lecture 10: image retrieval and manifold learning deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2017 - Jan. 2018

outline

background indexing pooling manifold learning fine-tuning graph-based methods

background

image classification challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- number of instances
- texture/color
- pose
- deformability
- intra-class variability

image classification challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- number of instances
- texture/color
- pose
- deformability
- intra-class variability

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- distinctiveness
- distractors

main difference to classification:

no intra-class variability

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

- distinctiveness
- distractors

main difference to classification:

• no intra-class variability

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting

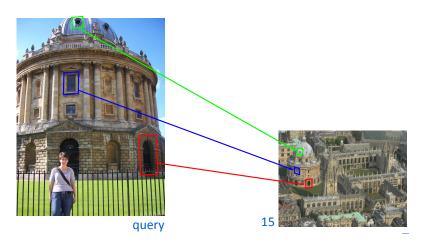
- distinctiveness
- distractors

main difference to classification:

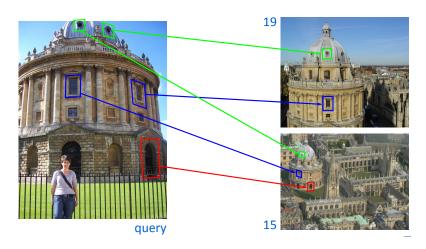
• no intra-class variability

query

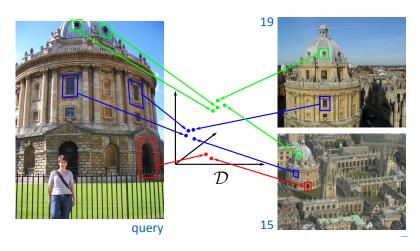
• query vs. dataset image



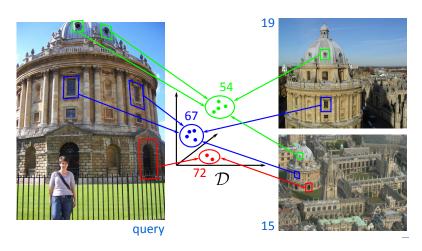
• pairwise descriptor matching



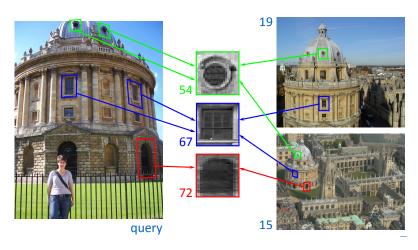
• pairwise descriptor matching for every dataset image



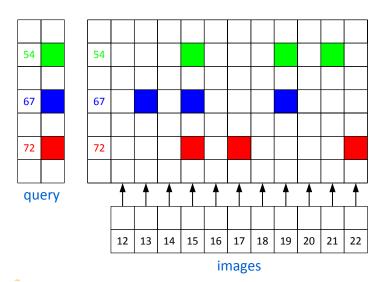
similar descriptors should all be nearby in the descriptor space

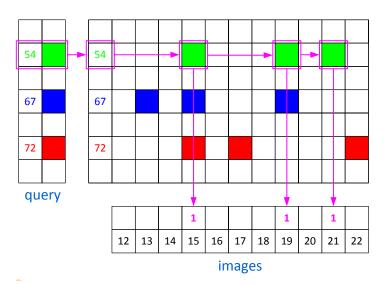


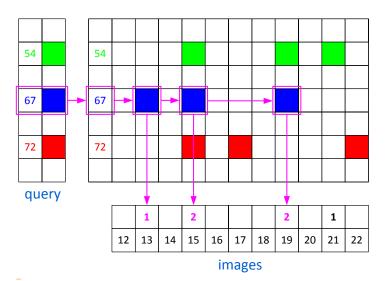
let's quantize them into visual words

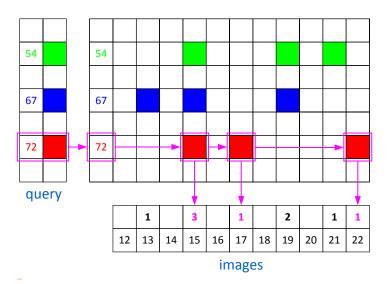


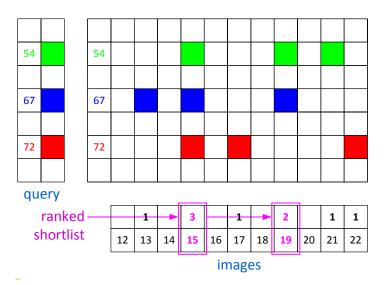
now visual words act as a proxy; no pairwise matching needed

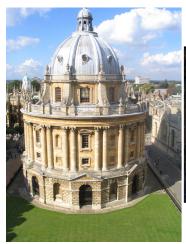




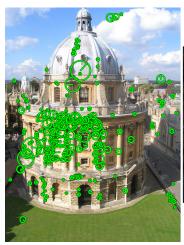








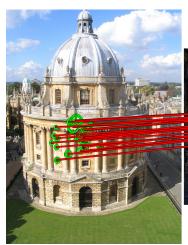
original images



local features



tentative correspondences: too many



inliers: now more expensive to find

application: location and landmark recognition

PEstimated Location Similar Image, Incorrectly geo-tagged Unavailable

Suggested tags: Buxton Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Buston Memorial Fountain, Winchester Palace, Architecture, Victorian gothic

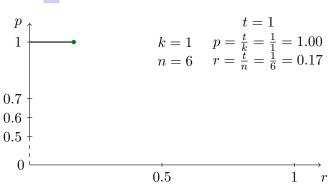
Similar Images

Original ••

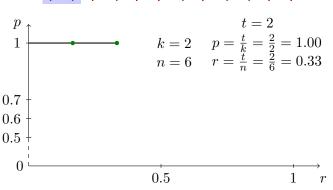
Similarity: 0.491 Original ••

Similarity: 0.397 Original ••

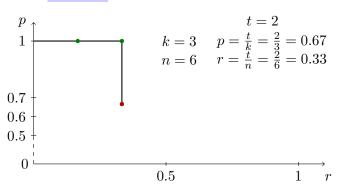
Original ••



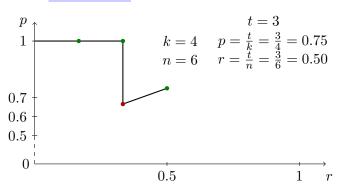
- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$



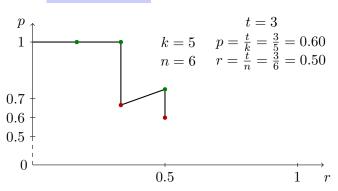
- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$



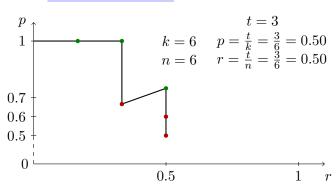
- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$



- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$

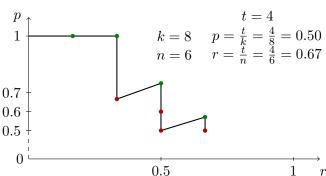


- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$



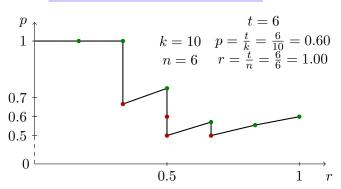
- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$

- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$

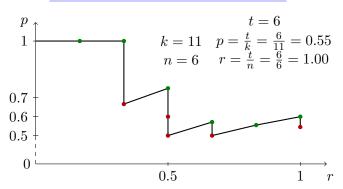


- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$

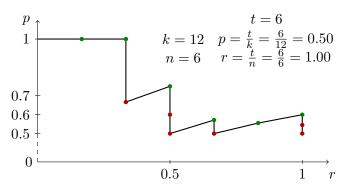
- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$



- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$



- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$

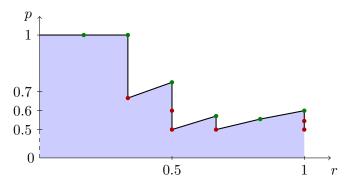


- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{k}$, recall $r = \frac{t}{n}$

average precision (AP)

ranked list of items with true/false labels

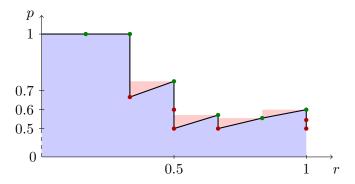
1 2 3 4 5 6 7 8 9 10 11 12 T T F T F F T F T T F F



- average precision = area under curve
- the mean average precision (mAP) is the mean over queries

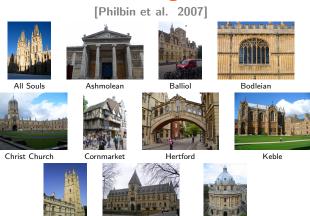
average precision (AP)

ranked list of items with true/false labels



- average precision = area under curve (filled-in curve)
- the mean average precision (mAP) is the mean over queries

Oxford buildings dataset



• Oxford5k: 5k images, 11 landmarks, $5 \times 11 = 55$ queries, $10 \sim 200$ positives/query

Radcliffe Camera

Pitt Rivers

Oxford105k: 100k additional distractor images

Magdalen

Paris dataset

[Philbin et al. 2008]

- Paris6k: 6k images, 11 landmarks, $5 \times 11 = 55$ queries, $50 \sim 300$ positives/query
- Paris106k: same 100k distractor images as Oxford

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases.

