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gradient descent
e update rule
XD = x(7) _ (™)

where

g™ = vf")



gradient descent

e update rule
(T+1)

7)

— x(M _ gl

where
g(T) — Vf(x(T))

e in a (continuous-time) physical analogy, if x(7) represents the position
of a particle at time 7, then —g(™) represents its velocity

= g =-Vi()

dx . x(7+1) _x(7)
(Where dx %)



gradient descent

e update rule
x(TH) = x(7) _ ¢g(7)

where

g™ = V")

e in a (continuous-time) physical analogy, if x(7) represents the position
of a particle at time 7, then —g(™) represents its velocity

dx
e g= V)

dx . x(T+D) _x(™)
(where & ~ X—=*—)
e in the following, we examine a batch and a stochastic version: in the

latter, each update is split into 10 smaller steps, with stochastic noise

added to each step (assuming a batch update consists of 10 terms)



(batch) gradient descent
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(batch) gradient descent
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(batch) gradient descent
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(stochastic) gradient descent

e = 0.07, iteration 10 x 0



(stochastic) gradient descent
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(stochastic) gradient descent
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(stochastic) gradient descent
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(stochastic) gradient descent
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(stochastic) gradient descent
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(stochastic) gradient descent
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(stochastic) gradient descent
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problems

e high condition number: oscillations, divergence
e plateaus, saddle points: no progress

e sensitive to stochastic noise



gradient descent

e inspector needs to walk down the hill

Artwork credit: https://the-fox-after-dark.deviantart.com/


https://the-fox-after-dark.deviantart.com/

gradient descent with momentum

f(=)

e inspector needs to walk down the hill

e it is better to go skiing!

Artwork credit: https://the-fox-after-dark.deviantart.com/


https://the-fox-after-dark.deviantart.com/

gradient descent with momentum
[Rumelhart et al. 1986]

e in the same analogy, if the particle is of mass m and moving in a
medium with viscosity u, now —g represents a (gravitational) force
and f the potential energy, proportional to altitude

d2x dx

Qian. NN 1999. On the Momentum Term in Gradient Descent Learning Algorithms.



gradient descent with momentum
[Rumelhart et al. 1986]

e in the same analogy, if the particle is of mass m and moving in a
medium with viscosity u, now —g represents a (gravitational) force
and f the potential energy, proportional to altitude

d2x dx

e this formulation yields the update rule
vt = qv(™) — g™
X(T—‘rl) — X(T) + V(T—‘rl)

where v := ‘;—7’_‘ ~ x(Tt1) _ x(7) represents the velocity, initialized to
2 T+1) _ (7 _
zero, Z_XNM Q="M g = &

2~ 5 ’ L m ! ‘T m

Qian. NN 1999. On the Momentum Term in Gradient Descent Learning Algorithms.



gradient descent with momentum
[Rumelhart et al. 1986]

e when g is constant, v reaches terminal velocity

o0
V(OO)Z—GgZOéTZ— ¢ g
7=0

l—«o

e.g. if & =0.99, this is 100 times faster than gradient descent

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



gradient descent with momentum
[Rumelhart et al. 1986]

e when g is constant, v reaches terminal velocity

)

€
v =gy =
7=0

e.g. if & =0.99, this is 100 times faster than gradient descent

e a € [0,1) is another hyperparameter with 1 — « representing viscosity;
usually @« = 0.9

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



(batch) momentum
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(batch) momentum
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Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.
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Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



(batch) momentum
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(batch) momentum

e = 0.14, iteration 6

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.
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(batch) momentum

e = 0.14, iteration 8

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



(batch) momentum
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Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



(stochastic) momentum
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(stochastic) momentum

x \Y
\\
\ \
\
\
\

WAL LA~

e = 0.07, iteration 10 x 2

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



(stochastic) momentum
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Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.
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e = 0.07, iteration 10 x 7

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



(stochastic) momentum
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(stochastic) momentum
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(stochastic) momentum
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(stochastic) momentum

e = 0.07, iteration 10 x 15

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



gradient descent with momentum

e good for high condition number: damps oscillations by its viscosity

» good for plateaus/saddle points: accelerates in directions with
consistent gradient signs

e insensitive to stochastic noise, due to averaging

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



adaptive learning rates

e the partial derivative with respect to each parameter may be very

different, especially e.g. for units with different fan-in or for different
layers

e we need separate, adaptive learning rate per parameter

Riedmiller and Braun. 1V 1992. RPROP - A Fast Adaptive Learning Algorithm.



adaptive learning rates

e the partial derivative with respect to each parameter may be very
different, especially e.g. for units with different fan-in or for different
layers

e we need separate, adaptive learning rate per parameter

e for batch learning, we can

e just use the the gradient sign
e Rprop: also adjust the learning rate of each parameter depending
on the agreement of gradient signs between iterations

Riedmiller and Braun. 1V 1992. RPROP - A Fast Adaptive Learning Algorithm.



RMSprop

[Tieleman and Hinton 2012]

e for mini-batch or online methods, we need to average over iterations

» sgng can be written as g/|g| (element-wise) and we can replace |g|
by an average

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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RMSprop

[Tieleman and Hinton 2012]

e for mini-batch or online methods, we need to average over iterations

e sgng can be written as g/|g| (element-wise) and we can replace |g|
by an average

¢ maintain a moving average b of the squared gradient g?, then divide

g by vb

b1 — gb(™ 4 (1 — B) <g<r>>2

D) (1) (r)

€
—F—F—8
S5+ vb(r+1)
where all operations are taken element-wise

o eg =09 06=108

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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(batch) RMSprop

e = 0.14, iteration 0

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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(batch) RMSprop

e = 0.14, iteration 1
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

(batch) RMSprop

x \
\
\\\ \\
\
\
\
\\ “

e = 0.14, iteration 3
Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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(batch) RMSprop
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(batch) RMSprop
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(batch) RMSprop
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(batch) RMSprop
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(batch) RMSprop

x \

€ = 0.14, iteration 13

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(batch) RMSprop
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(batch) RMSprop
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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e = 0.07, iteration 10 x 2
Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop
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(stochastic) RMSprop

e = 0.07, iteration 10 x 11
Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop
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e = 0.07, iteration 10 x 12

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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(stochastic) RMSprop
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop
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Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop

e

e = 0.07, iteration 10 x 18

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop

e

e = 0.07, iteration 10 x 19

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
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(stochastic) RMSprop

e

e = 0.07, iteration 10 x 20

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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RMSprop

