lecture 7: convolution and network architectures deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2018 - Jan. 2019

outline

fun
convolution
definition and properties
variants and their derivatives
pooling
more fun
network architectures
fun

CIFAR10 dataset

plane car bird

cat

- 10 classes, 50 k training images, 10 k test images, 32×32 images

pipeline

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set e.g. into $n_{\text {train }}=45000$ training samples and $n_{\text {val }}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}
- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- train for 10 epochs on the full training set for the chosen hyperparameters
- evaluate accuracy on the test set

pipeline

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set e.g. into $n_{\text {train }}=45000$ training samples and $n_{\text {val }}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- train for 10 epochs on the full training set for the chosen hyperparameters
- evaluate accuracy on the test set

linear classifier validation accuracy

- classes $k=10$, samples $n_{\text {train }}=45000, n_{\text {val }}=5000$, mini-batch $m=200$, learning rate $\epsilon=10^{-6}$, regularization strength $\lambda=5 \times 10^{2}$
- test accuracy: 38%

linear classifier weights

plane

dog

car

frog

bird

horse

cat

ship

deer

truck

2-layer classifier validation accuracy

- classes $k=10$, samples $n_{\text {train }}=45000, n_{\text {val }}=5000$, mini-batch $m=200$, learning rate $\epsilon=2 \times 10^{-3}$, regularization strength $\lambda=2 \times 10^{-1}$
- hidden layer width: 100; test accuracy: 51%

two-layer classifier weights

layer 1 weights 0-49

two-layer classifier weights

layer 1 weights 50-99

two-layer classifier weights

layer 1 weights 100-149

two-layer classifier weights

layer 1 weights 150-199

learning rate

learning rate

learning rate

setting hyperparameters

- compared to grid search, random search allows to explore more values of an important parameter regardless of unimportant parameters
- when the search spans orders of magnitude, draw samples uniformly at random in log space
- start with coarse range and few iterations, gradually move to finer range and more iterations

convolution

input image representation

- the two-layer network we have learned on MNIST can easily classify digits with less that 3% error, but learns more than actually required
- remember that for both MNIST and CIFAR10, we flattened images (1-channel or 3-channel) into vectors, and the order of the elements (pixels) plays no role in learning
so what i
test set?

input image representation

- the two-layer network we have learned on MNIST can easily classify digits with less that 3% error, but learns more than actually required
- remember that for both MNIST and CIFAR10, we flattened images (1-channel or 3-channel) into vectors, and the order of the elements (pixels) plays no role in learning
- so what if we permute the elements in all images, both training and test set?
shuffling the dimensions

shuffling the dimensions

shuffling the dimensions

- this is what the computer sees
- it must make more sense when you start looking at more than one samples per class

shuffling the dimensions

 ローロ～ㅍロロ～

$$
\stackrel{\square}{\square}+\pi
$$

remember receptive fields?

- A: 'on'-center LGN; B: 'off'-center LGN; C, D: simple cortical
- each cell only has a localized response over a receptive field
- \times : excitatory ('on'), \triangle : inhibitory ('off') responses
- topographic mapping: there is one cell with the same response pattern centered at each position

matrix multiplication

- inputs \mathbf{x} are mapped to activations $W^{\top} \mathbf{x}$
- columns/rows of W^{\top} correspond to input/activation elements

matrix multiplication \rightarrow fully connected

- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements

matrix multiplication \rightarrow fully connected

- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements

matrix multiplication \rightarrow fully connected

- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements

matrix multiplication \rightarrow fully connected

- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements

matrix multiplication \rightarrow fully connected

- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements

sparse connections

- now, we only keep a sparse set of connections
- and matrix W becomes sparse as well

sparse connections

- now, we only keep a sparse set of connections
- and matrix W becomes sparse as well

sparse connections

- now, we only keep a sparse set of connections
- and matrix W becomes sparse as well

sparse connections

- now, we only keep a sparse set of connections
- and matrix W becomes sparse as well

sparse connections

- now, we only keep a sparse set of connections
- and matrix W becomes sparse as well

