lecture 10: image retrieval and manifold learning deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2017 - Jan. 2018

outline

background indexing pooling manifold learning
fine-tuning
graph-based methods

background

image classification challenges

- scale
- viewpoint
- occlusion
- Clutter
- lighting
- number of instances
- texture/color
- pose
o deformability
- intra-class variability

image classification challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting
- number of instances
- texture/color
- pose
- deformability
- intra-class variability

image retrieval challenges

- scale
viewpoint
- distinctiveness
- occlusion
- distractors
- Clutter
- lighting

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting
- distinctiveness
- distractors
main difference to classification:

image retrieval challenges

- scale
- viewpoint
- occlusion
- clutter
- lighting
- distinctiveness
- distractors
main difference to classification:
- no intra-class variability

vector quantization \rightarrow visual words

- query vs. dataset image

vector quantization \rightarrow visual words

- pairwise descriptor matching

vector quantization \rightarrow visual words

- pairwise descriptor matching for every dataset image

vector quantization \rightarrow visual words

- similar descriptors should all be nearby in the descriptor space

vector quantization \rightarrow visual words

- let's quantize them into visual words

vector quantization \rightarrow visual words

- now visual words act as a proxy; no pairwise matching needed

inverted file indexing

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.

inverted file indexing

inverted file indexing

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.

inverted file indexing

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.

inverted file indexing

54	
67	
72	

54											
67											
72											

query

	1	\rightarrow	3		1	\rightarrow	2		1	1
12	13	14	15	16	17	18	19	20	21	22

back to geometry: re-ranking

original images

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

back to geometry: re-ranking

local features

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

back to geometry: re-ranking

tentative correspondences: too many

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

back to geometry: re-ranking

inliers: now more expensive to find

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography.

application: location and landmark recognition

१ Estimated Location \uparrow Similar Image. $₹$ Incorrectly seo-tagoged 9 Unavailable

Suggested tags: Buxton Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Buxton Memorial Fountain, Winchester Palace, Architecture, Victorian gothio

Similarity: 0.385
Details Original \bullet

average precision (AP)

- ranked list of items with true/false labels

$$
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F}
\end{array}
$$

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- \# total ground truth n, current rank k, \# true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{n}$

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- average precision $=$ area under curve
- the mean average precision (mAP) is the mean over queries

average precision (AP)

- ranked list of items with true/false labels

1	2	3	4	5	6	7	8	9	10	11	12
T	T	F	T	F	F	T	F	T	T	F	F

- average precision $=$ area under curve (filled-in curve)
- the mean average precision (mAP) is the mean over queries

Oxford buildings dataset

[Philbin et al. 2007]

All Souls

Christ Church

Ashmolean

Cornmarket

Balliol

Hertford

Bodleian

Keble

Magdalen

Pitt Rivers

Radcliffe Camera

- Oxford5k: 5k images, 11 landmarks, $5 \times 11=55$ queries, $10 \sim 200$ positives/query
- Oxford105k: 100k additional distractor images

Paris dataset

- Paris6k: 6k images, 11 landmarks, $5 \times 11=55$ queries, $50 \sim 300$ positives/query
- Paris106k: same 100k distractor images as Oxford

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2008. Lost in Quantization: Improving Particular Object Retrieval in Large Scale Image Databases.

Holidays dataset

[Jégou et al. 2008]

- personal holiday photos, natural and man-made scenes
- 1.5 k images, 500 groups, 1 query/group, 1000 positives, $1 \sim 12$ positives/query

aggregated selective match kernel (ASMK)

[Tolias et al. 2013]

- residual pooling within cells

$$
V\left(X_{c}\right):=\sum_{x \in X_{c}} r(x)=\sum_{x \in X_{c}} x-q(x)
$$

- nonlinear selectivity between cells

$$
K(X, Y):=\gamma(X) \gamma(Y) \sum_{c \in C} w_{c} \sigma_{\alpha}\left(\hat{V}\left(X_{c}\right)^{\top} \hat{V}\left(Y_{c}\right)\right)
$$

where $\hat{x}:=x /\|x\|$ and σ_{α} a nonlinear function

triangulation embedding (T-embedding)

[Jégou and Zisserman 2014]

- normalized residuals, concatenated over cells, pooling over dataset

$$
R(X):=\sum_{x \in X}\left(\hat{r}_{1}(x), \ldots, \hat{r}_{k}(x)\right)=\sum_{x \in X}\left(\frac{x-c_{1}}{\left\|x-c_{1}\right\|}, \ldots, \frac{x-c_{k}}{\left\|x-c_{k}\right\|}\right)
$$

where $r_{j}(x):=x-c_{j}$ and $\hat{x}:=x /\|x\|$

- linear kernel, written as inner product

$$
K(X, Y):=(\gamma(X) R(X))^{\top}(\gamma(Y) R(Y))
$$

triangulation embedding geometry

- input vectors - codebook - residuals - normalized residuals

triangulation embedding geometry

- input vectors - codebook - residuals - normalized residuals

triangulation embedding geometry

- input vectors - codebook - residuals - normalized residuals

triangulation embedding geometry

- input vectors - codebook - residuals - normalized residuals

performance

- aggregated selective match kernel
- mAP 81.7 (83.8) mAP on Oxford5k, 78.2 (80.5) on Paris6k, 82.2 (86.5) on Holidays
- $\sim 2.2 \mathrm{k}$ (3.8k) descriptors/image $\times 128$ dimensions
- triangulation embedding
- mAP 57.1 (67.6) on Oxford5k, 72.3 (77.1) on Holidays
- global descriptor, 1920 (8064) dimensions
- no spatial verification or other post-processing

state of the art before deep learning

- bag of words and inverted index is only a crude form of approximate nearest neighbor search for each local descriptor, followed by a kernel function
- for good performance, storing descriptors is necessary, even compressed
- very good performance achieved with thousands descriptors/image
- a global descriptor/image allows nearest neighbor search directly on images, but is inferior

state of the art before deep learning

- bag of words and inverted index is only a crude form of approximate nearest neighbor search for each local descriptor, followed by a kernel function
- for good performance, storing descriptors is necessary, even compressed
- very good performance achieved with thousands descriptors/image
- a global descriptor/image allows nearest neighbor search directly on images, but is inferior
indexing

nearest neighbor search

- given query point y, find its nearest neighbor with respect to Euclidean distance within data set X in a d-dimensional space
- image retrieval: same problem; one or multiple queries depending on global or local representation
- image classification: nearest neighbor or naïve Bayes nearest neighbor classifier, again depending on representation

k-d tree

[Bentley 1975]