¢ good for high condition number plateaus/saddle points: gradient is
amplified (attenuated) in directions of low (high) curvature

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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RMSprop

¢ good for high condition number plateaus/saddle points: gradient is
amplified (attenuated) in directions of low (high) curvature

e still, sensitive to stochastic noise

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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e RMSprop is averaging the squared gradient: 2nd order moment

bv+nzzﬁbw>+(1_ﬂ)(gwg2

D) (1) _ )

e
5+ Vb ©

where all operations are taken element-wise

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



e momentum is averaging the gradient: 1st order moment

a1 — qal™ 4 (")

<(T+1) a(m+D)

where all operations are taken element-wise

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



Adam

[Kingma and Ba 2015]

e momentum is averaging the gradient: 1st order moment
e RMSprop is averaging the squared gradient: 2nd order moment

e combine both: maintain moving average a (b) of gradient g (squared
gradient g2), then update by a/v/b

b1 — gb(™ 4 (1 — B) (g(r>>2

<) — (™) r+1)

al

€
5+ Vb0t

where all operations are taken element-wise
o eg a=09 8=0999, 6§ =108

e bias correction for small 7 not shown here

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



(batch) Adam

e = 0.14, iteration 0

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



(batch) Adam
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e = 0.14, iteration 1

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



(batch) Adam
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e = 0.14, iteration 2

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



(batch) Adam

e

e = 0.14, iteration 3

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



(batch) Adam
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e = 0.14, iteration 4

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



(batch) Adam

e = 0.14, iteration 5

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.
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e = 0.14, iteration 6

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.
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e = 0.14, iteration 7

d Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.
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d Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.



(stochastic) Adam

e = 0.07, iteration 10 x 0

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.
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e = 0.07, iteration 10 x 5

Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.
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Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization.
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Kingma and Ba. ICLR 2015. Adam: A Method for Stochastic Optimization
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learning rate

remember

o all these methods need to determine the learning rate
e to converge, the learning rate needs to be reduced during learning

set a fixed learning rate schedule, e.g.
€r = ege 7T

or, halve the learning rate every 10 epochs
adjust to the current behavior, manually or automatically

e if the error is decreasing slowly and consistently, try increasing €
o if it is increasing, fluctuating, or stabilizing, try decreasing ¢



second order optimization

e remember, the gradient descent update rule

X+ Z x() _ (g(7)

comes from assuming a second-order Taylor approximation of f

around x(7) with an fixed, isotropic Hessian H f(x) = 11 everywhere,

T e
and making its gradient vanish
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e remember, the gradient descent update rule
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comes from assuming a second-order Taylor approximation of f

around x(7) with an fixed, isotropic Hessian H f(x) = 11 everywhere,

T e
and making its gradient vanish

o if we knew the true Hessian matrix at x(7), we would get the Newton
update rule instead

KT+ = (") _ ()] -1g(™)

where

H = Hf(x)



second order optimization

e remember, the gradient descent update rule

X+ Z x() _ (g(7)

comes from assuming a second-order Taylor approximation of f

around x(7) with an fixed, isotropic Hessian H f(x) = 11 everywhere,

T e
and making its gradient vanish

o if we knew the true Hessian matrix at x(7), we would get the Newton
update rule instead

KT+ = (") _ ()] -1g(™)

where
H = Hf(x)

e unfortunately, computing and inverting H(™) is not an option



Hessian-free optimization
[Martens ICML 2010]

e Newton's method can solve all curvature-related problems

(7D — (1) ()] 1g(")

Martens. ICML 2010. Deep Learning via Hessian-Free Optimization.



Hessian-free optimization
[Martens ICML 2010]

e Newton's method can solve all curvature-related problems

(7D — (1) ()] 1g(")

e in practice, solve linear system
Hd = g™

by conjugate gradient (CG) method, where matrix-vector products of
the form H(7v are computed by back-propagation

Martens. ICML 2010. Deep Learning via Hessian-Free Optimization.



“well begun is half done”

initialization



remember CIFAR10 experiment?

prepare
e vectorize 32 x 32 x 3 images into 3072 x 1

e split training set e.g. into Nyain = 45000 training samples and
nyal = D000 samples to be used for validation

e center vectors by subtracting mean over the training samples

o initialize network weights as Gaussian with standard deviation 1074



remember CIFAR10 experiment?

prepare
e vectorize 32 x 32 x 3 images into 3072 x 1

e split training set e.g. into Nyain = 45000 training samples and
nyal = D000 samples to be used for validation

e center vectors by subtracting mean over the training samples
o initialize network weights as Gaussian with standard deviation 1074
learn

e train for a few iterations and evaluate accuracy on the validation set
for a number of learning rates € and regularization strengths A

e train for 10 epochs on the full training set for the chosen
hyperparameters; mini-batch m = 200

e evaluate accuracy on the test set



result

e linear classifier: test accuracy 38%

e two-layer classifier, 200 hidden units, relu: test accuracy 51%



result

e linear classifier: test accuracy 38%
e two-layer classifier, 200 hidden units, relu: test accuracy 51%

e eight-layer classifier, 100 hidden units per layer, relu: nothing works
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e vectorize 32 x 32 x 3 images into 3072 x 1

e split training set e.g. into Nyain = 45000 training samples and
nyal = D000 samples to be used for validation

e center vectors by subtracting mean over the training samples
o initialize network weights as Gaussian with standard deviation 1074
learn

e train for a few iterations and evaluate accuracy on the validation set
for a number of learning rates € and regularization strengths A

e train for 10 epochs on the full training set for the chosen
hyperparameters; mini-batch m = 200

e evaluate accuracy on the test set



CIFAR10 experiment, again

prepare
e vectorize 32 x 32 x 3 images into 3072 x 1

e split training set e.g. into nyrin = 45000 training samples and
nyal = D000 samples to be used for validation

e center vectors by subtracting mean over the training samples
e initialize network weights as Gaussian with standard deviation 1074
learn

e train for a few iterations and evaluate accuracy on the validation set
for a number of learning rates € and regularization strengths A

e train for 10 epochs on the full training set for the chosen
hyperparameters; mini-batch m = 200

e evaluate accuracy on the test set
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o k x k' weight matrix W, k&’ x 1 bias vector b

a=W'x+b, x' =h(a)=h(W'x+Db)



affine layer initialization

o k x k" weight matrix W, K/ x 1 bias vector b
a=W'x+b, x' =h(a)=h(W'x+Db)

weights
e each element w of W can be drawn at random, e.g.
o Gaussian w ~ N(0,0?), with Var(w) = o2
o uniform w ~ U(—a,a), with Var(w) = 0?2 = %2

e in any case, it is important to determine the standard deviation o,
which we call weight scale



affine layer initialization

o k x k" weight matrix W, K/ x 1 bias vector b
a=W'x+b, x' =h(a)=h(W'x+Db)

weights

e each element w of W can be drawn at random, e.g.