Toeplitz matrix

- now, we only refer to one input column; we will repeat
- and all weights having the same color are made equal (shared)

Toeplitz matrix \rightarrow convolution

- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field

Toeplitz matrix \rightarrow convolution

- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field

Toeplitz matrix \rightarrow convolution

- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field

Toeplitz matrix \rightarrow convolution

- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field

Toeplitz matrix \rightarrow convolution

- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field

Toeplitz matrix \rightarrow convolution

- this is an 1d convolution and generalizes to 2d
- this new mapping is a convolutional layer

convolutional networks

convolutional layer

1 still linear, still matrix multiplication, just constrained
2 local receptive fields \rightarrow sparse connections between units
3 translation equivariant \rightarrow shared weights
4 sparse + shared \rightarrow regularized: less parameters to learn

- a network of convolutional layers, optionally followed by fully-connected layers
- performs better (less than 1\% error on MNIST), but not on shuffled input

convolutional networks

convolutional layer

1 still linear, still matrix multiplication, just constrained
2 local receptive fields \rightarrow sparse connections between units
3 translation equivariant \rightarrow shared weights
4 sparse + shared \rightarrow regularized: less parameters to learn

- a network of convolutional layers, optionally followed by fully-connected layers
- performs better (less than 1\% error on MNIST), but not on shuffled input

convolutional networks

convolutional layer

1 still linear, still matrix multiplication, just constrained
2 local receptive fields \rightarrow sparse connections between units
3 translation equivariant \rightarrow shared weights
4 sparse + shared \rightarrow regularized: less parameters to learn

convolutional network

- a network of convolutional layers, optionally followed by fully-connected layers
- performs better (less than 1\% error on MNIST), but not on shuffled input

definition and properties

[^0]
linear time-invariant (LTI) system

- discrete-time signal: $x[n], n \in \mathbb{Z}$
- system (filter): $f(x)[n], n \in \mathbb{Z}$
- translation (or shift, or delay): $s_{k}(x)[n]=x[n-k], k \in \mathbb{Z}$
- linear system: commutes with linear combination

- time-invariant system: commutes with translation

$$
f\left(s_{k}(x)\right)=s_{k}(f(x))
$$

linear time-invariant (LTI) system

- discrete-time signal: $x[n], n \in \mathbb{Z}$
- system (filter): $f(x)[n], n \in \mathbb{Z}$
- translation (or shift, or delay): $s_{k}(x)[n]=x[n-k], k \in \mathbb{Z}$
- linear system: commutes with linear combination

$$
f\left(\sum_{i} a_{i} x_{i}\right)=\sum_{i} a_{i} f\left(x_{i}\right)
$$

- time-invariant system: commutes with translation

$$
f\left(s_{k}(x)\right)=s_{k}(f(x))
$$

LTI system \equiv convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

LTI system \equiv convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

LTI system \equiv convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$.

$$
f(x)[n]=f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n]
$$

LTI system \equiv convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

$$
f(x)[n]=f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n]
$$

LTI system \equiv convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

$$
f(x)[n]=f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n]
$$

LTI system \equiv convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

$$
\begin{aligned}
f(x)[n] & =f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n] \\
& =\sum_{k} x[k] h[n-k]=(x * h)[n]
\end{aligned}
$$

LTI system \equiv convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$, then $f(x)=x * h$:

$$
\begin{aligned}
f(x)[n] & =f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n] \\
& =\sum_{k} x[k] h[n-k]:=(x * h)[n]
\end{aligned}
$$

1d convolution

invariance vs. equivariance

- time invariance: invariance to absolute time (or position)
- translation (or shift) equivariance: equivariance to relative time (or position)
- despite confusion, both mean the same thing: system commutes with translation

$$
f\left(s_{k}(x)\right)=s_{k}(f(x))
$$

- translation (or shift) invariance, means that for all k,

$$
f\left(s_{k}(x)\right)=f(x)
$$

- each convolutional layer is translation equivariant; but pooling makes a network translation invariant, e.g.