- index: recursively split at medoid on some dimension, make balanced binary tree
- search: descend recursively from root, choosing child according to splitting dimension and value

k-d tree

[Bentley 1975]

- index: recursively split at medoid on some dimension, make balanced binary tree
- search: descend recursively from root, choosing child according to splitting dimension and value
- backtracking becomes exhaustive at high dimensions

randomized k-d trees

[Silpa-Anan and Hartley 1975]

- index: same as before, but now multiple randomized trees
- search: descend trees in parallel according to shared priority queue
- still, points are stored, distances are exact

randomized k-d trees

[Silpa-Anan and Hartley 1975]

- index: same as before, but now multiple randomized trees
- search: descend trees in parallel according to shared priority queue
- still, points are stored, distances are exact

randomized k-d trees

[Silpa-Anan and Hartley 1975]

- index: same as before, but now multiple randomized trees
- search: descend trees in parallel according to shared priority queue
- still, points are stored, distances are exact

locality sensitive hashing (LSH)

[Charikar 2002]

- index: choose $\mathbf{a}_{i} \sim \mathcal{N}(0,1)$; encode each data point $x \in X$ by binary code $h(x):=\left(h_{\mathbf{a}_{1}}(x), \ldots, h_{\mathbf{a}_{k}}(x)\right) \in\{-1,1\}^{d}$ with hash function

$$
h_{\mathbf{a}}(x)=\operatorname{sgn}\left(\mathbf{a}^{\top} x\right)
$$

- search: encode query y as $h(y)$ and search by Hamming distance

not adapted to data distribution

locality sensitive hashing (LSH)

[Charikar 2002]

- index: choose $\mathbf{a}_{i} \sim \mathcal{N}(0,1)$; encode each data point $x \in X$ by binary code $h(x):=\left(h_{\mathbf{a}_{1}}(x), \ldots, h_{\mathbf{a}_{k}}(x)\right) \in\{-1,1\}^{d}$ with hash function

$$
h_{\mathbf{a}}(x)=\operatorname{sgn}\left(\mathbf{a}^{\top} x\right)
$$

- search: encode query y as $h(y)$ and search by Hamming distance

not adapted to data distribution

locality sensitive hashing (LSH)

[Charikar 2002]

- index: choose $\mathbf{a}_{i} \sim \mathcal{N}(0,1)$; encode each data point $x \in X$ by binary code $h(x):=\left(h_{\mathbf{a}_{1}}(x), \ldots, h_{\mathbf{a}_{k}}(x)\right) \in\{-1,1\}^{d}$ with hash function

$$
h_{\mathbf{a}}(x)=\operatorname{sgn}\left(\mathbf{a}^{\top} x\right)
$$

- search: encode query y as $h(y)$ and search by Hamming distance

not adapted to data distribution

locality sensitive hashing (LSH)

[Charikar 2002]

- index: choose $\mathbf{a}_{i} \sim \mathcal{N}(0,1)$; encode each data point $x \in X$ by binary code $h(x):=\left(h_{\mathbf{a}_{1}}(x), \ldots, h_{\mathbf{a}_{k}}(x)\right) \in\{-1,1\}^{d}$ with hash function

$$
h_{\mathbf{a}}(x)=\operatorname{sgn}\left(\mathbf{a}^{\top} x\right)
$$

- search: encode query y as $h(y)$ and search by Hamming distance
- not adapted to data distribution

vector quantization (VQ)

[Gray 1984]

- index: cluster X into codebook $C=\left\{c_{1}, \ldots, c_{k}\right\}$; quantize each $x \in X$ to $q(x)=\min _{c \in C}\|x-c\|^{2}$ and encode it by $\log k$ bits
- search: pre-compute distances $\|y-c\|^{2}$ for $c \in C$ and approximate distances $\|y-x\|^{2}$ by $\|y-q(x)\|^{2}$ where $q(x) \in C$
- small distortion \rightarrow large k, too large to store, too slow to search

vector quantization (VQ)

[Gray 1984]

- index: cluster X into codebook $C=\left\{c_{1}, \ldots, c_{k}\right\}$; quantize each $x \in X$ to $q(x)=\min _{c \in C}\|x-c\|^{2}$ and encode it by $\log k$ bits
- search: pre-compute distances $\|y-c\|^{2}$ for $c \in C$ and approximate distances $\|y-x\|^{2}$ by $\|y-q(x)\|^{2}$ where $q(x) \in C$
- small distortion \rightarrow large k, too large to store, too slow to search

product quantization (PQ)

[Jégou et al. 2011]

- index: decompose vectors as $x=\left(x^{1}, \ldots, x^{m}\right)$, cluster X into codebook $C=C^{1} \times \cdots \times C^{m}$ with k cells each and $|C|=k^{m}$
- search: pre-compute distances $\left\|y^{j}-c\right\|^{2}$ for $c \in C^{j}$ and approximate $\|y-x\|^{2}$ by $\|y-q(x)\|^{2}=\sum_{j=1}^{m}\left\|y^{j}-q^{j}\left(x^{j}\right)\right\|^{2}$ where $q^{j}\left(x^{j}\right) \in C^{j}$

product quantization (PQ)

[Jégou et al. 2011]

- index: decompose vectors as $x=\left(x^{1}, \ldots, x^{m}\right)$, cluster X into codebook $C=C^{1} \times \cdots \times C^{m}$ with k cells each and $|C|=k^{m}$
- search: pre-compute distances $\left\|y^{j}-c\right\|^{2}$ for $c \in C^{j}$ and approximate $\|y-x\|^{2}$ by $\|y-q(x)\|^{2}=\sum_{j=1}^{m}\left\|y^{j}-q^{j}\left(x^{j}\right)\right\|^{2}$ where $q^{j}\left(x^{j}\right) \in C^{j}$
- a lot of centroids do not represent data and are unused

inverted index

[Jégou et al. 2011]

- index: train a coarse quantizer Q of k cells; quantize each $x \in X$ to $Q(x)$, compute residual $r(x)=x-Q(x)$ and encode residuals by a product quantizer q
- search: quantize query y to a fixed number of nearest cells; exhaustively search by PQ only within those cells

inverted index

[Jégou et al. 2011]