o Gaussian w ~ N(0,0?), with Var(w) = o?
o uniform w ~ U(—a,a), with Var(w) = 02 = %2

e in any case, it is important to determine the standard deviation o,
which we call weight scale

biases
e can be again Gaussian or uniform
e more commonly, constant e.g. zero

e the constant depends on the activation function h and should be
chosen such that A does not saturate or ‘die’



weight scale sensitivity
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weight scale o

o using NV(0,0?), training on a small subset of the training set and
cross-validating o reveals a narrow peak in validation accuracy



weight scale sensitivity

e to understand why, we measure the distribution of features x in all
layers, starting with Gaussian input ~ N(0,1)

e we repeat with and without relu nonlinearity

e in each case, we try three different values of quantity ko
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linear units, input—layer 2
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linear units, input-layer 3

ko? =3/2

ko? =2/3
2.5 ‘ ‘ ‘ 0.5
2+ g 0.4 |
1.5 | g 0.3 |
1+ g 0.2 |-
0.5 |- A g 0.1
0 -2 0 2 0—6
ko2 =1
0.5 ‘ ‘
0.4 [ g
0.3 |- /\ B

|




linear units, input—layer 4
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linear units, input—layer 5
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linear units, input—layer 6
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linear units, input-layer 7
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linear units, input—layer 8
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linear approximation

e assuming we are in a linear regime of the activation function,
forward-backward relations are, recalling W is k x &k’

X' =W'x+b, dx=Wdx', dW =x(dx')"

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



linear approximation

e assuming we are in a linear regime of the activation function,
forward-backward relations are, recalling W is k x &k’

X' =W'x+b, dx=Wdx', dW =x(dx')"

o forward: assuming w;; are i.i.d, Var(z;) are the same, w;; and z; are
independent, and w;;, x; are centered, i.e. E(w;;) = E(z;) =0,

Var(z;) = Var <(WTx)j) = k Var(w) Var(z) = ko’ Var(z)
e backward, activation: under the same assumptions,

Var(dz;) = Var (Wdx');) = k' Var(w) Var(da') = k'c” Var(dz')

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



linear approximation

e assuming we are in a linear regime of the activation function,
forward-backward relations are, recalling W is k x &k’

X' =W'x+b, dx=Wdx', dW =x(dx')"

o forward: assuming w;; are i.i.d, Var(z;) are the same, w;; and z; are
independent, and w;;, x; are centered, i.e. E(w;;) = E(z;) =0,

Var(z;) = Var <(WTx)j) = k Var(w) Var(z) = ko’ Var(z)
e backward, activation: under the same assumptions,
Var(dz;) = Var (Wdx');) = k' Var(w) Var(da') = k'c” Var(dz')
o backward, weights: also assuming that x;, dz; are independent,

Var(dw;;) = Var(z;) Var(dz})

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



linear approximation

o if ko? < 1, activations vanish forward; if ko2 > 1 they explode,
possibly driving nonlinearities to saturation

o if k'0? < 1, activation gradients vanish backward; if &’o? > 1 they
explode, and everything is linear backwards

e interestingly, weight gradients are stable (why?), but only at
initialization

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



“Xavier” initialization
[Glorot and Bengio 2010]

o forward requirement is 02 = 1/k
e backward requirement is 02 = 1/k/
e as a compromise, initialize according to
2__2
k+ K

Glorot and Bengio. AISTATS 2010. Understanding the Difficulty of Training Deep Feedforward Neural Networks.



a simpler alternative
[LeCun et al. 1998]

e however, any of these alternatives would do

1 1
2 2
o°=—, or = —
k k'
in the sense that if the forward signal is properly initialized, then so is
the backward signal, and vice versa (why?)

e so, initialize according to

Lecun, Bottou, Orr and Miiller. 1998. Efficient Backprop.
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relu units, input—layer 4
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relu units, input—layer 5
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relu units, input—layer 6
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relu units, input—layer 8
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relu (“Kaiming/MSRA”) initialization

[He et al. 2015]

e because relu squeezes half of the volume, a corrective factor of 2
appears in the expectations of both forward and backward

e so any of the following will do

He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classifi-
cation.



relu (“Kaiming/MSRA”) initialization

Error
°
&

1 1.
—_ Eﬁ,Var[w[] =1 ours _ Eanar[wl] =1 ours

0.8
----- aVarlw] =1 Xavier 0TS e yVarfwy] =1 Xavier
o7 05 1 15 P 25 3 o 1 2 3 4 5 6 7 8 9
Epoch Epoch
22 layers 30 layers

o Xavier converges more slowly or not at all

o 30-layer network trained from scratch for the first time, but has worse
performance than a 14-layer network

He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classifi-
cation.



convolutional layer initialization
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e a convolutional layer is just an affine layer with a special matrix
structure

e it is actually represented by a 4d tensor w of size r?kk’, where r is the
kernel size and k, k’ the input/output features
e initialization is the same, but with
e fan-in k replaced by 72k
e fan-out k' replaced by r2k’
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beyond Gaussian matrices

for linear and relu units, we can now keep the signal variance constant
across layers, both forward and backward

but this just holds on average
how exactly are signals amplified or attenuated in each dimension?
how does that affect the learning speed?

we return to the linear case and examine the singular values of a
product Wg - -- W7 of Gaussian matrices
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matrices as numbers
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e singular values of k x k Gaussian matrix W with elements

~ N(0,0?%), for k = 100 and for different values of ko?

e a product Wg--- Wi of £ = 8 such matrices has the same behavior as
raising a scalar w’: vanishing for w < 1, exploding for w > 1



orthogonal initialization
[Saxe et al. 2014]

e choose k x k' matrix W to be a random (semi-)orthogonal matrix, i.e.
W'W=Tifk>KandWW' =Tifk <k

o for instance, with a random Gaussian matrix followed by QR or SVD
decomposition