invariance vs. equivariance

- time invariance: invariance to absolute time (or position)
- translation (or shift) equivariance: equivariance to relative time (or position)
- despite confusion, both mean the same thing: system commutes with translation

$$
f\left(s_{k}(x)\right)=s_{k}(f(x))
$$

however

- translation (or shift) invariance, means that for all k,

$$
f\left(s_{k}(x)\right)=f(x)
$$

- each convolutional layer is translation equivariant; but pooling makes a network translation invariant, e.g.

$$
\sum_{n} s_{k}(x)[n]=\sum_{n} x[n-k]=\sum_{n} x[n]
$$

finite impulse response (FIR)

- an FIR system has impulse response h of finite duration (or spatial extent), because it settles to zero in finite time (extent) from the input impulse
- "sparse connections and local receptive fields" mean exactly that h is of finite duration (extent)
- we assume this in the following, starting with a 2 d extension, where we write $x[\mathbf{n}], \mathbf{n} \in \mathbb{Z}^{2}$

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

9	8	7			
6	5	4			
3	2	1			
x					

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

	9	8	7		
	6	5	4		
	3	2	1		
x					

2d convolution

1	2	3	
4	5	6	
7	8	9	
h			

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

		9	8	7	
		6	5	4	
		3	2	1	

x

$x * h$

2d convolution

1	2	3	
4	5	6	
7	8	9	
h			

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

			9	8	7
			6	5	4
			3	2	1
x					

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

9	8	7			
6	5	4			
3	2	1			
x					

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

x

$x * h$

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

x

$x * h$

2d convolution

1	2	3
4	5	6
7	8	9
h		

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

x

$x * h$

2d convolution

1	2	3	
4	5	6	
7	8	9	
h			

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

x

$x * h$

cross-correlation

- convolution is commutative

$$
(x * h)[\mathbf{n}]:=\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}]=\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]=(h * x)[\mathbf{n}]
$$

- cross-correlation is not

$$
(h \star x)[\mathbf{n}]:=\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{k}+\mathbf{n}]=\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{k}-\mathbf{n}]=(x \star h)[-\mathbf{n}]
$$

- both are LTI; the only difference is that in cross-correlation, h refers to the flipped impulse response
- but if h is even $(h[n]=h[-n])$, then $h * x=x * h=h * x$
- in the following, we use cross-correlation $w * x$ or convolution $x * h$, where $h[n]=w[-n]$ is the impulse response
- we call w the kernel of the operation

cross-correlation

- convolution is commutative

$$
\begin{aligned}
& \qquad(x * h)[\mathbf{n}]:=\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}]=\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]=(h * x)[\mathbf{n}] \\
& \quad(h \star x)[\mathbf{n}]:=\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{k}+\mathbf{n}]=\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{k}-\mathbf{n}]=(x \star h)[-\mathbf{n}]
\end{aligned}
$$

- both are LTI; the only difference is that in cross-correlation, h refers to the flipped impulse response
- but if h is even $(h[n]=h[-n])$, then $h \star x=x * h=h * x$
where $h[n]=w[-n]$ is the impulse response
- we call w the kernel of the operation

cross-correlation

- convolution is commutative

$$
\begin{aligned}
& \quad(x * h)[\mathbf{n}]:=\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}]=\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]=(h * x)[\mathbf{n}] \\
& \quad(h \star x)[\mathbf{n}]:=\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{k}+\mathbf{n}]=\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{k}-\mathbf{n}]=(x \star h)[-\mathbf{n}]
\end{aligned}
$$

- both are LTI; the only difference is that in cross-correlation, h refers to the flipped impulse response
- but if h is even $(h[n]=h[-n])$, then $h \star x=x * h=h * x$
- in the following, we use cross-correlation $w \star x$ or convolution $x * h$, where $h[n]=w[-n]$ is the impulse response
- we call w the kernel of the operation

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w \star x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w \star x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

1	2	3			
4	5	6			
7	8	9			
x					

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w * x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

	1	2	3		
	4	5	6		
	7	8	9		
x					

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w * x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

		1	2	3	
		4	5	6	
		7	8	9	
x					

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w * x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w * x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w * x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w \star x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w * x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w \star x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w \star x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w \star x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