- index: train a coarse quantizer Q of k cells; quantize each $x \in X$ to $Q(x)$, compute residual $r(x)=x-Q(x)$ and encode residuals by a product quantizer q
- search: quantize query y to a fixed number of nearest cells; exhaustively search by PQ only within those cells
- a lot of points in the coarse cells are too far away from query

inverted multi-index

[Babenko and Lempitsky 2012]

- index: decompose vectors as $x=\left(x^{1}, x^{2}\right)$; train two coarse quantizers Q^{1}, Q^{2} of k cells each, quantize each $x \in X$ to $Q^{1}\left(x^{1}\right), Q^{2}\left(x^{2}\right)$ and encode residuals by product quantizers q^{1}, q^{2}
- search: visit cells $\left(c^{1}, c^{2}\right) \in C^{1} \times C^{2}$ in ascending order of distance to y by multi-sequence algorithm
two coarse quantizers induce a finer partition than one

inverted multi-index

[Babenko and Lempitsky 2012]

- index: decompose vectors as $x=\left(x^{1}, x^{2}\right)$; train two coarse quantizers Q^{1}, Q^{2} of k cells each, quantize each $x \in X$ to $Q^{1}\left(x^{1}\right), Q^{2}\left(x^{2}\right)$ and encode residuals by product quantizers q^{1}, q^{2}
- search: visit cells $\left(c^{1}, c^{2}\right) \in C^{1} \times C^{2}$ in ascending order of distance to y by multi-sequence algorithm
- two coarse quantizers induce a finer partition than one

principal component analysis (PCA)

- given data $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$, compute empirical mean $\overline{\mathbf{x}}:=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$ and covariance matrix

$$
S:=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}
$$

- then diagonalize S by $S=U \Lambda U^{\top}$ where $U=\left(\mathbf{u}_{1} \mathbf{u}_{2}\right)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$

optimized product quantization (OPQ)

[Ge et al. 2013]

- no correlation: PCA-align by diagonalizing $\operatorname{cov}(X)$ as $U \Lambda U^{\top}$
- balanced variance: shuffle eigenvalues Λ by permutation π such that the product $\prod_{i} \lambda_{i}$ is constant in each subspace
- find codebook \hat{C} by PQ on rotated data $\hat{X}:=R X$ where $R:=U P_{\pi}^{\top}$ and P_{π} is the permutation matrix of π

locally optimized product quantization (LOPQ)

[Kalantidis and Avrithis 2014]

- same as $P Q$ with inverted index (or multi-index), but residuals are encoded by OPQ
- better on multimodal data: residual distributions closer to Gaussian assumption

locally optimized product quantization (LOPQ)

[Kalantidis and Avrithis 2014]

- same as PQ with inverted index (or multi-index), but residuals are encoded by OPQ
- better on multimodal data: residual distributions closer to Gaussian assumption

local principal component analysis

[Kambhatla \& Leen 1997]

- cluster data, then apply PCA per cell
- captures the support of data distribution
- multimodal (e.g. mixture) distributions
- distributions on nonlinear manifolds

manifold learning

- e.g. Isomap: apply PCA to the geodesic (graph) distance matrix
- e.g. kernel PCA: apply PCA to the Gram matrix of a nonlinear kernel
- other topology-preserving methods are only focusing on distances to nearest neighbors
- many classic methods use eigenvalue decomposition and most do not learn and explicit mapping from the input to the embedding space

pooling

image ranking by CNN features

[Krizhevsky et al. 2012]

- 3-channel RGB input, 224×224
- AlexNet pre-trained on ImageNet for classification
- last fully connected layer $\left(\mathrm{fc}_{6}\right)$: global descriptor of dimension $k=4096$

image ranking by CNN features

[Krizhevsky et al. 2012]

- 3-channel RGB input, 224×224
- AlexNet pre-trained on ImageNet for classification
- last fully connected layer (fc 6): global descriptor of dimension $k=4096$

image ranking by CNN features

[Krizhevsky et al. 2012]

- 3-channel RGB input, 224×224
- AlexNet pre-trained on ImageNet for classification
- last fully connected layer $\left(\mathrm{fc}_{6}\right)$: global descriptor of dimension $k=4096$

image ranking by CNN features

- query images
- nearest neighbors in ImageNet according to Euclidean distance

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

image ranking by CNN features

- query images
- nearest neighbors in ImageNet according to Euclidean distance

neural codes for image retrieval

[Babenko et al. 2014]

- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension $w \times h \times k=6 \times 6 \times 256=9216$
- alternatively: fully connected layers $\mathrm{fc}_{6}, \mathrm{fc}_{7}$, global descriptors of dimension $k^{\prime}=4096$
- in each case: PCA-whitening, ℓ_{2} normalization

neural codes for image retrieval

[Babenko et al. 2014]

- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension $w \times h \times k=6 \times 6 \times 256=9216$
- alternatively: fully connected layers $\mathrm{fc}_{6}, \mathrm{fc}_{7}$, global descriptors of dimension $k^{\prime}=4096$
- in each case: PCA-whitening, l_{2} normalization

neural codes for image retrieval

[Babenko et al. 2014]

- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension
$w \times h \times k=6 \times 6 \times 256=9216$
- alternatively: fully connected layers $\mathrm{fc}_{6}, \mathrm{fc}_{7}$, global descriptors of dimension $k^{\prime}=4096$
- in each case: PCA-whitening, ℓ_{2} normalization

neural codes for image retrieval

[Babenko et al. 2014]

- 3-channel RGB input, 224×224
- AlexNet last pooling layer, global descriptor of dimension $w \times h \times k=6 \times 6 \times 256=9216$
- alternatively: fully connected layers $\mathrm{fc}_{6}, \mathrm{fc}_{7}$, global descriptors of dimension $k^{\prime}=4096$ (best is fc_{6})
- in each case: PCA-whitening, ℓ_{2} normalization

neural codes for image retrieval

- fine-tuning by softmax on 672 classes of 200k landmark photos
- outperforms VLAD and Fisher vectors on standard retrieval benchmarks, but still inferior to SIFT local descriptors

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- $\ell_{2 \text {-normalization, } P C A-w h i t e n i n g ~ o f ~ e a c h ~ d e s c r i p t o r ~}^{\text {- }}$

