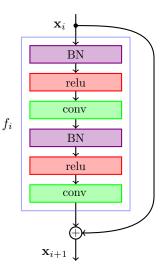
where $b_i \in \{0, 1\}$ a Bernoulli random variable

• at inference, use all layers weighted by survival probabilities $p_i = \mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

[Huang et al. 2017]



• residual unit with identity mapping: add

$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

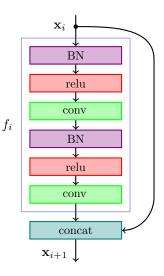
• densely connected unit: concatenate

 $\mathbf{x}_{i+1} = (\mathbf{x}_i, f_i(\mathbf{x}_i))$

- feature map dimension increases by growth rate k at each unit
- a dense block is a chain of densely connected units
- a transition layer reduces feature map dimension by a factor $\theta = 2$

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks. (ロト・イラト・イミト・マラト・マラト・マラト・マラー・マート

[Huang et al. 2017]



residual unit with identity mapping: add

$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

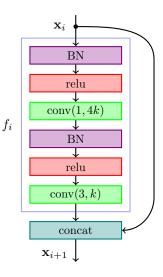
• densely connected unit: concatenate

$$\mathbf{x}_{i+1} = (\mathbf{x}_i, f_i(\mathbf{x}_i))$$

- feature map dimension increases by growth rate k at each unit
- a dense block is a chain of densely connected units
- a transition layer reduces feature map dimension by a factor $\theta = 2$

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks. (ロト・イラト・イミト・マラト・マラト・マラト・マラー・マート

[Huang et al. 2017]



• residual unit with identity mapping: add

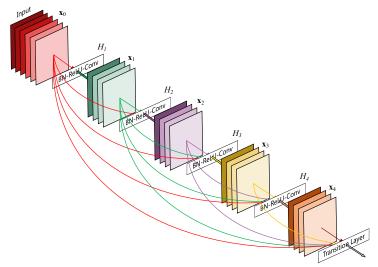
$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

• densely connected unit: concatenate

$$\mathbf{x}_{i+1} = (\mathbf{x}_i, f_i(\mathbf{x}_i))$$

- feature map dimension increases by growth rate k at each unit
- a dense block is a chain of densely connected units
- a transition layer reduces feature map dimension by a factor $\theta = 2$

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.



• dense block followed by transition layer

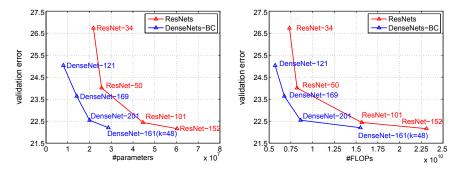
DenseNet models

Net-161 $(k = 48)$					
7×7 conv, stride 2					
3×3 max pool, stride 2					
$\begin{bmatrix} 1 \text{ conv} \\ 3 \text{ conv} \end{bmatrix} \times 6$					
1×1 conv					
2×2 average pool, stride 2					
$\begin{bmatrix} 1 \text{ conv} \\ 3 \text{ conv} \end{bmatrix} \times 12$					
1×1 conv					
2×2 average pool, stride 2					
$\begin{bmatrix} 1 \text{ conv} \\ 3 \text{ conv} \end{bmatrix} \times 36$					
1×1 conv					
$\begin{bmatrix} 1 \text{ conv} \\ 3 \text{ conv} \end{bmatrix} \times 24$					
7 × 7 global average pool					
1000D fully-connected, softmax					

• input is 224×224 ; first convolutional layer produces 2k features; transition layer reduces dimension and resolution by 2

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.

DenseNet vs. ResNet: ImageNet



- top-1 single-crop ImageNet validation error
- encourages feature re-use and reduces the number of parameters

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.

summary

- optimizers: gradient descent, momentum, RMSprop, Adam, Hessian-free
- initialization: Gaussian matrices, unit variance, orthogonal, data-dependent
- normalization: input, activation (batch), activation (layer), weight
- deeper architectures: residual networks, identity mappings, networks with stochastic depth, densely connected networks
- all parameters should be learned at the same rate, and all features computed by some layer should be re-used by the following layers
- initialization, normalization and architecture should be designed such that these properties hold initially and are maintained during training