2d convolution, again

1	2	3	
4	5	6	
7	8	9	
w			

$$
\begin{aligned}
(w \star x)[\mathbf{n}] & =\sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k}+\mathbf{n}] \\
& =\sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k}-\mathbf{n}]
\end{aligned}
$$

features

- something is still missing: so far we had activations a and outputs y of the form

$$
\mathbf{a}=W^{\top} \mathbf{x}+\mathbf{b}, \quad \mathbf{y}=h(\mathbf{a})=h\left(W^{\top} \mathbf{x}+\mathbf{b}\right)
$$

where \mathbf{x} is the input, $W=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right)$ a weight matrix and \mathbf{b} a bias

- the elements of $\mathbf{x}, \mathbf{a}, \mathbf{b}$ and \mathbf{y} were representing features (or cells); the elements of W were representing connections
- now we have x as a 2 d array, w as a 2 d kernel, but no features yet

feature maps

- now \mathbf{b} remains a vector but $\mathbf{x}, \mathbf{a}, \mathbf{y}$ become 3 d tensors with input feature i and output feature j at spatial position \mathbf{n} denoted by

$$
x_{i}[\mathbf{n}], \quad a_{j}[\mathbf{n}], \quad b_{j}, \quad y_{j}[\mathbf{n}]
$$

- x_{i} and y_{j} are 2 d arrays we call feature maps, each corresponding to one feature; and a_{j} a 2 d array we call activation map
- if x_{i} refers to the input image, there is just one feature that is the image intensity of a grayscale image, or three features corresponding to the three channels of a color image
- W becomes a 4d tensor with a connection from input feature i to output feature j at spatial position \mathbf{k} represented by

feature maps

- now \mathbf{b} remains a vector but $\mathbf{x}, \mathbf{a}, \mathbf{y}$ become 3 d tensors with input feature i and output feature j at spatial position \mathbf{n} denoted by

$$
x_{i}[\mathbf{n}], \quad a_{j}[\mathbf{n}], \quad b_{j}, \quad y_{j}[\mathbf{n}]
$$

- x_{i} and y_{j} are 2 d arrays we call feature maps, each corresponding to one feature; and a_{j} a 2 d array we call activation map
- if x_{i} refers to the input image, there is just one feature that is the image intensity of a grayscale image, or three features corresponding to the three channels of a color image
- W becomes a 4d tensor with a connection from input feature i to output feature j at spatial position \mathbf{k} represented by

$$
w_{i j}[\mathbf{k}]
$$

convolution on feature maps

- matrix multiplication and convolution combined

$$
\mathbf{a}=W^{\top} \star \mathbf{x}+\mathbf{b}, \quad \mathbf{y}=h(\mathbf{a})=h\left(W^{\top} \star \mathbf{x}+\mathbf{b}\right)
$$

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

- matrix multiplication and convolution combined

$$
\mathbf{a}=W^{\top} \star \mathbf{x}+\mathbf{b}, \quad \mathbf{y}=h(\mathbf{a})=h\left(W^{\top} \star \mathbf{x}+\mathbf{b}\right)
$$

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

- matrix multiplication and convolution combined

$$
\begin{aligned}
\mathbf{a} & =W^{\top} \star \mathbf{x}+\mathbf{b}, \quad \mathbf{y}=h(\mathbf{a})=h\left(W^{\top} \star \mathbf{x}+\mathbf{b}\right) \\
\left(W^{\top} \star \mathbf{x}\right)_{j}[\mathrm{n}] & =\left(\mathbf{w}_{j}^{\top} \star \mathbf{x}\right)[\mathrm{n}]:=\sum_{i}\left(w_{i j} \star x_{i}\right)[\mathrm{n}]=\sum_{\mathrm{k}} w_{i j}[\mathrm{k}] x_{i}[\mathrm{k}+\mathrm{n}]
\end{aligned}
$$