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- $\ell_{2 \text {-normalization, PCA-whitening of each descriptor }}$

regional CNN features

[Razavian et al. 2015]

- 3-channel RGB input, largest square region extracted
- fixed multiscale overlapping regions, warped into $w \times h=227 \times 227$
- each region yields a $w^{\prime} \times h^{\prime} \times k=36 \times 36 \times 256$ dimensional feature at the last convolutional layer of AlexNet
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening of each descriptor

regional CNN features

- CNN visual representation jumps by more than $30 \% \mathrm{mAP}$ to outperform standard SIFT pipeline in a few months
- however, this is based on multiple regional descriptors per image and exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical

regional CNN features

- CNN visual representation jumps by more than $30 \% \mathrm{mAP}$ to outperform standard SIFT pipeline in a few months
- however, this is based on multiple regional descriptors per image and exhaustive pairwise matching of all descriptors of query and all dataset images, which is not practical

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- sum-pooling over all descriptors, ℓ_{2}-normalization

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- sum-pooling over all descriptors, ℓ_{2}-normalization

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- sum-pooling over all descriptors, ℓ_{2}-normalization

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- sum-pooling over all descriptors, ℓ_{2}-normalization

regional max-pooling (R-MAC)

[Tolias et al. 2016]

- VGG-16 last convolutional layer, $k=512$
- fixed multiscale overlapping regions, spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- sum-pooling over all descriptors, ℓ_{2}-normalization

global max-pooling (MAC)

- VGG-16 last convolutional layer, $k=512$
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- MAC: maximum activation of convolutions

global max-pooling (MAC)

- VGG-16 last convolutional layer, $k=512$
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- MAC: maximum activation of convolutions

global max-pooling (MAC)

- VGG-16 last convolutional layer, $k=512$
- global spatial max-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- MAC: maximum activation of convolutions

global max-pooling: matching

- receptive fields of 5 components of MAC vectors that contribute most to image similarity

global max-pooling: matching

- receptive fields of 5 components of MAC vectors that contribute most to image similarity

global max-pooling: matching

- receptive fields of 5 components of MAC vectors that contribute most to image similarity

global sum-pooling (SPoC)

[Babenko and Lempitsky 2015]

- VGG-19 last convolutional layer, $k=512$
- global spatial sum-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- SPoC: sum-pooled convolutional features

global sum-pooling (SPoC)

[Babenko and Lempitsky 2015]

- VGG-19 last convolutional layer, $k=512$
- global spatial sum-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- SPoC: sum-pooled convolutional features

global sum-pooling (SPoC)

[Babenko and Lempitsky 2015]

- VGG-19 last convolutional layer, $k=512$
- global spatial sum-pooling
- ℓ_{2}-normalization, PCA-whitening, ℓ_{2}-normalization
- SPoC: sum-pooled convolutional features

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F
- global spatial sum-pooling
- ℓ_{n}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights \mathbf{w}
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights \mathbf{w}, weighted feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights \mathbf{w}, weighted feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

[Kalantidis et al. 2016]

- VGG-16 feature map A, last pooling layer, $k=512$
- spatial weights F, channel weights \mathbf{w}, weighted feature map
- global spatial sum-pooling
- ℓ_{p}-normalization, PCA-whitening, ℓ_{2}-normalization

cross-dimensional weighting (CroW)

- spatial weights (visual saliency)

$$
F(x, y)=\sum_{k} A_{k}(x, y)
$$

- channel weights (sparsity sensitive)

- weighted feature map

$$
\hat{A}=A \times F \times \mathbf{w}
$$

cross-dimensional weighting (CroW)

- spatial weights (visual saliency)

$$
F(x, y)=\sum_{k} A_{k}(x, y)
$$

- channel weights (sparsity sensitive)

- weighted feature map

$$
\hat{A}=A \times F \times \mathbf{w}
$$

cross-dimensional weighting (CroW)

- spatial weights (visual saliency)

$$
F(x, y)=\sum_{k} A_{k}(x, y)
$$

- channel weights (sparsity sensitive)

$$
w_{j}=-\log \left(\epsilon+\sum_{x, y} \mathbb{1}\left[A_{j}(x, y)\right]\right)
$$

- weighted feature map

cross-dimensional weighting (CroW)

- spatial weights (visual saliency)

$$
F(x, y)=\sum_{k} A_{k}(x, y)
$$

- channel weights (sparsity sensitive)

$$
w_{j}=-\log \left(\epsilon+\sum_{x, y} \mathbb{1}\left[A_{j}(x, y)\right]\right)
$$

- weighted feature map

$$
\hat{A}=A \times F \times \mathbf{w}
$$

cross-dimensional weighting (CroW)

- input image

cross-dimensional weighting (CroW)

- receptive fields of nonzero elements of the 10 channels with the highest sparsity-sensitive weights

manifold learning

siamese architecture

[Chopra et al. 2005]

$$
\mathbf{x}_{i} \quad \mathbf{x}_{j}
$$

- an input sample is a pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through the same function f with shared parameters θ
- loss $\ell_{i j}$ is measured on output pair $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

siamese architecture

[Chopra et al. 2005]

- an input sample is a pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss $\ell_{i j}$ is measured on output pair $\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right)$ and target $t_{i j}$

siamese architecture

[Chopra et al. 2005]

- an input sample is a pair $\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss $\ell_{i j}$ is measured on output pair $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

contrastive loss

[Hadsel et al. 2006]

- input samples \mathbf{x}_{i}, output vectors $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- target variables $t_{i j}=\mathbb{1}\left[\operatorname{sim}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$
- contrastive loss is a function of distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|$ only

$$
\ell_{i j}=L\left(\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right), t_{i j}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|, t_{i j}\right)
$$

- similar samples are attracted

$$
\ell(x, t)=t \ell^{+}(x)+(1-t) \ell^{-}(x)=t x^{2}+(1-t)[m-x]_{+}^{2}
$$

contrastive loss

[Hadsel et al. 2006]

- input samples \mathbf{x}_{i}, output vectors $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- target variables $t_{i j}=\mathbb{1}\left[\operatorname{sim}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$
- contrastive loss is a function of distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|$ only

$$
\ell_{i j}=L\left(\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right), t_{i j}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|, t_{i j}\right)
$$