Saxe, McClelland and Ganguli. ICLR 2014. Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks.
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orthogonal initialization
[Saxe et al. 2014]

e choose k x k' matrix W to be a random (semi-)orthogonal matrix, i.e.
W'W=Tifk>KandWW' =Tifk <k

e for instance, with a random Gaussian matrix followed by QR or SVD
decomposition

¢ a scaled Gaussian matrix has singular values around 1 and preserves
norm on average

Eppenr(o1/i (X W W) = x

e a random orthogonal matrix has singular values exactly 1 and
preserves norm exactly

x W Wx =x"x

a product of orthogonal matrices remains orthogonal, while a product
of scaled Gaussian matrices becomes strongly non-isotropic

Saxe, McClelland and Ganguli. ICLR 2014. Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks.



data-dependent initialization

orthogonal initialization only applies to linear layers

relu requires analyzing input-output variances to find the corrective
factor of 2

it is not possible to do this theoretical derivation for any kind of
nonlinearity, e.g. maxout, max-pooling, normalization etc.

a practical solution is to use actual data at the input of the network
and compute weights according to output statistics



layer-sequential unit-variance (LSUV) initialization
[Mishkin and Matas 2016]

e begin by random orthogonal initialization

e then, for each affine layer (W, b), measure output variance over a
mini-batch (not per feature) and iteratively normalize it to one

def Isuv(batch, (W, b), 7 =0.1):
=0
while |0 — 1| > 7:
X = batch()
Y =dot(X,W)+b
o =std(Y)
W =W/o
return (W, b)
e as given by batch(), we use a new mini-batch per iteration and feed it
forward through the network until we reach the input X of that layer
o Xismxk, Wiskxk,Y ism x k', where m is the mini-batch size

Mishkin and Matas. ICLR 2016. All You Need Is a Good Init.



within-layer initialization
[Krahenbiihl et al. 2016]

e computed on a single mini-batch, non-iterative
e measure both mean and variance, initialize both bias and weights
e measurements are per feature
def within(X, (W,b)):
Y =dot(X,W)+b
p, o =meang(Y),stdo(Y)
W,b=W/o,—u/o
return (W, b)
e vector operations are element-wise

e matrix-vector operations are broadcasted

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization

» weights initialized by PCA or (spherical) k-means on mini-batch
samples

e within-layer initialization normalizes affine layer outputs to zero mean,
unit variance

e between-layer initialization iteratively normalizes weights and biases of
different layers

e as a result, all parameters are learned at the same “rate”

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization: CaffeNet

7 7 T T
—— Reference
—— MSRA
U 6 —— Random (ours) ]

—— K-Means (ours)

50 51 —— K-means, no Irn (ours) | |

4t 4l

3 = Il Il Il Il Il Il Il Il

0K 2K 4K 6K 8K 10K 0K 2K 4K 6K 8K 10K
training loss validation loss

e data-dependent initialization is better at first 100k iterations

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization: CaffeNet

| | | | B 2 | | | |
0K 20K 40K 60K 80K 100K 0K 20K 40K 60K 80K 100K

training loss validation loss

e data-dependent initialization is better at first 100k iterations

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization: CaffeNet
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e data-dependent initialization is better at first 100k iterations

e but random initialization catches up after the second learning rate
drop

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization: CaffeNet
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nearest neighbors of given input image in feature space

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization

o PCA is orthogonal but data-dependent rather than random

e [-means is non-orthogonal, but centroids are still only weakly
correlated

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



data-dependent initialization

e PCA is orthogonal but data-dependent rather than random

e /-means is non-orthogonal, but centroids are still only weakly
correlated
e we cannot fail to notice that
e codebooks are now the initial weights, computed layer-wise
e bag-of-words representations are now the initial features
e compared to the conventional approach, now the entire pipeline
is optimized end-to-end

Krahenbiihl, Doersch, Donahue and Darell. ICLR 2016. Data-Dependent Initializations of Convolutional Neural Networks.



normalization



input normalization: zero mean, unit variance

e input X is an n X d matrix, where n is the number of samples and d
is the dimension of a vectorized image

e measure empirical mean and variance and normalize per dimension
def norm(X):
p, 0 = meangy(X),stdo(X)
return (X — p)/o

e measurements are exactly as in within-layer initialization, only now the
input X is normalized, not the parameters W, b
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input normalization: PCA and whitening

center data to zero mean as before

using SVD, measure the eigenvalues o and eigenvectors V' of the
covariance matrix £ X T X

PCA-rotate by V! = VT to decorrelate the data
whiten by 1/o to unit variance

def whiten(X):
n = X.shape[0]
X —= meany(X)
U,o,V =svd(X/sqrt(n))
return dot(X,V ") /o
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input normalization: PCA and whitening
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input

centering
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in practice: only centering

e the network is expected to discover nonlinear manifold structure, so in
principle it should have no difficulty discovering the linear PCA +
whitening structure



in practice: only centering

e the network is expected to discover nonlinear manifold structure, so in
principle it should have no difficulty discovering the linear PCA +
whitening structure

e in practice, only centering is enough:

e subtract the mean value per pixel (mean image)

e subtract the mean value per color channel (mean color or
intensity, just one or three scalars)



why is centering important?

o each weight derivative dw; of layer 1 is (da)x; where da is the
derivative of the activation and x; is the corresponding input

e if all inputs are positive, then updates on weights w; are either all
positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)

w2
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Q3

Lecun, Bottou, Orr and Miiller. 1998. Efficient Backprop.
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why is centering important?

o each weight derivative dw; of layer 1 is (da)x; where da is the
derivative of the activation and x; is the corresponding input

e if all inputs are positive, then updates on weights w; are either all
positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)
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e weights can only all increase or all decrease together for a given sample

e to follow the direction of w, we can only do so by zig-zagging

Lecun, Bottou, Orr and Miiller. 1998. Efficient Backprop.



activation normalization

e if normalization is important at the input, why not at every layer
activation?

e this is even more important in the presence of saturating nonlinearities:
given a wrong offset or scale, activation functions can ‘die’

e and even more important in the presence of stochastic updates, where
statistics change at every mini-batch and at every update (internal
covariate shift)



activation functions
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activation functions: non-localized

0(7) = o=

sigmoid

x

tanh(z) = &=

e = 20(x) —1
hyperbolic tangent
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relu(z) = [z]4+ = max(0, x)
rectified linear unit (ReLU)