Holidays dataset

[Jégou et al. 2008]

- personal holiday photos, natural and man-made scenes
- 1.5k images, 500 groups, 1 query/group, 1000 positives, $1\sim 12$ positives/query

aggregated selective match kernel (ASMK)

[Tolias et al. 2013]

residual pooling within cells

$$V(X_c) := \sum_{x \in X_c} r(x) = \sum_{x \in X_c} x - q(x)$$

nonlinear selectivity between cells

$$K(X,Y) := \gamma(X)\gamma(Y)\sum_{c \in C} w_c \sigma_\alpha \left(\hat{V}(X_c)^\top \hat{V}(Y_c)\right)$$

where $\hat{x} := x/\|x\|$ and σ_{α} a nonlinear function

triangulation embedding (T-embedding)

[Jégou and Zisserman 2014]

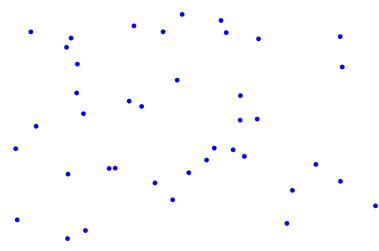
normalized residuals, concatenated over cells, pooling over dataset

$$R(X) := \sum_{x \in X} (\hat{r}_1(x), \dots, \hat{r}_k(x)) = \sum_{x \in X} \left(\frac{x - c_1}{\|x - c_1\|}, \dots, \frac{x - c_k}{\|x - c_k\|} \right)$$

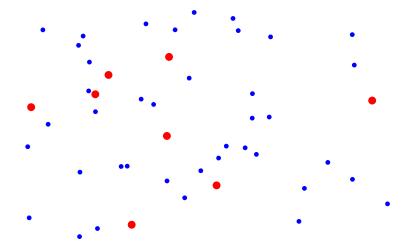
where $r_i(x) := x - c_i$ and $\hat{x} := x/\|x\|$

• linear kernel, written as inner product

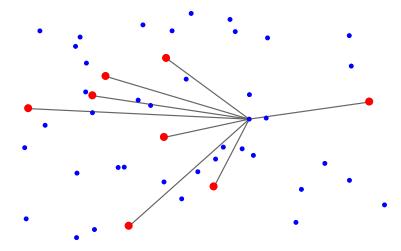
$$K(X,Y) := (\gamma(X)R(X))^{\top} (\gamma(Y)R(Y))$$



input vectors – codebook – residuals – normalized residuals

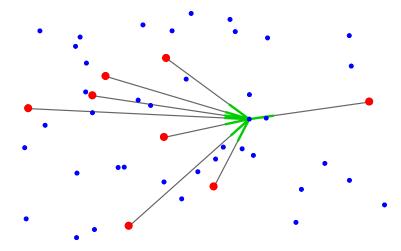


• input vectors - codebook - residuals - normalized residuals



• input vectors – codebook – residuals – normalized residuals

Jégou and Zisserman. CVPR 2014. Triangulation Embedding and Democratic Aggregation for Image Search.



• input vectors – codebook – residuals – normalized residuals

Jégou and Zisserman. CVPR 2014. Triangulation Embedding and Democratic Aggregation for Image Search.

performance

- aggregated selective match kernel
 - mAP 81.7 (83.8) mAP on Oxford5k, 78.2 (80.5) on Paris6k, 82.2 (86.5) on Holidays
 - ~ 2.2 k (3.8k) descriptors/image \times 128 dimensions
- triangulation embedding
 - mAP 57.1 (67.6) on Oxford5k, 72.3 (77.1) on Holidays
 - global descriptor, 1920 (8064) dimensions
- no spatial verification or other post-processing

state of the art before deep learning

- bag of words and inverted index is only a crude form of approximate nearest neighbor search for each local descriptor, followed by a kernel function
- for good performance, storing descriptors is necessary, even compressed
- very good performance achieved with thousands descriptors/image
- a global descriptor/image allows nearest neighbor search directly on images, but is inferior

state of the art before deep learning

- bag of words and inverted index is only a crude form of approximate nearest neighbor search for each local descriptor, followed by a kernel function
- for good performance, storing descriptors is necessary, even compressed
- very good performance achieved with thousands descriptors/image
- a global descriptor/image allows nearest neighbor search directly on images, but is inferior

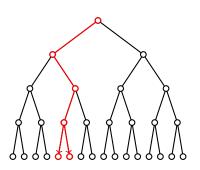
indexing

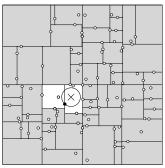
nearest neighbor search

- given query point y, find its nearest neighbor with respect to Euclidean distance within data set X in a d-dimensional space
- image retrieval: same problem; one or multiple queries depending on global or local representation
- image classification: nearest neighbor or naïve Bayes nearest neighbor classifier, again depending on representation

k-d tree

[Bentley 1975]

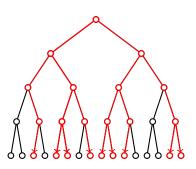


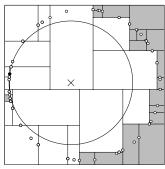


- index: recursively split at medoid on some dimension, make balanced binary tree
- search: descend recursively from root, choosing child according to splitting dimension and value
- backtracking becomes exhaustive at high dimensions

k-d tree

[Bentley 1975]

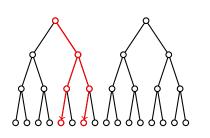


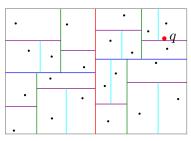


- index: recursively split at medoid on some dimension, make balanced binary tree
- search: descend recursively from root, choosing child according to splitting dimension and value
- backtracking becomes exhaustive at high dimensions

randomized k-d trees

[Silpa-Anan and Hartley 1975]

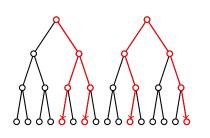


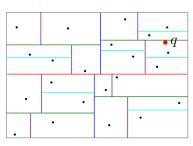


- index: same as before, but now multiple randomized trees
- search: descend trees in parallel according to shared priority queue
- still, points are stored, distances are exact

randomized k-d trees

[Silpa-Anan and Hartley 1975]

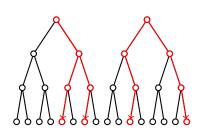


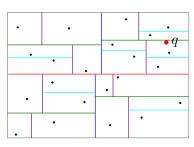


- index: same as before, but now multiple randomized trees
- search: descend trees in parallel according to shared priority queue
- still, points are stored, distances are exact

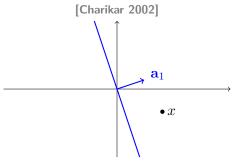
randomized k-d trees

[Silpa-Anan and Hartley 1975]



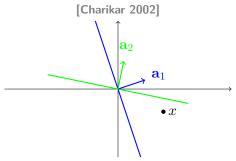


- index: same as before, but now multiple randomized trees
- search: descend trees in parallel according to shared priority queue
- still, points are stored, distances are exact



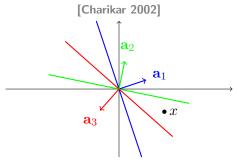
$$h_{\mathbf{a}}(x) = \operatorname{sgn}(\mathbf{a}^{\top}x)$$

- search: encode query y as h(y) and search by Hamming distance
- not adapted to data distribution



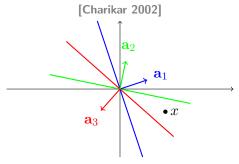
$$h_{\mathbf{a}}(x) = \operatorname{sgn}(\mathbf{a}^{\top}x)$$

- search: encode query y as h(y) and search by Hamming distance
- not adapted to data distribution



$$h_{\mathbf{a}}(x) = \operatorname{sgn}(\mathbf{a}^{\top} x)$$

- search: encode query y as h(y) and search by Hamming distance
- not adapted to data distribution

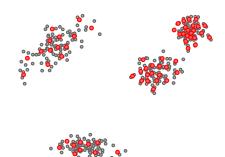


$$h_{\mathbf{a}}(x) = \operatorname{sgn}(\mathbf{a}^{\top}x)$$

- search: encode query y as h(y) and search by Hamming distance
- not adapted to data distribution

vector quantization (VQ)

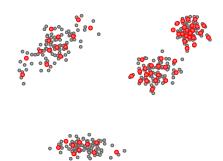
[Gray 1984]



- index: cluster X into codebook $C = \{c_1, \ldots, c_k\}$; quantize each $x \in X$ to $q(x) = \min_{c \in C} \|x c\|^2$ and encode it by $\log k$ bits
- search: pre-compute distances $\|y-c\|^2$ for $c\in C$ and approximate distances $\|y-x\|^2$ by $\|y-q(x)\|^2$ where $q(x)\in C$
- small distortion \rightarrow large k, too large to store, too slow to search

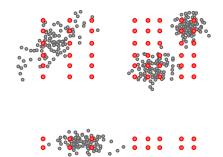
vector quantization (VQ)

[Gray 1984]



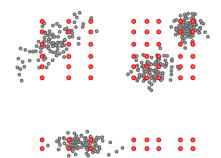
- index: cluster X into codebook $C=\{c_1,\ldots,c_k\}$; quantize each $x\in X$ to $q(x)=\min_{c\in C}\|x-c\|^2$ and encode it by $\log k$ bits
- search: pre-compute distances $\|y-c\|^2$ for $c\in C$ and approximate distances $\|y-x\|^2$ by $\|y-q(x)\|^2$ where $q(x)\in C$
- ullet small distortion o large k, too large to store, too slow to search

product quantization (PQ)



- index: decompose vectors as $x=(x^1,\ldots,x^m)$, cluster X into codebook $C=C^1\times\cdots\times C^m$ with k cells each and $|C|=k^m$
- search: pre-compute distances $\|y^j-c\|^2$ for $c\in C^j$ and approximate $\|y-x\|^2$ by $\|y-q(x)\|^2=\sum_{j=1}^m\|y^j-q^j(x^j)\|^2$ where $q^j(x^j)\in C^j$
- a lot of centroids do not represent data and are unused

product quantization (PQ)