- similar samples are attracted

$$
\ell(x, t)=t \ell^{+}(x)+(1-t) \ell^{-}(x)=t x^{2}+(1-t)[m-x]_{+}^{2}
$$

contrastive loss

[Hadsel et al. 2006]

- input samples \mathbf{x}_{i}, output vectors $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- target variables $t_{i j}=\mathbb{1}\left[\operatorname{sim}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$
- contrastive loss is a function of distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|$ only

$$
\ell_{i j}=L\left(\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right), t_{i j}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|, t_{i j}\right)
$$

- dissimilar samples are repelled if closer than margin m

$$
\ell(x, t)=t \ell^{+}(x)+(1-t) \ell^{-}(x)=t x^{2}+(1-t)[m-x]_{+}^{2}
$$

manifold learning: MNIST

- 3 k samples of each of digits 4,9
- each sample similar to its 5 Euclidean nearest neighbors, and dissimilar to all other points
- 30k similar pairs, 18M dissimilar pairs

manifold learning: MNIST

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.

manifold learning: NORB

- 972 images of airplane class: 18 azimuths (every 20°), 9 elevations (in [$30^{\circ}, 70^{\circ}$], every 5°), 6 lighting conditions
- samples similar if taken from contiguous azimuth or elevation, regardless of lighting
- 11k similar pairs, 206M dissimilar pairs
- cylindrer in 3d: azimuth on circumference, elevation on height

manifold learning: NORB

- 972 images of airplane class: 18 azimuths (every 20°), 9 elevations (in [$30^{\circ}, 70^{\circ}$, every 5°), 6 lighting conditions
- samples similar if taken from contiguous azimuth or elevation, regardless of lighting
- 11k similar pairs, 206M dissimilar pairs
- cylindrer in 3d: azimuth on circumference, elevation on height

triplet architecture

[Wang et al. 2014]

$$
\mathbf{x}_{i} \quad \mathbf{x}_{i}^{+} \quad \mathbf{x}_{i}^{-}
$$

- an input sample is a triplet $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}\right)$
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters θ
- loss ℓ_{i} measured on output triplet $\left(\mathrm{y}_{i}, \mathrm{y}_{i}^{+}, \mathrm{y}_{i}^{-}\right)$

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep Ranking.

triplet architecture

[Wang et al. 2014]

- an input sample is a triplet $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}\right)$
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss ℓ_{i} measured on output triplet $\left(\mathrm{y}_{i}, \mathrm{y}_{i}^{+}, \mathrm{y}_{i}^{-}\right)$

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep Ranking.

triplet architecture

[Wang et al. 2014]

- an input sample is a triplet $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}\right)$
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters $\boldsymbol{\theta}$
- loss ℓ_{i} measured on output triplet $\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)$

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep Ranking.

triplet loss

- input "anchor" \mathbf{x}_{i}, output vector $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- positive $\mathbf{y}_{i}^{+}=f\left(\mathbf{x}_{i}^{+} ; \boldsymbol{\theta}\right)$, negative $\mathbf{y}_{i}^{-}=f\left(\mathbf{x}_{i}^{-} ; \boldsymbol{\theta}\right)$
- triplet loss is a function of distances $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|,\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|$only

$$
\begin{gathered}
\ell_{i}=L\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|,\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|\right) \\
\ell\left(x^{+}, x^{-}\right)=\left[m+\left(x^{+}\right)^{2}-\left(x^{-}\right)^{2}\right]_{+}
\end{gathered}
$$

so distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|$should be less than $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|$by margin m respectively, the contrastive loss can be written similarly
so distance $\left\|\mathrm{y}_{i}-\mathrm{y}_{i}^{+}\right\|$should small and $\left\|\mathrm{y}_{i}-\mathrm{y}_{i}^{-}\right\|$larger than m

triplet loss

- input "anchor" \mathbf{x}_{i}, output vector $\mathbf{y}_{i}=f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)$
- positive $\mathbf{y}_{i}^{+}=f\left(\mathbf{x}_{i}^{+} ; \boldsymbol{\theta}\right)$, negative $\mathbf{y}_{i}^{-}=f\left(\mathbf{x}_{i}^{-} ; \boldsymbol{\theta}\right)$
- triplet loss is a function of distances $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|,\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|$only

$$
\begin{gathered}
\ell_{i}=L\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)=\ell\left(\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|,\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|\right) \\
\ell\left(x^{+}, x^{-}\right)=\left[m+\left(x^{+}\right)^{2}-\left(x^{-}\right)^{2}\right]_{+}
\end{gathered}
$$

so distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|$should be less than $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|$by margin m

- by taking two pairs $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{+}\right)$and $\left(\mathbf{x}_{i}, \mathbf{x}_{i}^{-}\right)$at a time with targets 1,0 respectively, the contrastive loss can be written similarly

$$
\ell\left(x^{+}, x^{-}\right)=\left(x^{+}\right)^{2}+\left[m-x^{-}\right]_{+}^{2}
$$

so distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|$should small and $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|$larger than m

unsupervised learning by context prediction

[Doersch et al. 2015]

- sample random pairs of patches in one of eight spatial configurations
- patches are randomly jittered and do not overlap
- like solving a numzle, learn to predict the relative nosition

unsupervised learning by context prediction

[Doersch et al. 2015]

- sample random pairs of patches in one of eight spatial configurations
- patches are randomly jittered and do not overlap
- like solving a puzzle, learn to predict the relative position

unsupervised learning by context prediction

[Doersch et al. 2015]

- sample random pairs of patches in one of eight spatial configurations
- patches are randomly jittered and do not overlap
- like solving a puzzle, learn to predict the relative position

$$
f\binom{9}{\text { ax }}=3
$$

context prediction: architecture

- network f learned by siamese architecture
- representations are concatenated and followed by softmax classifier, where each spatial configuration is a class

context prediction: architecture

- network f learned by siamese architecture
- representations are concatenated and followed by softmax classifier, where each spatial configuration is a class

context prediction: examples

- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet
- unsupenvised training from scratch on the context prediction task

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.

context prediction: examples

- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet
- unsupervised training from scratch on the context prediction task

context prediction: examples

- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet

training from scratch on the context prediction task

context prediction: examples

- input image
- nearest neighbors with randomly initialized network
- trained by supervised classification on ImageNet
- unsupervised training from scratch on the context prediction task

unsupervised learning on video: tracking [Wang et al. 2015]