((z) =log(1 +€”)
softplus



activation functions: centering

—10 -5 0 5 10

o(x) = H% relu(z) = [z]4+ = max(0, x)

sigmoid rectified linear unit (ReLU)

x

tanh(z) = &=

St = 20(x) —1 ((x) =log(l +e”)
hyperbolic tangent softplus



activation functions: centering

Nair and Hinton. ICML 2010. Rectified Linear Units Improve Restricted Boltzmann Machines.



activation functions: centering

f(z) = max(azx, )
leaky ReLU: o = 0.01

Maas, Hannun and Ng. ICML 2013. Rectifier Nonlinearities Improve Neural Network Acoustic Models.



activation functions: centering

f(z) = max(ax, x)
parametric ReLU: « is learned

He, Zhang, Ren and Sun. ICCV 2015. Delving Deep Into Rectifiers: Surpassing Human-Level Performance on Imagenet Classifi-
cation.



activation functions: centering

f(z) = max(az, v) fx) = maxj(w;rx +b;)
parametric ReLU: « is learned maxout

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.



activation functions: centering

f(z) = max(az, v) fx) = maxj(w;rx +b;)
parametric ReLU: « is learned maxout

x, ifz>0
f(a:)—{ ae® —1), ifz<0
exponential linear unit (ELU)

Clevert, Unterthiner and Hochreiter 2015. Fast and Accurate Deep Network Learning By Exponential Linear Units (ELUs).



activation functions: self-normalizing!

f(z) = max(az, v) fx) = maxj(w;rx +b;)
parametric ReLU: « is learned maxout

x, ifz>0 . x, ifz>0
f(a:)—{ ae® —1), ifz<0 f(x)—)\{ ae®—=1), ifz<0
exponential linear unit (ELU) scaled ELU (A > 1)

Klambauer, Unterthiner, Mayr and Hochreiter 2017. Self-Normalizing Neural Networks.



batch normalization (BN)
[loffe and Szegedy 2015]

conv (5, 32)

o if x = (z1,...,x) is the activation or feature
relu at any layer, normalize it element-wise

It

A~

= v —E@)

St ——
conv(5, 64) J \ /Var(xj)

to have zero-mean, unit-variance, where [E and
Var are empirical over the training set

-
@
2,
=

fc(100)

relu

1

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization (BN)
[loffe and Szegedy 2015]

conv(5, 32)

o if x = (z1,...,x) is the activation or feature
at any layer, normalize it element-wise

zj — E(z;)

= / Var(z;)

to have zero-mean, unit-variance, where [E and
Var are empirical over the training set

A~

e insert this layer after convolutional or
fully-connected layers and before nonlinear
activation functions

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization (BN)
[loffe and Szegedy 2015]

o if x = (z1,...,x) is the activation or feature
at any layer, normalize it element-wise

zj — E(z;)

= \/Var(z;)

to have zero-mean, unit-variance, where [E and
Var are empirical over the training set

A~

e insert this layer after convolutional or
fully-connected layers and before nonlinear
activation functions (although this is not clear)

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: parameters

e normalized features may remain in the linear regime of the following
nonlinearity, limiting the representational power of the network

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: parameters

e normalized features may remain in the linear regime of the following
nonlinearity, limiting the representational power of the network

e introduce parameters B = (51,...,8k), ¥ = (7,-..,7) and let the
output of the BN layer be y = (y1,. .., yx) with

Yj =% + B

or, element-wise,
y=7x+0

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: parameters

e normalized features may remain in the linear regime of the following
nonlinearity, limiting the representational power of the network

e introduce parameters B = (51,...,8k), ¥ = (7,-..,7) and let the
output of the BN layer be y = (y1,. .., yx) with

Yj =% + B

or, element-wise,
y=9x+0
e then, with
Bj =E(z;), v =1/ Var(z;)

we can recover the identity mapping if needed

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: training

e as the name suggests, BN learns using the mini-batch statistics

e given an index set I of mini-batch samples with |I| = m, the BN layer
with parameters 3, -y yields, for each sample feature x; with i € I,

X; —
vi = BNg4(x;) := ’Y\/ZinTg + 0

(element-wise), where p;, vy are the mini-batch mean and variance

KHr = ’nl,LZXZ

1
vri= o D (% — pp)?

i€l

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: inference

e at inference, BN operates with global statistics

e given a test sample feature x, the BN layer with parameters 3, ~
yields (element-wise)

= BN (x) 1= y—— +

where p, v are moving averages of the training set mean and
variance, updated at every mini-batch I during training as

p = apl™ 4 (1 - ),

v = v 4 (1 - a)v;

so they track the accuracy of the model as it trains

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: derivatives

e input mini-batch m x k matrix X, output m x k matrix Y

o forward
Y =BN(X, (8,7))

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: derivatives

e input mini-batch m x k matrix X, output m x k matrix Y
e forward
Y =BN(X, (8,7))

e backward: exercise

dX =...dy ...
dB=...dY
dy=...dY ...

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



batch normalization: convolution

e same as fully-connected, only now mean and variance are computed
per feature map rather than per feature

e j.e. we average over mini-batch samples and spatial positions

e if feature map volumes are w x h X k, the effective mini-batch size at
training becomes m’ = mwh, and

= 303 xiln]

i€l n

VI i= % ZZ(Xi[n] - )’

i€l n

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift.



remember weight scale sensitivity?
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o using NV(0,0?), training on a small subset of the training set and
cross-validating o reveals a narrow peak in validation accuracy



remember weight scale sensitivity?

TTTTTTT T T TTTTTT T T 1T T T 117717 T T I T T T TT00 T

03| —e— 8-layer
—e— 8-layer+BN

0.25 -

e

=

S}
[

validation accuracy
=)
no
T

<
=

L] IR IR Lol IR I 1 —
10~4 1073 102 10! 100 10!

weight scale o

o using NV(0,0?), training on a small subset of the training set and
cross-validating o reveals a narrow peak in validation accuracy

e BN allows convergence over a much wider range of weight scales



batch normalization: weight scale

e if BN is connected at the output activation of an affine layer
a=W'x+b, x' =h(a)=h(W'x+b)
the bias b is absorbed into 3 and the layer is replaced by
x' = h(BN(W "x))

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift



batch normalization: weight scale

e if BN is connected at the output activation of an affine layer
a=W'x+b, x' =h(a)=h(W'x+Db)
the bias b is absorbed into 3 and the layer is replaced by
x' = h(BN(W "x))
e the layer and its Jacobian are then unaffected by weight scale