- index: decompose vectors as $x=(x^1,\ldots,x^m)$, cluster X into codebook $C=C^1\times\cdots\times C^m$ with k cells each and $|C|=k^m$
- search: pre-compute distances $\|y^j-c\|^2$ for $c\in C^j$ and approximate $\|y-x\|^2$ by $\|y-q(x)\|^2=\sum_{j=1}^m\|y^j-q^j(x^j)\|^2$ where $q^j(x^j)\in C^j$
- a lot of centroids do not represent data and are unused

inverted index

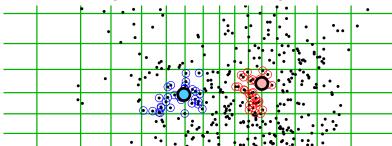
- index: train a coarse quantizer Q of k cells; quantize each $x \in X$ to Q(x), compute residual r(x)=x-Q(x) and encode residuals by a product quantizer q
- search: quantize query y to a fixed number of nearest cells;
 exhaustively search by PQ only within those cells
- a lot of points in the coarse cells are too far away from query

inverted index

- index: train a coarse quantizer Q of k cells; quantize each $x \in X$ to Q(x), compute residual r(x) = x Q(x) and encode residuals by a product quantizer q
- search: quantize query y to a fixed number of nearest cells;
 exhaustively search by PQ only within those cells
- a lot of points in the coarse cells are too far away from query

inverted multi-index

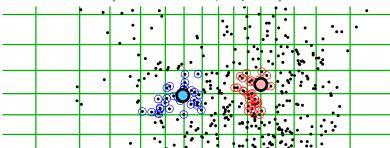
[Babenko and Lempitsky 2012]



- index: decompose vectors as $x=(x^1,x^2)$; train two coarse quantizers Q^1,Q^2 of k cells each, quantize each $x\in X$ to $Q^1(x^1),Q^2(x^2)$ and encode residuals by product quantizers q^1,q^2
- search: visit cells $(c^1,c^2)\in C^1\times C^2$ in ascending order of distance to y by multi-sequence algorithm
- two coarse quantizers induce a finer partition than one

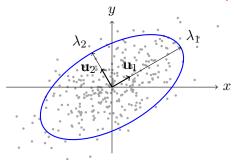
inverted multi-index

[Babenko and Lempitsky 2012]



- index: decompose vectors as $x=(x^1,x^2)$; train two coarse quantizers Q^1,Q^2 of k cells each, quantize each $x\in X$ to $Q^1(x^1),Q^2(x^2)$ and encode residuals by product quantizers q^1,q^2
- search: visit cells $(c^1,c^2)\in C^1\times C^2$ in ascending order of distance to y by multi-sequence algorithm
- two coarse quantizers induce a finer partition than one

principal component analysis (PCA)



• given data $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$, compute empirical mean $\bar{\mathbf{x}}:=\frac{1}{n}\sum_{i=1}^n\mathbf{x}_i$ and covariance matrix

$$S := \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^{\top}$$

• then diagonalize S by $S = U\Lambda U^{\top}$ where $U = (\mathbf{u}_1 \ \mathbf{u}_2)$ and $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2)$

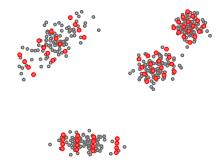
optimized product quantization (OPQ)

[Ge et al. 2013]

- no correlation: PCA-align by diagonalizing cov(X) as $U\Lambda U^{\top}$
- balanced variance: shuffle eigenvalues Λ by permutation π such that the product $\prod_i \lambda_i$ is constant in each subspace
- find codebook \hat{C} by PQ on rotated data $\hat{X}:=RX$ where $R:=UP_\pi^\top$ and P_π is the permutation matrix of π

locally optimized product quantization (LOPQ)

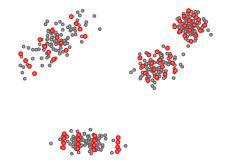
[Kalantidis and Avrithis 2014]



- same as PQ with inverted index (or multi-index), but residuals are encoded by OPQ
- better on multimodal data: residual distributions closer to Gaussian assumption

locally optimized product quantization (LOPQ)

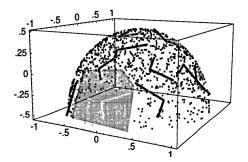
[Kalantidis and Avrithis 2014]



- same as PQ with inverted index (or multi-index), but residuals are encoded by OPQ
- better on multimodal data: residual distributions closer to Gaussian assumption

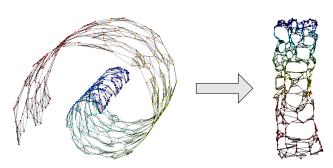
local principal component analysis

[Kambhatla & Leen 1997]



- cluster data, then apply PCA per cell
- captures the support of data distribution
 - multimodal (e.g. mixture) distributions
 - distributions on nonlinear manifolds

manifold learning



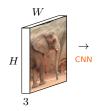
- e.g. Isomap: apply PCA to the geodesic (graph) distance matrix
- e.g. kernel PCA: apply PCA to the Gram matrix of a nonlinear kernel
- other topology-preserving methods are only focusing on distances to nearest neighbors
- many classic methods use eigenvalue decomposition and most do not learn and explicit mapping from the input to the embedding space

pooling

[Krizhevsky et al. 2012]

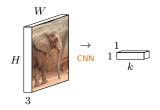
- 3-channel RGB input, 224×224
- AlexNet pre-trained on ImageNet for classification
- last fully connected layer (fc₆): global descriptor of dimension k=4096

[Krizhevsky et al. 2012]



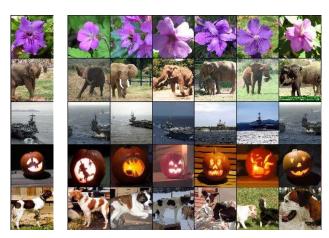
- 3-channel RGB input, 224×224
- AlexNet pre-trained on ImageNet for classification
- last fully connected layer (fc₆): global descriptor of dimension k=4096

[Krizhevsky et al. 2012]

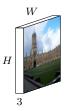


- 3-channel RGB input, 224×224
- AlexNet pre-trained on ImageNet for classification
- last fully connected layer (fc₆): global descriptor of dimension k=4096

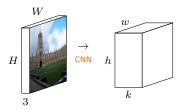
- query images
- nearest neighbors in ImageNet according to Euclidean distance



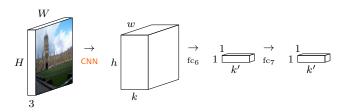
- query images
- nearest neighbors in ImageNet according to Euclidean distance



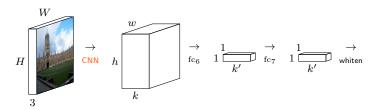
- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension $w \times h \times k = 6 \times 6 \times 256 = 9216$
- alternatively: fully connected layers fc_6 , fc_7 , global descriptors of dimension k' = 4096 (best is fc_6)
- in each case: PCA-whitening, ℓ_2 normalization



- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension $w \times h \times k = 6 \times 6 \times 256 = 9216$
- alternatively: fully connected layers fc_6 , fc_7 , global descriptors of dimension k' = 4096 (best is fc_6)
- in each case: PCA-whitening, ℓ_2 normalization



- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension $w \times h \times k = 6 \times 6 \times 256 = 9216$
- alternatively: fully connected layers fc_6 , fc_7 , global descriptors of dimension k' = 4096 (best is fc_6)
- in each case: PCA-whitening, ℓ_2 normalization

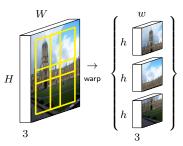


- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension $w \times h \times k = 6 \times 6 \times 256 = 9216$
- alternatively: fully connected layers fc_6 , fc_7 , global descriptors of dimension k' = 4096 (best is fc_6)
- in each case: PCA-whitening, ℓ_2 normalization

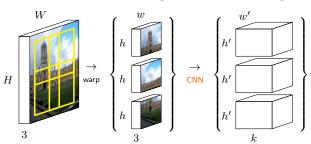
- fine-tuning by softmax on 672 classes of 200 k landmark photos
- outperforms VLAD and Fisher vectors on standard retrieval benchmarks, but still inferior to SIFT local descriptors

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor

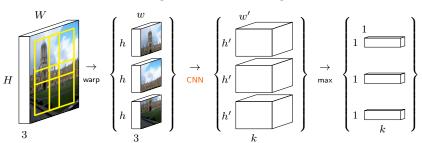
- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor



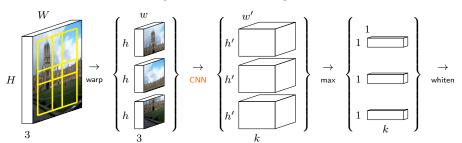
- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into w imes h = 227 imes 227
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor



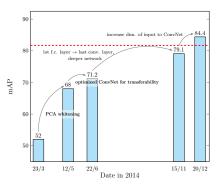
- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor



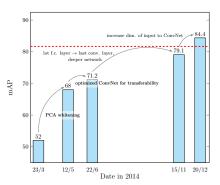
- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h = 227 \times 227$
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor



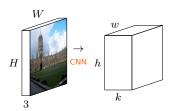
- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into w imes h = 227 imes 227
- each region yields a $w' \times h' \times k = 36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening of each descriptor



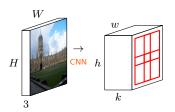
- CNN visual representation jumps by more than 30% mAP to outperform standard SIFT pipeline in a few months
- however, this is based on multiple regional descriptors per image and exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical



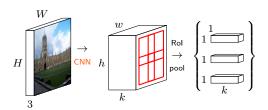
- CNN visual representation jumps by more than 30% mAP to outperform standard SIFT pipeline in a few months
- however, this is based on multiple regional descriptors per image and exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical



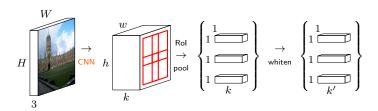
- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- sum-pooling over all descriptors, ℓ_2 -normalization



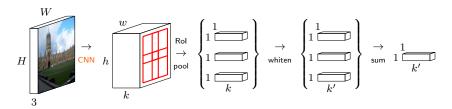
- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- sum-pooling over all descriptors, ℓ_2 -normalization



- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- sum-pooling over all descriptors, ℓ_2 -normalization

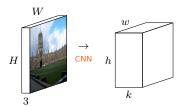


- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ullet ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- ullet sum-pooling over all descriptors, ℓ_2 -normalization



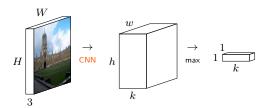
- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- sum-pooling over all descriptors, ℓ_2 -normalization

global max-pooling (MAC)



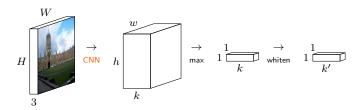
- VGG-16 last convolutional layer, k = 512
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- MAC: maximum activation of convolutions

global max-pooling (MAC)



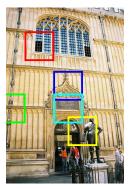
- VGG-16 last convolutional layer, k = 512
- global spatial max-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- MAC: maximum activation of convolutions

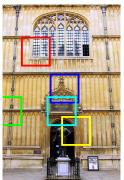
global max-pooling (MAC)



- VGG-16 last convolutional layer, k = 512
- global spatial max-pooling
- ullet ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- MAC: maximum activation of convolutions

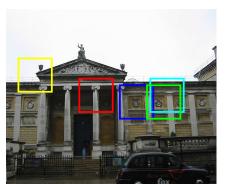
global max-pooling: matching

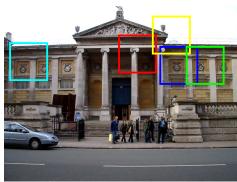




 receptive fields of 5 components of MAC vectors that contribute most to image similarity

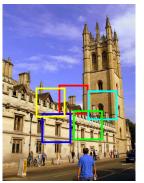
global max-pooling: matching

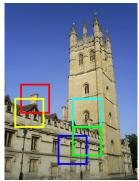




 receptive fields of 5 components of MAC vectors that contribute most to image similarity

global max-pooling: matching

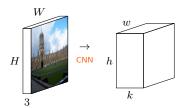




 receptive fields of 5 components of MAC vectors that contribute most to image similarity

global sum-pooling (SPoC)

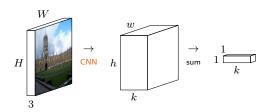
[Babenko and Lempitsky 2015]



- VGG-19 last convolutional layer, k=512
- global spatial sum-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- SPoC: sum-pooled convolutional features

global sum-pooling (SPoC)

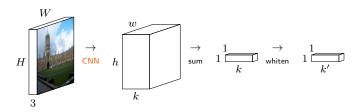
[Babenko and Lempitsky 2015]



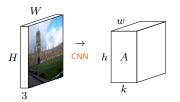
- VGG-19 last convolutional layer, k = 512
- global spatial sum-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- SPoC: sum-pooled convolutional features

global sum-pooling (SPoC)

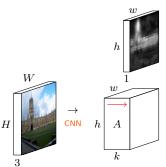
[Babenko and Lempitsky 2015]



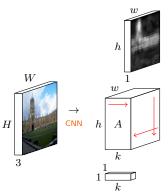
- VGG-19 last convolutional layer, k = 512
- global spatial sum-pooling
- ℓ_2 -normalization, PCA-whitening, ℓ_2 -normalization
- SPoC: sum-pooled convolutional features



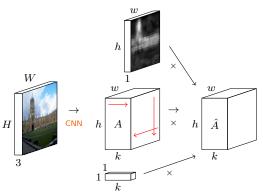
- VGG-16 feature map A, last pooling layer, k = 512



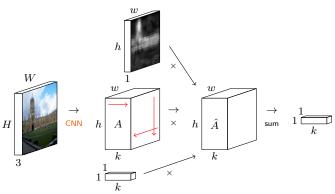
- VGG-16 feature map A, last pooling layer, k = 512
- spatial weights F, channel weights w, weighted feature map



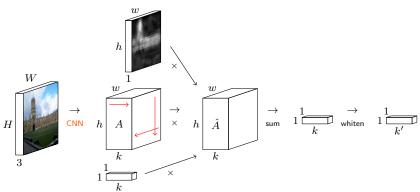
- VGG-16 feature map A, last pooling layer, k = 512
- spatial weights F, channel weights \mathbf{w} , weighted feature map



- VGG-16 feature map A, last pooling layer, k = 512
- spatial weights F, channel weights \mathbf{w} , weighted feature map



- VGG-16 feature map A, last pooling layer, k=512
- spatial weights F, channel weights \mathbf{w} , weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization



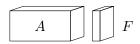
- VGG-16 feature map A, last pooling layer, k = 512
- ullet spatial weights F, channel weights old w, weighted feature map
- global spatial sum-pooling
- ℓ_p -normalization, PCA-whitening, ℓ_2 -normalization

$$F(x,y) = \sum_{k} A_k(x,y)$$

$$w_j = -\log\left(\epsilon + \sum_{x,y} \mathbb{1}[A_j(x,y)]\right)$$

$$\hat{A} = A \times F \times \mathbf{w}$$

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.



spatial weights (visual saliency)

$$F(x,y) = \sum_{k} A_k(x,y)$$

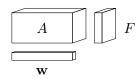
channel weights (sparsity sensitive)

$$w_j = -\log\left(\epsilon + \sum_{x,y} \mathbb{1}[A_j(x,y)]\right)$$

weighted feature map

$$\hat{A} = A \times F \times \mathbf{w}$$

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.



• spatial weights (visual saliency)

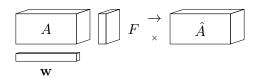
$$F(x,y) = \sum_{k} A_k(x,y)$$

channel weights (sparsity sensitive)

$$w_j = -\log\left(\epsilon + \sum_{x,y} \mathbb{1}[A_j(x,y)]\right)$$

weighted feature map

$$\hat{A} = A \times F \times \mathbf{w}$$



spatial weights (visual saliency)

$$F(x,y) = \sum_{k} A_k(x,y)$$

channel weights (sparsity sensitive)

$$w_j = -\log\left(\epsilon + \sum_{x,y} \mathbb{1}[A_j(x,y)]\right)$$

weighted feature map

$$\hat{A} = A \times F \times \mathbf{w}$$

• input image

 receptive fields of nonzero elements of the 10 channels with the highest sparsity-sensitive weights

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.

manifold learning

siamese architecture

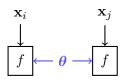
[Chopra et al. 2005]

 \mathbf{x}_i \mathbf{x}_j

- an input sample is a pair $(\mathbf{x}_i, \mathbf{x}_i)$
- ullet both $\mathbf{x}_i, \mathbf{x}_j$ go through the same function f with shared parameters heta
- loss ℓ_{ij} is measured on output pair $(\mathbf{y}_i, \mathbf{y}_j)$ and target t_{ij}

siamese architecture

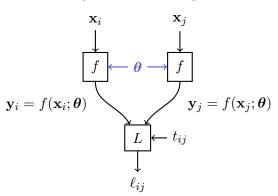
[Chopra et al. 2005]



- an input sample is a pair $(\mathbf{x}_i, \mathbf{x}_i)$
- ullet both $\mathbf{x}_i, \mathbf{x}_j$ go through the same function f with shared parameters $oldsymbol{ heta}$
- ullet loss ℓ_{ij} is measured on output pair $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

siamese architecture

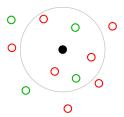
[Chopra et al. 2005]



- ullet an input sample is a pair $(\mathbf{x}_i,\mathbf{x}_j)$
- ullet both $\mathbf{x}_i, \mathbf{x}_j$ go through the same function f with shared parameters $oldsymbol{ heta}$
- ullet loss ℓ_{ij} is measured on output pair $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

contrastive loss

[Hadsel et al. 2006]



- input samples \mathbf{x}_i , output vectors $\mathbf{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$
- ullet target variables $t_{ij} = \mathbb{1}[\sin(\mathbf{x}_i,\mathbf{x}_j)]$
- contrastive loss is a function of distance $\|\mathbf{y}_i \mathbf{y}_j\|$ only

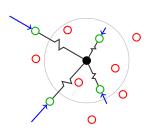
$$\ell_{ij} = L((\mathbf{y}_i, \mathbf{y}_j), t_{ij}) = \ell(\|\mathbf{y}_i - \mathbf{y}_j\|, t_{ij})$$

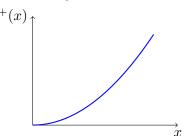
similar samples are attracted

$$\ell(x,t) = t\ell^{+}(x) + (1-t)\ell^{-}(x) = tx^{2} + (1-t)[m-x]_{+}^{2}$$

contrastive loss

[Hadsel et al. 2006]





- input samples \mathbf{x}_i , output vectors $\mathbf{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$
- target variables $t_{ij} = \mathbb{1}[\sin(\mathbf{x}_i, \mathbf{x}_j)]$
- contrastive loss is a function of distance $\|\mathbf{y}_i \mathbf{y}_j\|$ only