- estimate motion and find the region that contains most motion
- track this region for a number of frames
- generate a pair of matching patches on the first and last frames

unsupervised learning on video: tracking [Wang et al. 2015]

- estimate motion and find the region that contains most motion
- track this region for a number of frames
- generate a pair of matching patches on the first and last frames

unsupervised learning on video: tracking [Wang et al. 2015]

- estimate motion and find the region that contains most motion
- track this region for a number of frames
- generate a pair of matching patches on the first and last frames

unsupervised learning on video: architecture

- input query \mathbf{x}_{i} (first frame), tracked \mathbf{x}_{i}^{+}(last frame), random \mathbf{x}_{i}^{-}
- $\mathrm{x}_{i}, \mathrm{x}_{i}^{+}, \mathrm{x}_{i}^{-}$go through the same function f with shared parameters θ
- triplet loss ℓ_{i} measured on output triplet $\left(\mathrm{y}_{i}, \mathrm{y}_{i}^{+}, \mathrm{y}_{i}^{-}\right)$

unsupervised learning on video: architecture

- input query \mathbf{x}_{i} (first frame), tracked \mathbf{x}_{i}^{+}(last frame), random \mathbf{x}_{i}^{-}
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters $\boldsymbol{\theta}$ - triplet loss ℓ_{i} measured on output triplet $\left(\mathrm{y}_{i}, \mathrm{y}_{i}^{+}, \mathrm{y}_{i}^{-}\right)$

unsupervised learning on video: architecture

- input query \mathbf{x}_{i} (first frame), tracked \mathbf{x}_{i}^{+}(last frame), random \mathbf{x}_{i}^{-}
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters $\boldsymbol{\theta}$
- triplet loss ℓ_{i} measured on output triplet $\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)$

unsupervised learning on video: architecture

- input query \mathbf{x}_{i} (first frame), tracked \mathbf{x}_{i}^{+}(last frame), random \mathbf{x}_{i}^{-}
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through the same function f with shared parameters $\boldsymbol{\theta}$
- triplet loss ℓ_{i} measured on output triplet $\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)$

unsupervised learning on video: objective

- so, the objective is that squared distance $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{+}\right\|^{2}$ is less than $\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{-}\right\|^{2}$ by margin m

unsupervised learning on video: more examples

- input query \mathbf{x}_{i} (first frame), tracked \mathbf{x}_{i}^{+}(last frame)

fine-tuning

deep image retrieval: dataset cleaning

 [Gordo et al. 2016]

- start from landmark dataset (192k images) and clean it (49k images)
- use it to fine-tune a network pre-trained on ImageNet for classification
- prototypical, non-prototypical and incorrect images per class
- only prototypical are kept to reduce intra-class variability

deep image retrieval: prototypical views

- pairwise match images per class by SIFT descriptors and fast spatial matching
- connect images into a graph and compute the connected components
- keep only the largest component

- automatically find object bounding boxes
- initialize with inlier features per image
- update such that boxes are consistent over all matching pairs
- use bounding boxes to train a region proposal network

deep image retrieval: network, regions, pooling

- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN
- ℓ_{2}-normalization, PCA-whitening (FC layer), ℓ_{2}-normalization
- sum-pooling, ℓ_{2}-normalization (as in R-MAC)

deep image retrieval: network, regions, pooling

- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled - ℓ_{2}-normalization, PCA-whitening (FC layer), ℓ_{2}-normalization - sum-pooling, ℓ_{2}-normalization (as in R-MAC)

deep image retrieval: network, regions, pooling

- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled - ℓ_{2}-normalization, PCA-whitening (FC layer), ℓ_{2}-normalization - sum-pooling, ℓ_{2}-normalization (as in R-MAC)

deep image retrieval: network, regions, pooling

- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled
- ℓ_{2}-normalization, PCA-whitening (FC layer), ℓ_{2}-normalization
- sum-pooling, ℓ_{2}-normalization (as in R-MAC)

deep image retrieval: network, regions, pooling

- VGG-16 or ResNet-101 feature maps
- proposals detected on feature maps by RPN and max-pooled
- ℓ_{2}-normalization, PCA-whitening (FC layer), ℓ_{2}-normalization
- sum-pooling, ℓ_{2}-normalization (as in R-MAC)

deep image retrieval: architecture

- query \mathbf{x}_{i}, relevant \mathbf{x}_{i}^{+}(same building), irrelevant \mathbf{x}_{i}^{-}(other building)
 - triplet loss ℓ_{i} measured on output $\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)$

deep image retrieval: architecture

- query \mathbf{x}_{i}, relevant \mathbf{x}_{i}^{+}(same building), irrelevant \mathbf{x}_{i}^{-}(other building)
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through function f including features, RPN, pooling - triplet loss ℓ_{i} measured on output $\left(\mathrm{y}_{i}, \mathbf{y}_{i}^{+}, \mathrm{y}_{i}^{-}\right)$

deep image retrieval: architecture

- query \mathbf{x}_{i}, relevant \mathbf{x}_{i}^{+}(same building), irrelevant \mathbf{x}_{i}^{-}(other building)
- $\mathbf{x}_{i}, \mathbf{x}_{i}^{+}, \mathbf{x}_{i}^{-}$go through function f including features, RPN, pooling
- triplet loss ℓ_{i} measured on output $\left(\mathbf{y}_{i}, \mathbf{y}_{i}^{+}, \mathbf{y}_{i}^{-}\right)$

learning from bag-of-words: 3d reconstruction

[Radenovic et al. 2016]