BN(aW "x) = BN(W "x)
OBN(aW'x)  OBN(W 'x)
ox N 0x

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift



batch normalization: weight scale
e if BN is connected at the output activation of an affine layer
a=W'x+b, x' =h(a)=h(W'x+Db)
the bias b is absorbed into 3 and the layer is replaced by
x' = h(BN(W "x))
e the layer and its Jacobian are then unaffected by weight scale
BN(aW "x) = BN(W "x)
OBN(aW'x)  OBN(W 'x)
ox ox

e moreover, larger weights yield smaller gradients, stabilizing growth

OBN(aW 'x)  19BN(W 'x)
daW)  a ow

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift



batch normalization: modified GooglLeNet

0.8
>
Q
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(]
c
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=]
o}
=l - — — —lInception
© o == BN-Baseline
> o541 i BN-X5
- ol BN-x30
8— 1 4+ BN-x5-Sigmoid
o 4 4 Steps to match Inception
0.4 1 T T T
5M 10M 15M 20M 25M 30M
training iteration
e allows to

e increase learning rate, accelerate learning rate decay

e reduce weight decay, reduce or remove dropout

e remove data augmentation such as photometric distortions
e remove local response normalization

loffe and Szegedy. ICML 2015. Batch Normalization: Accelerating Deep Network Training By Reducing Internal Covariate Shift



layer normalization
[Ba et al. 2016]

e the LN layer with parameters 3, -y yields, for each sample feature
X = (Z1,...,%x),

X_
y = LNg 4 (x) ::’y\/qT'ué +0

(element-wise), where u, v are the sample mean and variance

e training and inference are now identical and independent of mini-batch

Ba, Kiros and Hinton 2016. Layer Normalization.



weight normalization
[Salimans and Kingma 2016]

o considering a single affine unit y = h(wx + b), weights w are

re-parametrized
v

= g—
v
e its derivatives are given by
TV T 9 T vv’
dg=dw ——, dv = —wdw ([—-—>
v v Il

e dw is scaled by ﬁ and projected in a direction normal to v (and w)

e during learning, ||v|| increases monotonically: ||V(T+1)H > HV(T)H
o if ||dv]| is large, the scaling factor ﬁ decreases; and if it is small,
||v]| stops increasing: the effect is similar to RMSprop

Salimans and Kingma. NIPS 2016. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural
Networks.



summary (so far)

o the deeper the network, the more we need to learn all parameters at
the same rate

e in the absence of second order derivatives, optimizers attempt to do
so by moving averages and normalization over the training iterations



summary (so far)

the deeper the network, the more we need to learn all parameters at
the same rate

in the absence of second order derivatives, optimizers attempt to do
so by moving averages and normalization over the training iterations
initialization should be designed such that activations, their derivatives
and parameter derivatives are initially well balanced

it is more effective to modify the objective function itself such that
these properties are maintained during optimization



deeper architectures



going even deeper

56-layer

20-layer

test error (%)

2 3 4
iter. (1ed)

e when initialization, normalization and optimization are appropriately
addressed, we can train networks with 50 layers “from scratch”

e a degradation of test error is now exposed with increasing depth,
which looks like overfitting (CIFAR10 shown here)

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



going even deeper

20, 20,
S 9 56-layer
S g
5w S 20-layer
2 56-layer %
c
@ -~
= 20-layer
0 ‘2 : : 0 5 6

5

‘3 ;‘; 2 . 3 4
iter. (1e4) iter. (1ed)

e when initialization, normalization and optimization are appropriately
addressed, we can train networks with 50 layers “from scratch”

e a degradation of test error is now exposed with increasing depth,
which looks like overfitting (CIFAR10 shown here)

e however, the same degradation appears also at training error

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



remember GooglLeNet auxiliary classifiers?

input

conv

conv

o e GoogleNet has two auxiliary
el classifiers that are discarded at
inference
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e these classifiers inject gradient
signal deeper backwards




remember GooglLeNet auxiliary classifiers?

pool
-
e GoogleNet has two auxiliary
] classifiers that are discarded at
_mc inference
pool . - .
e these classifiers inject gradient
inc signal deeper backwards

we now transform the network in
ways that are not necessarily
equivalent, but maintain this
backward flow pattern
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remember GooglLeNet auxiliary classifiers?

input

pool

_: e GoogleNet has two auxiliary

el classifiers that are discarded at
] inference
e these classifiers inject gradient

signal deeper backwards

pool

e we now transform the network in
ways that are not necessarily
equivalent, but maintain this
backward flow pattern




remember GooglLeNet

input

pool

conv L4

pool

pool

auxiliary classifiers?

GoogleNet has two auxiliary
classifiers that are discarded at
inference

these classifiers inject gradient
signal deeper backwards

we now transform the network in
ways that are not necessarily
equivalent, but maintain this
backward flow pattern

the result is two skip
connections that can be
maintained at inference



skip connections are not new

the network diagram:

represents a four-layer series-coupled system, whereas the diagram

represents a three-layer cross coupled system, since all A-units are at

least the same logical distance from the sensory units (see Definition 18,

Rosenblatt 1962. Principles of Neurodynamics.



ImageNet classification performance
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residual networks
[He et al. 2016]

V6619 3adayerplain  34-layer residual

3.57% top-5 error on ILSVRC'15

e won first place on several
ILSVRC and COCO 2015 tasks

e depth increased to 152 layers,
kernel size mostly 3 x 3

e residual unit repeated up to 50
times

e 1 x 1 kernels used as
“bottleneck” layers

e up to 10x more operations but
same parameters as AlexNet

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



skip connections and residual

e “plain” unit: f is the mapping

y = f(x)

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



skip connections and residual

e “plain” unit: f is the mapping

y = f(x)

e residual unit: f is the residual

y =x+ f(x)

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



skip connections and residual

e “plain” unit: f is the mapping

x
y = f(x)
e residual unit: f is the residual
@
v y =x+ f(x)

e by copying the features of a shallow model and setting the new
mapping to the identity, a deeper model performs at least as well as
the shallow one

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



skip connections and residual

e “plain” unit: f is the mapping

x
y = f(x)
e residual unit: f is the residual
@
v y =x+ f(x)

e by copying the features of a shallow model and setting the new
mapping to the identity, a deeper model performs at least as well as
the shallow one

e “if an identity mapping were optimal, it would be easier to push a
residual to zero than to fit an identity mapping by a stack of nonlinear
layers”

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

| input(56, 64) |

conv(3,64)

relu

e “plain” unit, with nonlinearities shown separately, and batch
normalization included in each convolutional layers