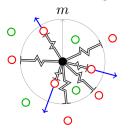
$$\ell_{ij} = L((\mathbf{y}_i, \mathbf{y}_j), t_{ij}) = \ell(\|\mathbf{y}_i - \mathbf{y}_j\|, t_{ij})$$

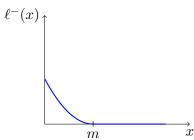
similar samples are attracted

$$\ell(x,t) = t\ell^+(x) + (1-t)\ell^-(x) = tx^2 + (1-t)[m-x]_+^2$$

contrastive loss

[Hadsel et al. 2006]





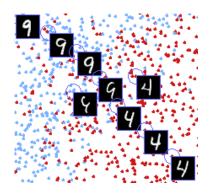
- input samples \mathbf{x}_i , output vectors $\mathbf{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$
- target variables $t_{ij} = \mathbb{1}[\sin(\mathbf{x}_i, \mathbf{x}_j)]$
- contrastive loss is a function of distance $\|\mathbf{y}_i \mathbf{y}_j\|$ only

$$\ell_{ij} = L((\mathbf{y}_i, \mathbf{y}_j), t_{ij}) = \ell(||\mathbf{y}_i - \mathbf{y}_j||, t_{ij})$$

ullet dissimilar samples are repelled if closer than margin m

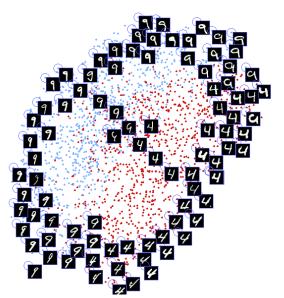
$$\ell(x,t) = t\ell^{+}(x) + (1-t)\ell^{-}(x) = tx^{2} + (1-t)[m-x]_{+}^{2}$$

manifold learning: MNIST



- 3k samples of each of digits 4,9
- each sample similar to its 5 Euclidean nearest neighbors, and dissimilar to all other points
- 30k similar pairs, 18M dissimilar pairs

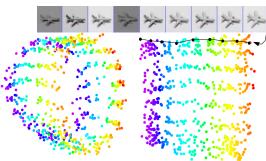
manifold learning: MNIST



manifold learning: NORB

- 972 images of airplane class: 18 azimuths (every 20°), 9 elevations (in $[30^\circ,70^\circ]$, every 5°), 6 lighting conditions
- samples similar if taken from contiguous azimuth or elevation, regardless of lighting
- 11k similar pairs, 206M dissimilar pairs
- cylindrer in 3d: azimuth on circumference, elevation on height

manifold learning: NORB



- 972 images of airplane class: 18 azimuths (every 20°), 9 elevations (in $[30^\circ,70^\circ]$, every 5°), 6 lighting conditions
- samples similar if taken from contiguous azimuth or elevation, regardless of lighting
- 11k similar pairs, 206M dissimilar pairs
- cylindrer in 3d: azimuth on circumference, elevation on height

triplet architecture

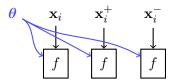
[Wang et al. 2014]

$$\mathbf{x}_i \qquad \mathbf{x}_i^+ \qquad \mathbf{x}_i^-$$

- \bullet an input sample is a triplet $(\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-)$
- ullet $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters heta
- ullet loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

triplet architecture

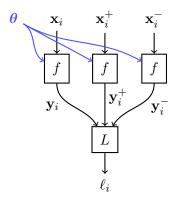
[Wang et al. 2014]



- ullet an input sample is a triplet $(\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-)$
- ullet $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- ullet loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

triplet architecture

[Wang et al. 2014]



- ullet an input sample is a triplet $(\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-)$
- ullet $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- ullet loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

triplet loss

- input "anchor" \mathbf{x}_i , output vector $\mathbf{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$
- positive $\mathbf{y}_i^+ = f(\mathbf{x}_i^+; m{ heta})$, negative $\mathbf{y}_i^- = f(\mathbf{x}_i^-; m{ heta})$
- triplet loss is a function of distances $\|\mathbf{y}_i \mathbf{y}_i^+\|, \|\mathbf{y}_i \mathbf{y}_i^-\|$ only

$$\ell_i = L(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-) = \ell(\|\mathbf{y}_i - \mathbf{y}_i^+\|, \|\mathbf{y}_i - \mathbf{y}_i^-\|)$$
$$\ell(x^+, x^-) = [m + (x^+)^2 - (x^-)^2]$$

so distance $\|\mathbf{y}_i - \mathbf{y}_i^+\|$ should be less than $\|\mathbf{y}_i - \mathbf{y}_i^-\|$ by margin m

• by taking two pairs $(\mathbf{x}_i, \mathbf{x}_i^+)$ and $(\mathbf{x}_i, \mathbf{x}_i^-)$ at a time with targets 1, 0 respectively, the contrastive loss can be written similarly

$$\ell(x^+, x^-) = (x^+)^2 + [m - x^-]_+^2$$

so distance $\|\mathbf{y}_i - \mathbf{y}_i^+\|$ should small and $\|\mathbf{y}_i - \mathbf{y}_i^-\|$ larger than m

triplet loss

- input "anchor" \mathbf{x}_i , output vector $\mathbf{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$
- positive $\mathbf{y}_i^+ = f(\mathbf{x}_i^+; m{ heta})$, negative $\mathbf{y}_i^- = f(\mathbf{x}_i^-; m{ heta})$
- triplet loss is a function of distances $\|\mathbf{y}_i \mathbf{y}_i^+\|, \|\mathbf{y}_i \mathbf{y}_i^-\|$ only

$$\ell_i = L(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-) = \ell(\|\mathbf{y}_i - \mathbf{y}_i^+\|, \|\mathbf{y}_i - \mathbf{y}_i^-\|)$$
$$\ell(x^+, x^-) = [m + (x^+)^2 - (x^-)^2]$$

all
$$x_1$$
 - x_2 - x_3 by marg

so distance $\|\mathbf{y}_i - \mathbf{y}_i^+\|$ should be less than $\|\mathbf{y}_i - \mathbf{y}_i^-\|$ by margin m

• by taking two pairs $(\mathbf{x}_i, \mathbf{x}_i^+)$ and $(\mathbf{x}_i, \mathbf{x}_i^-)$ at a time with targets 1, 0 respectively, the contrastive loss can be written similarly

$$\ell(x^+, x^-) = (x^+)^2 + [m - x^-]_+^2$$

so distance $\|\mathbf{y}_i - \mathbf{y}_i^+\|$ should small and $\|\mathbf{y}_i - \mathbf{y}_i^-\|$ larger than m

unsupervised learning by context prediction

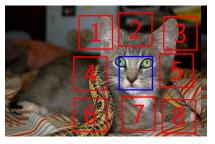
[Doersch et al. 2015]

- sample random pairs of patches in one of eight spatial configurations
- patches are randomly jittered and do not overlap
- like solving a puzzle, learn to predict the relative position

$$f\left(\begin{array}{cc} \end{array}\right) = 3$$

unsupervised learning by context prediction

[Doersch et al. 2015]

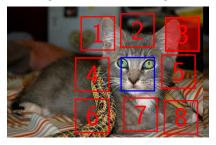


- sample random pairs of patches in one of eight spatial configurations
- patches are randomly jittered and do not overlap
- like solving a puzzle, learn to predict the relative position

$$f\left(\begin{array}{cc} \end{array}\right) = 3$$

unsupervised learning by context prediction

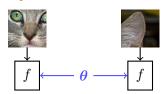
[Doersch et al. 2015]



- sample random pairs of patches in one of eight spatial configurations
- patches are randomly jittered and do not overlap
- like solving a puzzle, learn to predict the relative position

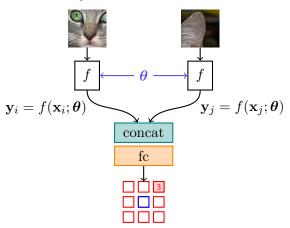
$$f\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right) = 3$$

context prediction: architecture



- network f learned by siamese architecture
- representations are concatenated and followed by softmax classifier, where each spatial configuration is a class

context prediction: architecture



network f learned by siamese architecture

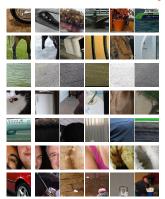
Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.

 representations are concatenated and followed by softmax classifier, where each spatial configuration is a class

context prediction: examples

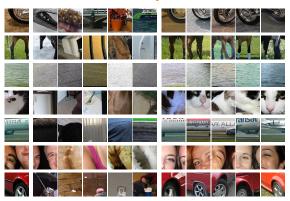
- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet
- unsupervised training from scratch on the context prediction task

context prediction: examples



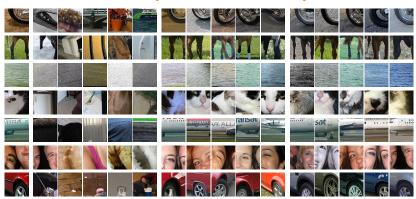
- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet
- unsupervised training from scratch on the context prediction task

context prediction: examples



- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet
- unsupervised training from scratch on the context prediction task

context prediction: examples



- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet
- unsupervised training from scratch on the context prediction task

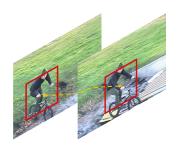
unsupervised learning on video: tracking

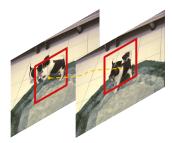
[Wang et al. 2015]

- estimate motion and find the region that contains most motion
- track this region for a number of frames
- generate a pair of matching patches on the first and last frames

unsupervised learning on video: tracking

[Wang et al. 2015]