- start from an independent dataset of 7.4 M images, no class labels
- clustering, pairwise matching and reconstruction of 713 3d models containing 165k unique images
- 3d models playing the same role as classes in deep image retrieval
- again, fine-tune a network pre-trained on ImageNet for classification

learning from bag-of-words: positive pairs

- input query
- positive images found in same model by minimum MAC distance

learning from bag-of-words: positive pairs

- input query
- positive images found in same model by minimum MAC distance maximum inliers, or drawn at random from images having at least a given number of inliers (more challenging)

learning from bag-of-words: positive pairs

- input query
- positive images found in same model by minimum MAC distance, maximum inliers or drawn at random from images having at least a given number of inliers (more challenging)

learning from bag-of-words: positive pairs

- input query
- positive images found in same model by minimum MAC distance, maximum inliers, or drawn at random from images having at least a given number of inliers (more challenging)

learning from bag-of-words: negative pairs

- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative

learning from bag-of-words: negative pairs

- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative, nearest neighbors from all other models, or nearest neighbors, one per model (higher variability)

learning from bag-of-words: negative pairs

- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative, nearest neighbors from all other models or nearest neighbors, one per model (higher variability)

learning from bag-of-words: negative pairs

- input query
- negative images found in different models
- hard negatives are most similar to query, i.e. with minimum MAC distance
- hardest negative, nearest neighbors from all other models, or nearest neighbors, one per model (higher variability)

learning from bag-of-words: architecture

- input ($\mathbf{x}_{i}, \mathbf{x}_{j}$) of relevant or irrelevant images
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through function f including features and MAC pooling
- contrastive loss $\ell_{i j}$ measured on output $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

learning from bag-of-words: architecture

- input ($\mathbf{x}_{i}, \mathbf{x}_{j}$) of relevant or irrelevant images
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through function f including features and MAC pooling
- contrastive loss $\ell_{i j}$ measured on output $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

learning from bag-of-words: architecture

- input ($\mathbf{x}_{i}, \mathbf{x}_{j}$) of relevant or irrelevant images
- both $\mathbf{x}_{i}, \mathbf{x}_{j}$ go through function f including features and MAC pooling
- contrastive loss $\ell_{i j}$ measured on output $\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right)$ and target $t_{i j}$

graph-based methods

ranking on manifolds: single query

- data points (॰), query point (॰), nearest neighbors (\circ)
- iteration

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 0×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 1×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 2×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 3×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 4×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 5×30

ranking on manifolds: single query

- data points (\odot), query point (•), nearest neighbors (${ }^{\circ}$)
- iteration 6×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (${ }^{\circ}$)
- iteration 7×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (॰)
- iteration 8×30

ranking on manifolds: single query

- data points (॰), query point (•), nearest neighbors (${ }^{\circ}$)
- iteration 9×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 0×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 1×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 2×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 3×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 4×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 5×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 6×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 7×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 8×30

ranking on manifolds: multiple queries

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 9×30

ranking on manifolds: random walk

[Zhou et al. 2003]

- reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
symmetrically normalized adjacency matrix
where $D=\operatorname{diag}(W \mathbf{1})$ is the degree matrix

starting with any $\mathrm{f}^{(0)} \in \mathbb{R}^{n}$, iterate

where $\alpha \in[0,1$) (typically close to 1)
- rank data points by descending order of f

ranking on manifolds: random walk

[Zhou et al. 2003]

- reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$
\mathcal{W}:=D^{-1 / 2} W D^{-1 / 2}
$$

where $D=\operatorname{diag}(W \mathbf{1})$ is the degree matrix

where $\alpha \in[0,1$) (typically close to 1)

ranking on manifolds: random walk

[Zhou et al. 2003]

- reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$
\mathcal{W}:=D^{-1 / 2} W D^{-1 / 2}
$$

where $D=\operatorname{diag}(W \mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^{n}$ with $y_{i}=\mathbb{1}[i$ is query $]$

$$
\text { starting with any } \mathbf{f}^{(0)} \in \mathbb{R}^{n} \text {, iterate }
$$

where $\alpha \in[0,1$) (typically close to 1)

ranking on manifolds: random walk

[Zhou et al. 2003]

- reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$
\mathcal{W}:=D^{-1 / 2} W D^{-1 / 2}
$$

where $D=\operatorname{diag}(W \mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^{n}$ with $y_{i}=\mathbb{1}[i$ is query $]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^{n}$, iterate

$$
\mathbf{f}^{(\tau)}=\alpha \mathcal{W} \mathbf{f}^{(\tau-1)}+(1-\alpha) \mathbf{y}
$$

where $\alpha \in[0,1)$ (typically close to 1)

ranking on manifolds: random walk

[Zhou et al. 2003]

- reciprocal nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$
\mathcal{W}:=D^{-1 / 2} W D^{-1 / 2}
$$

where $D=\operatorname{diag}(W \mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^{n}$ with $y_{i}=\mathbb{1}[i$ is query $]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^{n}$, iterate

$$
\mathbf{f}^{(\tau)}=\alpha \mathcal{W} \mathbf{f}^{(\tau-1)}+(1-\alpha) \mathbf{y}
$$

where $\alpha \in[0,1)$ (typically close to 1)

- rank data points by descending order of \mathbf{f}

ranking as solving a linear system

[Iscen et al. 2017]

- query: sparse vector $\mathbf{y} \in \mathbb{R}^{n}$ with nearest neighbor similarities

$$
y_{i}=\sum_{\mathbf{q} \in Q} s\left(\mathbf{q}, \mathbf{x}_{i}\right) \times \mathbb{1}\left[\mathbf{x}_{i} \in \operatorname{NN}_{X}^{k}(\mathbf{q})\right]
$$

where $Q, X \subset \mathbb{R}^{d}$ query/data points, $\mathbf{x}_{i} \in X, s$ similarity function

- regularized Laplacian

- solve linear system

$$
\mathcal{L}_{\alpha} \mathbf{f}=\mathbf{y}
$$

by conjugate gradient method

ranking as solving a linear system

 [Iscen et al. 2017]- query: sparse vector $\mathbf{y} \in \mathbb{R}^{n}$ with nearest neighbor similarities

$$
y_{i}=\sum_{\mathbf{q} \in Q} s\left(\mathbf{q}, \mathbf{x}_{i}\right) \times \mathbb{1}\left[\mathbf{x}_{i} \in \mathrm{NN}_{X}^{k}(\mathbf{q})\right]
$$

where $Q, X \subset \mathbb{R}^{d}$ query/data points, $\mathbf{x}_{i} \in X, s$ similarity function

- regularized Laplacian

$$
\mathcal{L}_{\alpha}=\frac{I-\alpha \mathcal{W}}{1-\alpha}
$$

- solve linear system

$$
\mathcal{L}_{\alpha} \mathbf{f}=\mathbf{y}
$$

by conjugate gradient method

ranking as solving a linear system [Iscen et al. 2017]