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

| input(56, 64) |

res(3,64)

e residual unit, with a skip connection over the two convolutional layers
and the relu between them

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

input(56, 64)

res(3, 64, s2)

e stride 2 in the first convolutional layer, along with downsampling on
the skip connection

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

input(28,64)

| conv(3, 128) || conv(1,128) |

+

res(3, 128, s2)

e increasing the number of features, along with a 1 x 1 convolution on
the skip connection to project to the new feature space

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual unit

| input(28,64) |

conv(3,128, s2)

| relu | | conv(1,128,52) |

conv(3, 128)

res(3, 128, s2)

e which is the same as a single 1 x 1 convolution with stride 2, both
downsampling and projecting

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual bottleneck unit

| input (56, 64) |

conv(1,256)

relu

e “plain” bottleneck unit, with 1 x 1 convolutions

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual bottleneck unit

| input(56, 64) |

conv(1,64)

| conv(3,64) | | conv(1,256) |

[ res(3,(64,256)) |

e residual bottleneck unit with a skip connection, always projecting

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



residual bottleneck unit

| input(56, 64) |

conv (1,64, s2)

| conv(3,64) | |conv(1,256,52)|

| res(3, (64,256),52) |

o stride 2 in the first convolutional and the skip layer

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet-34

parameters operations volume
input (224, 3) 0 0 224x224x3
conv(7, 64, p3, 52) 9,472 118,816,768 112 x 112 x 64
pool(3,2,pl) 0 802,816 56 x 56 x 64
3x res(3,64) 221, 568 694,837,248 56 x 56 x 64
res(3, 128, s2) 229,760 180,182,016 28 x 28 x 128
3x res(3,128) 885, 504 694,235,136 28 x 28 x 128
res(3, 256, s2) 918,272 180,006,400 14 x 14 x 256
5% res(3, 256) 5,900,800 1,156,556,800 14 x 14 x 256
res(3,512, s2) 3,671,552 179,918, 592 7T X7 x512
2x| res(3,512) | 9,439,232 462,522,368 7 x T x 512
avg(7) 0 25,088 512
£c(1000) 513,000 513,000 1000

e 3X more operations but 3x less parameters comparing to AlexNet

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet-101

parameters operations volume
input (224, 3) 0 0 224x224x3
conv (7,64, p3, s2) 9,472 118,816,768 112 x 112 x 64
pool(3,2,pl) 0 802,816 56 x 56 x 64
3% res(3, (64, 256)) 214,400 672,358,400 56 x 56 x 256
res(3, (128,512), s2) 378,112 296,640,512 28 x 28 x 512
3x| res(3,(128,512)) 837,888 656,904,192 28 x 28 x 512

res(3, (256, 1024), s2) | 1,509,838 296,038,400 14 x 14 x 1024
22x[ res(3,(256,1024)) | 24,544,256 4,810,674,176 14 x 14 x 1024
res(3, (512,2048),52) | 6,034,432 295,737,344 7 x 7 x 2048
2x[ res(3, (512,2048)) | 8,919,040 437,032,960 7 x 7 x 2048

avg(7) 0 100, 352 2048
fc(1000) 2,049,000 2,049,000 1000

e 7x more operations but 1.5x less parameters comparing to AlexNet

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet-34: ImageNet

error (%)
error (%)

—ResNet-34 34-layer

0 10 20 30 40 50 0 10 20 30 40 50
iter. (1e4) iter. (1e4)

¢ a plain network exhibits degradation with increasing depth

e while a residual network gains from increasing depth

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



ResNet models

layer name | output size 18-layer ‘ 34-layer ‘ 50-layer 101-layer 152-layer
convl 112x112 7x7, 64, stride 2
3x3 max pool, stride 2
1x1,64 ] [ 1x1,64 ] 1x1,64 ]
comvZX | 56356 [ gi: gj }xz { gi?gi }x,ﬁ 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
> > | 1x1,256 | | 1x1,256 | | 1x1,256 |
[ 1x1,128 ] [ 1x1,128 ] [ 1x1,128 ]
comv3x | 28x28 [zig gg ]xz [gii :jg ]x4 3x3,128 | x4 | | 3x3,128 | x4 3x3,128 |8
> ’ | 1x1,512 | | 1x1,512 | | 1x1,512 |
1x1,256 ] 1x1,256 ] 1x1,256 ]
convdx | 14x14 [ ;i: ;gg ]xz [ ;i: ;22 ]x6 3x3,256 | x6 3x3,256 | x23 3x3,256 | %36
> > | 1x1,1024 | 1x1,1024 | 1x1,1024 |
[ 1x1,512 ] [ 1x1,512 [ 1x1,512 ]
comSx | Tx7 [ ;i;gg ]xz [ gi;gi; ]x3 33,512 | x3 | | 3x3,512 |x3 | | 3x3.512 |x3
’ ’ | 1x1,2048 | | 1x1,2048 | | 1x1,2048 |
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° [ 3.6x107 ] 3.8x10° [ 7.6x10° [ 11.3x107

e downsampling by 2 at layers conv3_1, conv4_1, conv5_1

He, Zhang, Ren, Sun. CVPR 2016. Deep Residual Learning for Image Recognition.



network performance
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Canziani, Culurciello and Paszke. 2016. An Analysis of Deep Neural Network Models for Practical Applications.



identity mappings
[He et al. 2016]

o original residual unit, with relu and BN
X; | shown separately, where h is relu

conv Xi+1 = h(x; + fi(x;))

fi

\

relu
Xi41

He, Zhang, Ren and Sun. ECCV 2016. Identity Mappings in Deep Residual Networks.




identity mappings
[He et al. 2016]

o original residual unit, with relu and BN
shown separately, where h is relu

B;\ Xip1 = h(x; + fi(xi))

relu

e re-designed unit, with a more direct
path through skip connections, and relu
and BN acting as pre-activation

fi

Xi+1 = X; + fi(x:)

He, Zhang, Ren and Sun. ECCV 2016. Identity Mappings in Deep Residual Networks.



fi

identity mappings
[He et al. 2016]

o original residual unit, with relu and BN
shown separately, where h is relu

B;\ Xip1 = h(x; + fi(xi))

e re-designed unit, with a more direct
path through skip connections, and relu
and BN acting as pre-activation

Xi+1 = X; + fi(x:)

e recursively, there is a residual between
any units /1, £

lo—1

Xe, = x5, + Y fi(xi)