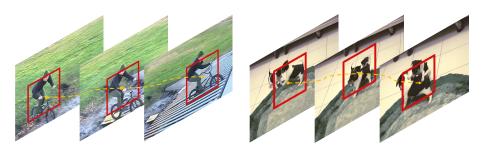




- estimate motion and find the region that contains most motion
- track this region for a number of frames
- generate a pair of matching patches on the first and last frames

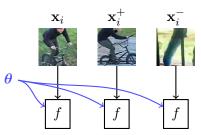
unsupervised learning on video: tracking

[Wang et al. 2015]

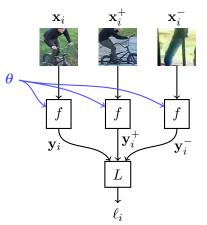


- estimate motion and find the region that contains most motion
- track this region for a number of frames
- generate a pair of matching patches on the first and last frames

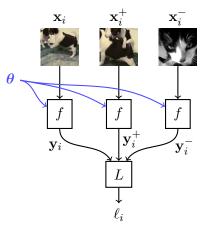
- ullet input query \mathbf{x}_i (first frame), tracked \mathbf{x}_i^+ (last frame), random \mathbf{x}_i^-
- $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- triplet loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$



- ullet input query \mathbf{x}_i (first frame), tracked \mathbf{x}_i^+ (last frame), random \mathbf{x}_i^-
- $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $m{ heta}$
- ullet triplet loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$



- ullet input query \mathbf{x}_i (first frame), tracked \mathbf{x}_i^+ (last frame), random \mathbf{x}_i^-
- ullet $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- triplet loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$



- ullet input query \mathbf{x}_i (first frame), tracked \mathbf{x}_i^+ (last frame), random \mathbf{x}_i^-
- ullet $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through the same function f with shared parameters $oldsymbol{ heta}$
- triplet loss ℓ_i measured on output triplet $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

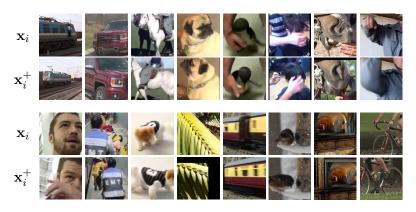
unsupervised learning on video: objective

$$\left\| f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \right\|^{2} < \left\| f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \right\|^{2} - m$$

$$\left\| f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \right\|^{2} < \left\| f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - f\left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \right\|^{2} - m$$

• so, the objective is that squared distance $\|\mathbf{y}_i - \mathbf{y}_i^+\|^2$ is less than $\|\mathbf{y}_i - \mathbf{y}_i^-\|^2$ by margin m

unsupervised learning on video: more examples



• input query \mathbf{x}_i (first frame), tracked \mathbf{x}_i^+ (last frame)

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.

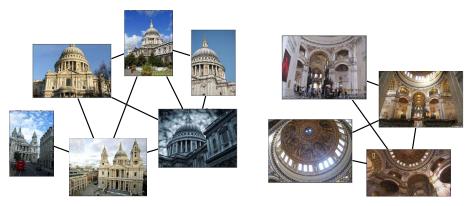
fine-tuning

deep image retrieval: dataset cleaning

[Gordo et al. 2016]

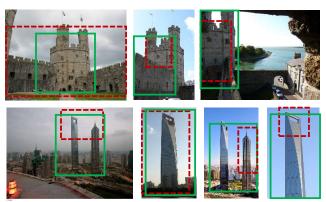
- start from landmark dataset (192k images) and clean it (49k images)
- use it to fine-tune a network pre-trained on ImageNet for classification
- prototypical, non-prototypical and incorrect images per class
- only prototypical are kept to reduce intra-class variability

deep image retrieval: prototypical views

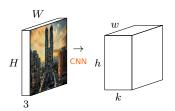


- pairwise match images per class by SIFT descriptors and fast spatial matching
- connect images into a graph and compute the connected components
- keep only the largest component

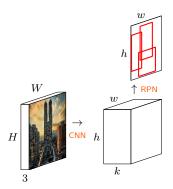
deep image retrieval: bounding boxes



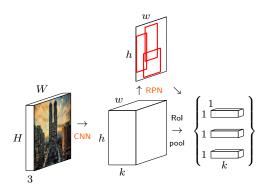
- automatically find object bounding boxes
 - initialize with inlier features per image
 - update such that boxes are consistent over all matching pairs
- use bounding boxes to train a region proposal network



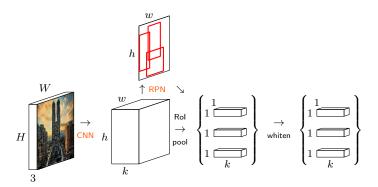
- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled
- ullet ℓ_2 -normalization, PCA-whitening (FC layer), ℓ_2 -normalization
- sum-pooling, ℓ_2 -normalization (as in R-MAC)



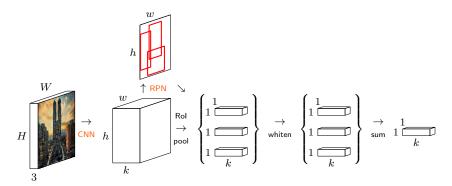
- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled
- ullet ℓ_2 -normalization, PCA-whitening (FC layer), ℓ_2 -normalization
- sum-pooling, ℓ_2 -normalization (as in R-MAC)



- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled
- ullet ℓ_2 -normalization, PCA-whitening (FC layer), ℓ_2 -normalization
- sum-pooling, ℓ_2 -normalization (as in R-MAC)



- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled
- ℓ_2 -normalization, PCA-whitening (FC layer), ℓ_2 -normalization
- sum-pooling, ℓ_2 -normalization (as in R-MAC)

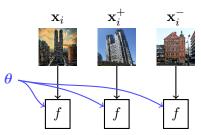


- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled
- ullet ℓ_2 -normalization, PCA-whitening (FC layer), ℓ_2 -normalization
- sum-pooling, ℓ_2 -normalization (as in R-MAC)

deep image retrieval: architecture

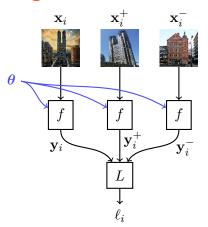
- ullet query \mathbf{x}_i , relevant \mathbf{x}_i^+ (same building), irrelevant \mathbf{x}_i^- (other building)
- $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through function f including features, RPN, pooling
- ullet triplet loss ℓ_i measured on output $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

deep image retrieval: architecture



- ullet query \mathbf{x}_i , relevant \mathbf{x}_i^+ (same building), irrelevant \mathbf{x}_i^- (other building)
- ullet $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through function f including features, RPN, pooling
- ullet triplet loss ℓ_i measured on output $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

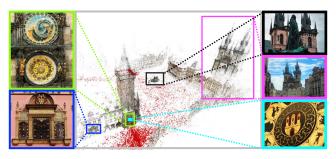
deep image retrieval: architecture



- query \mathbf{x}_i , relevant \mathbf{x}_i^+ (same building), irrelevant \mathbf{x}_i^- (other building)
- $\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-$ go through function f including features, RPN, pooling
- triplet loss ℓ_i measured on output $(\mathbf{y}_i, \mathbf{y}_i^+, \mathbf{y}_i^-)$

learning from bag-of-words: 3d reconstruction

[Radenovic et al. 2016]



- start from an independent dataset of 7.4M images, no class labels
- clustering, pairwise matching and reconstruction of 713~3d models containing 165k unique images
- 3d models playing the same role as classes in deep image retrieval
- again, fine-tune a network pre-trained on ImageNet for classification

- input query
- positive images found in same model by minimum MAC distance, maximum inliers, or drawn at random from images having at least a given number of inliers (more challenging)

- input query
- positive images found in same model by minimum MAC distance, maximum inliers, or drawn at random from images having at least a given number of inliers (more challenging)

- input query
- positive images found in same model by minimum MAC distance, maximum inliers, or drawn at random from images having at least a given number of inliers (more challenging)

- input query
- positive images found in same model by minimum MAC distance, maximum inliers, or drawn at random from images having at least a given number of inliers (more challenging)

- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative, nearest neighbors from all other models, or nearest neighbors, one per model (higher variability)

- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative, nearest neighbors from all other models, or nearest neighbors, one per model (higher variability)

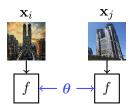
- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative, nearest neighbors from all other models, or nearest neighbors, one per model (higher variability)

- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative, nearest neighbors from all other models, or nearest neighbors, one per model (higher variability)

learning from bag-of-words: architecture

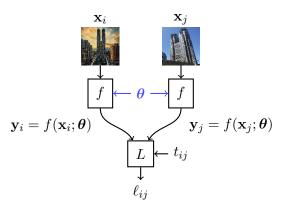
- input $(\mathbf{x}_i, \mathbf{x}_i)$ of relevant or irrelevant images
- ullet both $\mathbf{x}_i,\mathbf{x}_j$ go through function f including features and MAC pooling
- ullet contrastive loss ℓ_{ij} measured on output $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

learning from bag-of-words: architecture



- input $(\mathbf{x}_i, \mathbf{x}_j)$ of relevant or irrelevant images
- ullet both $\mathbf{x}_i, \mathbf{x}_j$ go through function f including features and MAC pooling
- ullet contrastive loss ℓ_{ij} measured on output $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

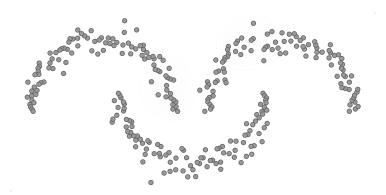
learning from bag-of-words: architecture