- query: sparse vector $\mathbf{y} \in \mathbb{R}^{n}$ with nearest neighbor similarities

$$
y_{i}=\sum_{\mathbf{q} \in Q} s\left(\mathbf{q}, \mathbf{x}_{i}\right) \times \mathbb{1}\left[\mathbf{x}_{i} \in \mathrm{NN}_{X}^{k}(\mathbf{q})\right]
$$

where $Q, X \subset \mathbb{R}^{d}$ query/data points, $\mathbf{x}_{i} \in X, s$ similarity function

- regularized Laplacian

$$
\mathcal{L}_{\alpha}=\frac{I-\alpha \mathcal{W}}{1-\alpha}
$$

- solve linear system

$$
\mathcal{L}_{\alpha} \mathbf{f}=\mathbf{y}
$$

by conjugate gradient method

ranking by conjugate gradient

- data points (\bullet), query points (\cdot), nearest neighbors (\bullet)
- iteration 0×2

ranking by conjugate gradient

- data points (॰), query points (${ }^{\circ}$), nearest neighbors (${ }^{\circ}$)
- iteration 1×2

ranking by conjugate gradient

- data points (\bullet), query points (\cdot), nearest neighbors (\bullet)
- iteration 2×2

ranking by conjugate gradient

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 3×2

ranking by conjugate gradient

- data points (\bullet), query points (\bullet), nearest neighbors (${ }^{\circ}$)
- iteration 4×2

ranking by conjugate gradient

- data points (\bullet), query points (\cdot), nearest neighbors (\bullet)
- iteration 5×2

ranking by conjugate gradient

- data points (\bullet), query points (\cdot), nearest neighbors (\bullet)
- iteration 6×2

ranking by conjugate gradient

- data points (\bullet), query points (\cdot), nearest neighbors (\bullet)
- iteration 7×2

ranking by conjugate gradient

- data points (\bullet), query points (\bullet), nearest neighbors (\bullet)
- iteration 8×2

ranking by conjugate gradient

- data points (\bullet), query points (\cdot), nearest neighbors (\bullet)
- iteration 9×2

ranking as solving a linear system

- represent image by global descriptor or multiple regional descriptors
- perform initial query based on Euclidean nearest neighbors
- re-rank by solving linear system
- ResNet-101 fine-tuned by BoW + R-MAC + re-ranking:
- mAP 87.1 (95.8) on Oxford5k, 96.5 (96.9) on Paris6k
- 1 (21) descriptors/image $\times 2048$ dimensions

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- Euclidean nearest neighbors $E(\mathbf{x})(\odot)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- manifold nearest neighbors $M(\mathbf{x})(\circ)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- hard positives $S^{+}=M(\mathbf{x}) \backslash E(\mathbf{x})(\odot)$

mining on manifolds

[Iscen et al. 2018]

- data points (॰), query point $\mathbf{x}(\bullet)$
- hard negatives $S^{-}=E(\mathbf{x}) \backslash M(\mathbf{x})(\bullet)$

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathrm{x})$negatives $S^{-}(\mathrm{x})$

Iscen, Tolias, Avrithis and Chum. 2018 (unpublished). Mining on Manifolds: Metric Learning without Labels.

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathrm{x})$
- negatives $S^{-}(\mathrm{x})$

Iscen, Tolias, Avrithis and Chum. 2018 (unpublished). Mining on Manifolds: Metric Learning without Labels.

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$

[^0]
mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^{-}(\mathbf{x})$ vs. Euclidean non-neighbors $X \backslash E(\mathrm{x})$

Iscen, Tolias, Avrithis and Chum. 2018 (unpublished). Mining on Manifolds: Metric Learning without Labels.

mining on manifolds

- query (anchor) (x)
- positives $S^{+}(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^{-}(\mathbf{x})$ vs. Euclidean non-neighbors $X \backslash E(\mathbf{x})$

Iscen, Tolias, Avrithis and Chum. 2018 (unpublished). Mining on Manifolds: Metric Learning without Labels.

mining on manifolds

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss
- VGG-16 + R-MAC, mAP on Oxford5k (Paris6k):
- pre-trained on ImageNet: 68.0 (76.6)
- fine-tuning with SIFT + 3d reconstruction pipeline: 77.8 (84.1) - unsupervised fine-tuning: 78.2 (85.1)

mining on manifolds

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss
- VGG-16 + R-MAC, mAP on Oxford5k (Paris6k):
- pre-trained on ImageNet: 68.0 (76.6)
- fine-tuning with SIFT +3 d reconstruction pipeline: 77.8 (84.1) - unsupervised fine-tuning: 78.2 (85.1)

mining on manifolds

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss
- VGG-16 + R-MAC, mAP on Oxford5k (Paris6k):
- pre-trained on ImageNet: 68.0 (76.6)
- fine-tuning with SIFT + 3d reconstruction pipeline: 77.8 (84.1)
- unsupervised fine-tuning: 78.2 (85.1)

summary

- bag-of-words and inverted index is only a crude form of approximate nearest neighbor search
- global descriptors are compact and fast, but do not perform as well as local descriptors
- compressed representation for nearest neighbor search are effective if manifold is captured correctly

summary

- bag-of-words and inverted index is only a crude form of approximate nearest neighbor search
- global descriptors are compact and fast, but do not perform as well as local descriptors
- compressed representation for nearest neighbor search are effective if manifold is captured correctly
- pooling CNN representations is best at last convolutional layers: MAC, R-MAC, SPoC, CroW
- fine-tuning with constrastive or triplet loss allows transferring to a new domain and learning to rank as opposed to classify
> now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever

modeling the manifold explicitly allows
without labels, auxiliary systems (e.g. SIFT pipeline), or other
information (e.g. temporal neighborhood in video)

summary

- bag-of-words and inverted index is only a crude form of approximate nearest neighbor search
- global descriptors are compact and fast, but do not perform as well as local descriptors
- compressed representation for nearest neighbor search are effective if manifold is captured correctly
- pooling CNN representations is best at last convolutional layers: MAC, R-MAC, SPoC, CroW
- fine-tuning with constrastive or triplet loss allows transferring to a new domain and learning to rank as opposed to classify
- now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever
- modeling the manifold explicitly allows unsupervised fine-tuning without labels, auxiliary systems (e.g. SIFT pipeline), or other information (e.g. temporal neighborhood in video)

[^0]: negatives $S^{-}(\mathbf{x})$