=01

He, Zhang, Ren and Sun. ECCV 2016. Identity Mappings in Deep Residual Networks.



residual networks as ensembles
[Veit et al. 2016]

e residual network with identity

mappings

Veit, Wilber and Belongie. NIPS 2016. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.



residual networks as ensembles
[Veit et al. 2016]

e residual network with identity
mappings

e “unraveled” view where residual
units are duplicated

Veit, Wilber and Belongie. NIPS 2016. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.



residual networks as ensembles
[Veit et al. 2016]

e residual network with identity
mappings

e “unraveled” view where residual
units are duplicated
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residual networks as ensembles
[Veit et al. 2016]

e residual network with identity
mappings

e “unraveled” view where residual
units are duplicated

e ensemble of networks of different
lengths, with cardinality exponential
in network depth

Veit, Wilber and Belongie. NIPS 2016. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.



residual networks as ensembles
[Veit et al. 2016]

e residual network with identity
mappings

e “unraveled” view where residual
units are duplicated

e ensemble of networks of different
lengths, with cardinality exponential
in network depth

e dropping a layer is just zeroing half
of the paths

e in a network of 110 layer, most
gradient comes from paths that are
10-34 layers deep

Veit, Wilber and Belongie. NIPS 2016. Residual Networks Behave Like Ensembles of Relatively Shallow Networks.



networks with stochastic depth
[Huang et al. 2016]

C - OO

e (original) residual network

Huang, Sun, Liu, Sedra and Weinberger. ECCV 2016. Deep Networks with Stochastic Depth.



networks with stochastic depth
[Huang et al. 2016]

Crio-Le XL XS

o (original) residual network

e at each training iteration, randomly drop a subset of layers
Xit1 = h(x; + b, fi(x;))

where b; € {0,1} a Bernoulli random variable

Huang, Sun, Liu, Sedra and Weinberger. ECCV 2016. Deep Networks with Stochastic Depth.



networks with stochastic depth
[Huang et al. 2016]

(- - -0 -Lad
Xp1 X P2 XP3 XP4 Xps

o (original) residual network

e at each training iteration, randomly drop a subset of layers
Xit1 = h(x; + b, fi(x;))

where b; € {0,1} a Bernoulli random variable

e at inference, use all layers weighted by survival probabilities p; = E(b;)

Xit1 = h(x; + pi fi(x;))

Huang, Sun, Liu, Sedra and Weinberger. ECCV 2016. Deep Networks with Stochastic Depth.



networks with stochastic depth
[Huang et al. 2016]

(- - -0 -Lad
Xp1 X P2 XP3 XP4 Xps

o (original) residual network

e at each training iteration, randomly drop a subset of layers
Xit1 = h(x; + b, fi(x;))

where b; € {0,1} a Bernoulli random variable

e at inference, use all layers weighted by survival probabilities p; = E(b;)
Xit1 = h(xi + pi fi(x:))

e speeds up training, reduces test error

Huang, Sun, Liu, Sedra and Weinberger. ECCV 2016. Deep Networks with Stochastic Depth.



densely connected networks
[Huang et al. 2017]

Xi e residual unit with identity mapping: add

Xir1 = X; + fi(x;)

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.



densely connected networks
[Huang et al. 2017]

e residual unit with identity mapping: add

Xit1 = X; + fi(x;)
e densely connected unit: concatenate

Xit1 = (X, fi(xi))

concat

Xit1

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.



densely connected networks
[Huang et al. 2017]

e residual unit with identity mapping: add

Xir1 = X; + fi(x;)

densely connected unit: concatenate

Xit1 = (X, fi(xi))

feature map dimension increases by
growth rate k at each unit

conv(3, k)

Xit1

a dense block is a chain of densely
connected units

a transition layer reduces feature map
dimension by a factor 6 = 2

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.



densely connected networks

e dense block followed by transition layer

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.



DenseNet models

Layers Output Size | DenseNet-121(k = 32) [ DenseNet-169(k = 32) | DenseNet-201(k = 32) | DenseNet-161(k = 48)
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 x 3 max pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
56 x 56 6 6
(1) x [3x3conv}x ‘[3x3conv}x ‘[3><300nv]>< ‘[3><300nv]
Transition Layer 56 x 56 1 x 1 conv
(1) 28 x 28 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
28 x 2 1 12 12 12
2) 828 [3x3conv} ‘[3x3conv}x [3><3conv]>< ‘[3X3COHV]X
Transition Layer 28 x 28 1 x 1 conv
?2) 14 x 14 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
14 x 14 4 3
3) * [3x3conv} ‘[3x3conv} [3><300nv]><8 ‘[3X3COHV]X6
Transition Layer 14 x 14 1 x 1 conv
3) Tx7 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv 1 x 1 conv 1 x 1 conv 1 x 1 conv
Tx7 32 24
4) x [3x3conv} ‘[3x3conv} {3><300nv]>< ‘[3X3COHV]X
Classification 1x1 7 x 7 global average pool
Layer 1000D fully-connected, softmax

e input is 224 x 224; first convolutional layer produces 2k features;
transition layer reduces dimension and resolution by 2

Huang, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.



validation error

Huang

DenseNet vs. ResNet: ImageNet

275 T T T T ; ; ; 275 T T T T ; ; ;
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26.5 g 26.5 g
255 1 5 255 1
121 o DenseNet-121
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ResNet=50 § ResNet-50
23.5 8 § 235 8
- ResNet-101
25 ResNet “: el 225 ResNet-152|
esNet:
DenseNet-161(k=48) DenseNet-161(k=48)
215 i i i i i 1 i 21. i i i i ! h |
0 1 2 3 4 5 6 7 8 8.5 075 1 125 15 175 2 225 25
#parameters x 10 #FLOPs x 10"

top-1 single-crop ImageNet validation error

encourages feature re-use and reduces the number of parameters

, Liu, van der Maaten and Weinberger. CVPR 2017. Densely Connected Convolutional Networks.



summary

optimizers: gradient descent, momentum, RMSprop, Adam,
Hessian-free

initialization: Gaussian matrices, unit variance, orthogonal,
data-dependent

normalization: input, activation (batch), activation (layer), weight
deeper architectures: residual networks, identity mappings, networks
with stochastic depth, densely connected networks

all parameters should be learned at the same rate, and all features
computed by some layer should be re-used by the following layers

initialization, normalization and architecture should be designed such
that these properties hold initially and are maintained during training
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