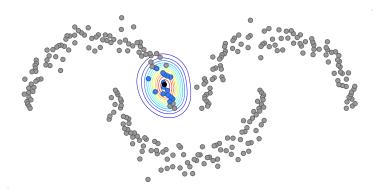
- input $(\mathbf{x}_i, \mathbf{x}_j)$ of relevant or irrelevant images
- ullet both $\mathbf{x}_i, \mathbf{x}_j$ go through function f including features and MAC pooling
- ullet contrastive loss ℓ_{ij} measured on output $(\mathbf{y}_i,\mathbf{y}_j)$ and target t_{ij}

graph-based methods

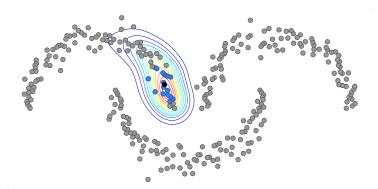
ranking on manifolds: single query



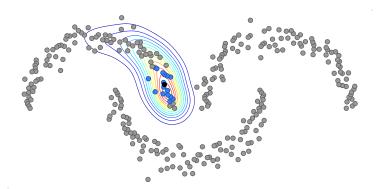
- data points (•), query point (•), nearest neighbors (•)
- iteration \times 30



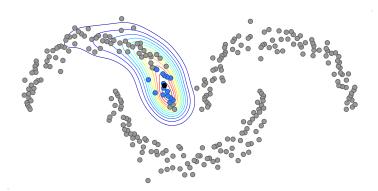
- data points (•), query point (•), nearest neighbors (•)
- iteration 0×30



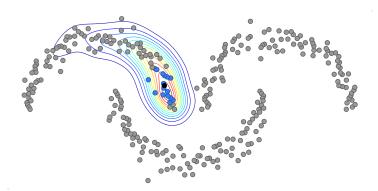
- data points (•), query point (•), nearest neighbors (•)
- iteration 1×30



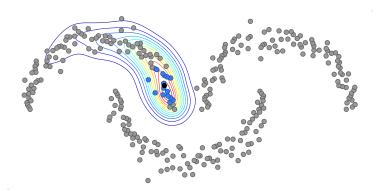
- data points (•), query point (•), nearest neighbors (•)
- iteration 2×30



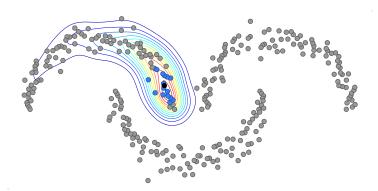
- data points (•), query point (•), nearest neighbors (•)
- iteration 3×30



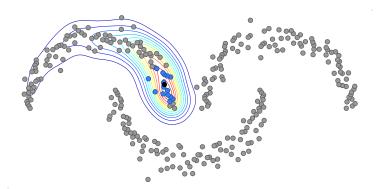
- data points (•), query point (•), nearest neighbors (•)
- iteration 4×30



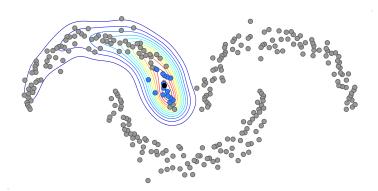
- data points (•), query point (•), nearest neighbors (•)
- iteration 5×30



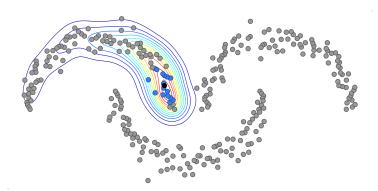
- data points (•), query point (•), nearest neighbors (•)
- iteration 6×30



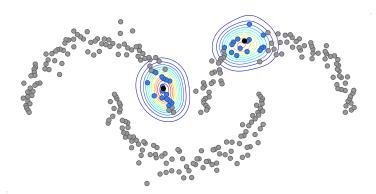
- data points (•), query point (•), nearest neighbors (•)
- iteration 7×30



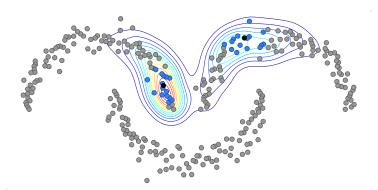
- data points (•), query point (•), nearest neighbors (•)
- iteration 8×30



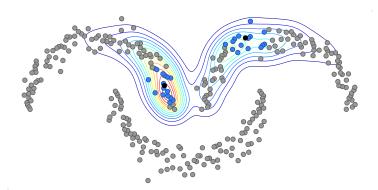
- data points (•), query point (•), nearest neighbors (•)
- iteration 9×30



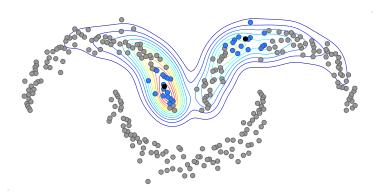
- data points (•), query points (•), nearest neighbors (•)
- iteration 0×30



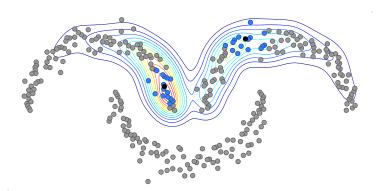
- data points (•), query points (•), nearest neighbors (•)
- iteration 1×30



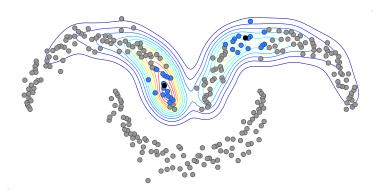
- data points (•), query points (•), nearest neighbors (•)
- iteration 2×30



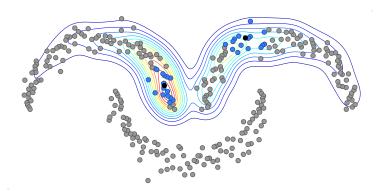
- data points (•), query points (•), nearest neighbors (•)
- iteration 3×30



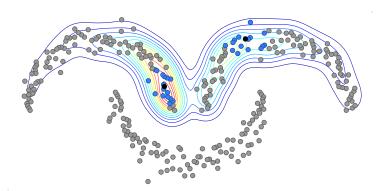
- data points (•), query points (•), nearest neighbors (•)
- iteration 4×30



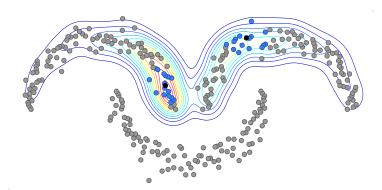
- data points (•), query points (•), nearest neighbors (•)
- iteration 5×30



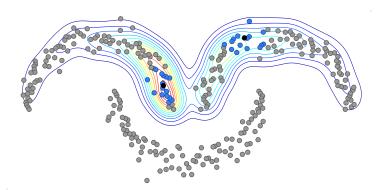
- data points (•), query points (•), nearest neighbors (•)
- iteration 6×30



- data points (•), query points (•), nearest neighbors (•)
- iteration 7×30



- data points (•), query points (•), nearest neighbors (•)
- iteration 8×30



- data points (•), query points (•), nearest neighbors (•)
- iteration 9×30

[Zhou et al. 2003]

- ullet reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$W := D^{-1/2} W D^{-1/2}$$

where D = diag(W1) is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1 - \alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

[Zhou et al. 2003]

- ullet reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$W := D^{-1/2}WD^{-1/2}$$

where D = diag(W1) is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1 - \alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

[Zhou et al. 2003]

- ullet reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$W := D^{-1/2} W D^{-1/2}$$

where D = diag(W1) is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- ullet random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1 - \alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

[Zhou et al. 2003]

- ullet reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$W := D^{-1/2}WD^{-1/2}$$

where D = diag(W1) is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- ullet random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1 - \alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

[Zhou et al. 2003]

- reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$W := D^{-1/2}WD^{-1/2}$$

where D = diag(W1) is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1 - \alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

ranking as solving a linear system

[Iscen et al. 2017]

ullet query: sparse vector $\mathbf{y} \in \mathbb{R}^n$ with nearest neighbor similarities

$$y_i = \sum_{\mathbf{q} \in Q} s(\mathbf{q}, \mathbf{x}_i) \times \mathbb{1}[\mathbf{x}_i \in NN_X^k(\mathbf{q})]$$

where $Q, X \subset \mathbb{R}^d$ query/data points, $\mathbf{x}_i \in X$, s similarity function

regularized Laplacian

$$\mathcal{L}_{\alpha} = \frac{I - \alpha \mathcal{W}}{1 - \alpha}$$

solve linear system

$$\mathcal{L}_{\alpha}\mathbf{f} = \mathbf{y}$$

by conjugate gradient method

ranking as solving a linear system

[Iscen et al. 2017]

ullet query: sparse vector $\mathbf{y} \in \mathbb{R}^n$ with nearest neighbor similarities

$$y_i = \sum_{\mathbf{q} \in Q} s(\mathbf{q}, \mathbf{x}_i) \times \mathbb{1}[\mathbf{x}_i \in NN_X^k(\mathbf{q})]$$

where $Q, X \subset \mathbb{R}^d$ query/data points, $\mathbf{x}_i \in X$, s similarity function

regularized Laplacian

$$\mathcal{L}_{\alpha} = \frac{I - \alpha \mathcal{W}}{1 - \alpha}$$

solve linear system

$$\mathcal{L}_{\alpha}\mathbf{f} = \mathbf{y}$$

by conjugate gradient method

ranking as solving a linear system

[Iscen et al. 2017]

ullet query: sparse vector $\mathbf{y} \in \mathbb{R}^n$ with nearest neighbor similarities

$$y_i = \sum_{\mathbf{q} \in Q} s(\mathbf{q}, \mathbf{x}_i) \times \mathbb{1}[\mathbf{x}_i \in NN_X^k(\mathbf{q})]$$

where $Q, X \subset \mathbb{R}^d$ query/data points, $\mathbf{x}_i \in X$, s similarity function

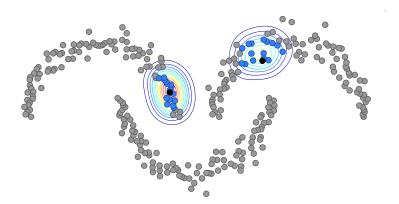
regularized Laplacian

$$\mathcal{L}_{\alpha} = \frac{I - \alpha \mathcal{W}}{1 - \alpha}$$

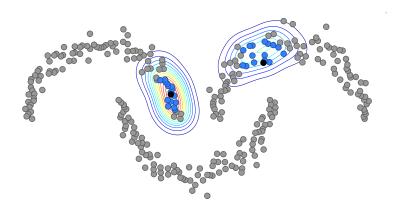
solve linear system

$$\mathcal{L}_{\alpha}\mathbf{f} = \mathbf{y}$$

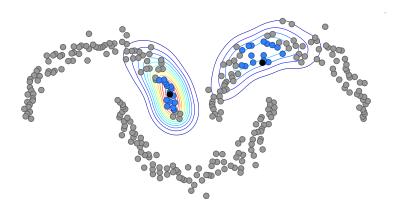
by conjugate gradient method



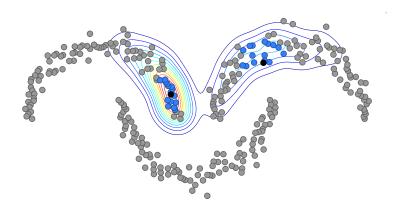
- data points (•), query points (•), nearest neighbors (•)
- iteration 0×2



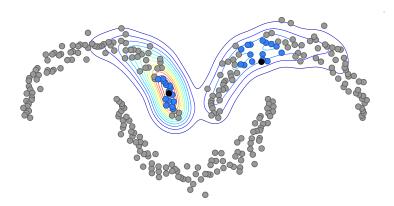
- data points (•), query points (•), nearest neighbors (•)
- iteration 1×2



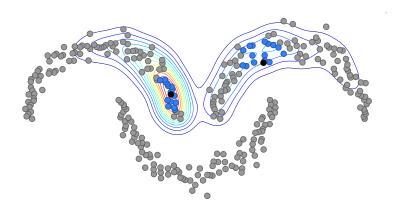
- data points (•), query points (•), nearest neighbors (•)
- iteration 2×2



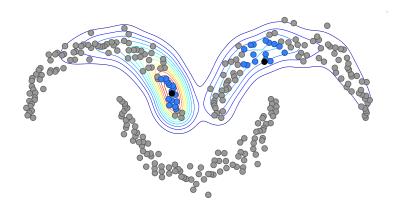
- data points (•), query points (•), nearest neighbors (•)
- iteration 3×2



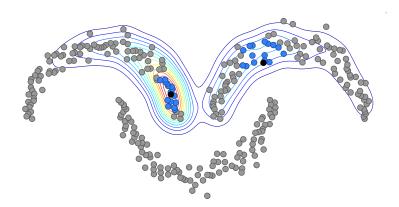
- data points (•), query points (•), nearest neighbors (•)
- iteration 4×2



- data points (•), query points (•), nearest neighbors (•)
- iteration 5×2

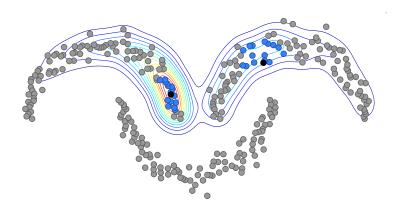


- data points (•), query points (•), nearest neighbors (•)
- iteration 6×2



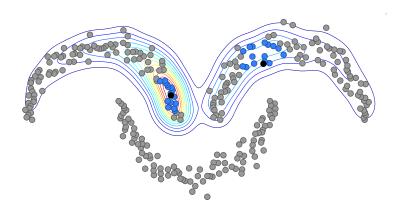
- data points (•), query points (•), nearest neighbors (•)
- iteration 7×2

ranking by conjugate gradient



- data points (•), query points (•), nearest neighbors (•)
- iteration 8 × 2

ranking by conjugate gradient



- data points (•), query points (•), nearest neighbors (•)
- iteration 9×2

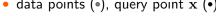
ranking as solving a linear system

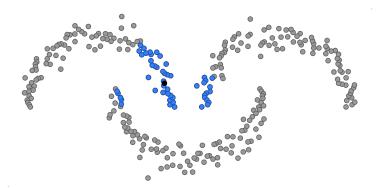
- represent image by global descriptor or multiple regional descriptors
- perform initial query based on Euclidean nearest neighbors
- re-rank by solving linear system
- ResNet-101 fine-tuned by BoW + R-MAC + re-ranking:
 - mAP 87.1 (95.8) on Oxford5k, 96.5 (96.9) on Paris6k
 - 1 (21) descriptors/image \times 2048 dimensions

[Iscen et al. 2018]

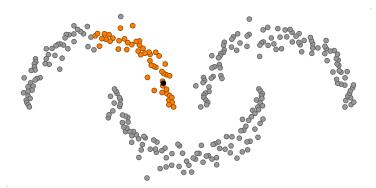


• data points (•), query point x (•)

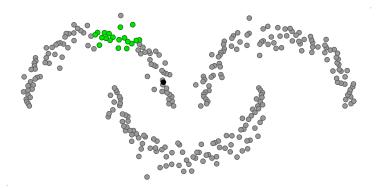




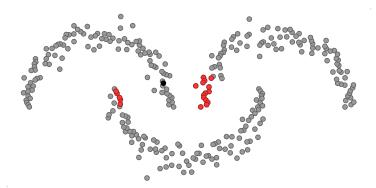
- data points (•), query point x (•)
- Euclidean nearest neighbors $E(\mathbf{x})$ (•)



- data points (•), query point x (•)
- manifold nearest neighbors $M(\mathbf{x})$ (•)



- data points (•), query point x (•)
- hard positives $S^+ = M(\mathbf{x}) \setminus E(\mathbf{x})$ (•)

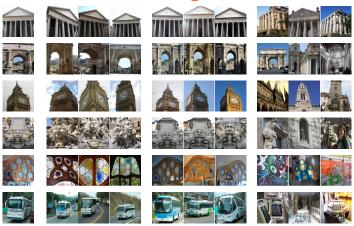


- data points (•), query point x (•)
- hard negatives $S^- = E(\mathbf{x}) \setminus M(\mathbf{x})$ (•)

- query (anchor) (x)
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- ullet negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X\setminus E(\mathbf{x})$

- query (anchor) (x)
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

- query (anchor) (x)
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$



- query (anchor) (x)
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- ullet negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X\setminus E(\mathbf{x})$

- query (anchor) (x)
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss
- VGG-16 + R-MAC, mAP on Oxford5k (Paris6k):
 - pre-trained on ImageNet: 68.0 (76.6)
 - fine-tuning with SIFT + 3d reconstruction pipeline: 77.8 (84.1)
 - unsupervised fine-tuning: 78.2 (85.1)

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss
- VGG-16 + R-MAC, mAP on Oxford5k (Paris6k):
 - pre-trained on ImageNet: 68.0 (76.6)
 - fine-tuning with SIFT + 3d reconstruction pipeline: 77.8 (84.1)
 - unsupervised fine-tuning: 78.2 (85.1)

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss
- VGG-16 + R-MAC, mAP on Oxford5k (Paris6k):
 - pre-trained on ImageNet: 68.0 (76.6)
 - fine-tuning with SIFT + 3d reconstruction pipeline: 77.8 (84.1)
 - unsupervised fine-tuning: 78.2 (85.1)

summary

- bag-of-words and inverted index is only a crude form of approximate nearest neighbor search
- global descriptors are compact and fast, but do not perform as well as local descriptors
- compressed representation for nearest neighbor search are effective if manifold is captured correctly
- pooling CNN representations is best at last convolutional layers:
 MAC, R-MAC, SPoC, CroW
- fine-tuning with constrastive or triplet loss allows transferring to a new domain and learning to rank as opposed to classify
- now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever
- modeling the manifold explicitly allows unsupervised fine-tuning without labels, auxiliary systems (e.g. SIFT pipeline), or other information (e.g. temporal neighborhood in video)

summary

- bag-of-words and inverted index is only a crude form of approximate nearest neighbor search
- global descriptors are compact and fast, but do not perform as well as local descriptors
- compressed representation for nearest neighbor search are effective if manifold is captured correctly
- pooling CNN representations is best at last convolutional layers:
 MAC, R-MAC, SPoC, CroW
- fine-tuning with constrastive or triplet loss allows transferring to a new domain and learning to rank as opposed to classify
- now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever
- modeling the manifold explicitly allows unsupervised fine-tuning without labels, auxiliary systems (e.g. SIFT pipeline), or other information (e.g. temporal neighborhood in video)

summary

- bag-of-words and inverted index is only a crude form of approximate nearest neighbor search
- global descriptors are compact and fast, but do not perform as well as local descriptors
- compressed representation for nearest neighbor search are effective if manifold is captured correctly
- pooling CNN representations is best at last convolutional layers:
 MAC, R-MAC, SPoC, CroW
- fine-tuning with constrastive or triplet loss allows transferring to a new domain and learning to rank as opposed to classify
- now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever
- modeling the manifold explicitly allows unsupervised fine-tuning without labels, auxiliary systems (e.g. SIFT pipeline), or other information (e.g. temporal neighborhood in video)