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

- matrix multiplication and convolution combined

$$
\begin{gathered}
\mathbf{a}=W^{\top} \star \mathbf{x}+\mathbf{b}, \quad \mathbf{y}=h(\mathbf{a})=h\left(W^{\top} \star \mathbf{x}+\mathbf{b}\right) \\
\left(W^{\top} \star \mathbf{x}\right)_{j}[\mathbf{n}]=\left(\mathbf{w}_{j}^{\top} \star \mathbf{x}\right)[\mathbf{n}]:=\sum_{i}\left(w_{i j} \star x_{i}\right)[\mathbf{n}]=\sum_{\mathrm{k}} w_{i j}[\mathrm{k}] x_{i}[\mathrm{k}+\mathrm{n}]
\end{gathered}
$$

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

- matrix multiplication and convolution combined

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

- matrix multiplication and convolution combined

$$
\begin{gathered}
\mathbf{a}=W^{\top} \star \mathbf{x}+\mathbf{b}, \quad \mathbf{y}=h(\mathbf{a})=h\left(W^{\top} \star \mathbf{x}+\mathbf{b}\right) \\
\left(W^{\top} \star \mathrm{x}\right)_{j}[\mathrm{n}]=\left(w_{j}^{\top} \star \mathrm{x}\right)[\mathrm{n}]:=\sum_{i}\left(w_{i j} \star x_{i}\right)[\mathbf{n}]=\sum_{\mathbf{k}} w_{i j}[\mathbf{k}] x_{i}[\mathbf{k}+\mathbf{n}]
\end{gathered}
$$

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

- matrix multiplication and convolution combined

$$
\begin{gathered}
\mathbf{a}=W^{\top} \star \mathbf{x}+\mathbf{b}, \quad \mathbf{y}=h(\mathbf{a})=h\left(W^{\top} \star \mathbf{x}+\mathbf{b}\right) \\
\left(W^{\top} \star \mathbf{x}\right)_{j}[\mathbf{n}]=\left(\mathbf{w}_{j}^{\top} \star \mathbf{x}\right)[\mathbf{n}]:=\sum_{i}\left(w_{i j} \star x_{i}\right)[\mathbf{n}]=\sum_{i, \mathbf{k}} w_{i j}[\mathbf{k}] x_{i}[\mathbf{k}+\mathbf{n}]
\end{gathered}
$$

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

kernel \mathbf{w}_{1}

kernel weights shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{1}

convolution on feature maps

kernel \mathbf{w}_{1}

kernel weights shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{1}

kernel weights shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{1}

kernel weights shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{1}

convolution on feature maps

kernel \mathbf{w}_{1}

convolution on feature maps

kernel \mathbf{w}_{1}

kernel weights shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{1}

convolution on feature maps

kernel \mathbf{w}_{1}

kernel weights shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{1}

convolution on feature maps

kernel \mathbf{w}_{1}

convolution on feature maps

kernel \mathbf{w}_{1}

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{2}

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

new kernel, but still shared among all spatial positions
kernel \mathbf{w}_{2}

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

new kernel, but still shared among all spatial positions
kernel \mathbf{w}_{2}

convolution on feature maps

kernel \mathbf{w}_{2}

new kernel, but still shared among all spatial positions

convolution on feature maps

kernel \mathbf{w}_{3}

different kernel for each output dimension

convolution on feature maps

kernel \mathbf{w}_{4}

different kernel for each output dimension

convolution on feature maps

kernel \mathbf{w}_{5}

different kernel for each output dimension

1×1 convolution

- if W has no spatial extent, it becomes a 2d matrix again

$$
\begin{aligned}
\left(\mathbf{w}_{j}^{\top} \star \mathbf{x}\right)[\mathbf{n}] & :=\sum_{i}\left(w_{i j} \star x_{i}\right)[\mathbf{n}]=\sum_{i, \mathbf{k}} w_{i j}[\mathbf{k}] x_{i}[\mathbf{k}+\mathbf{n}] \\
& =\sum w_{i j} x_{i}[\mathbf{n}]=\mathbf{w}_{j}^{\top} \mathrm{x}[\mathbf{n}]
\end{aligned}
$$

- the operation becomes a matrix multiplication just as in fully-connected layers, but now it is performed independently at each spatial location

1×1 convolution

- if W has no spatial extent, it becomes a 2d matrix again

$$
\begin{aligned}
\left(\mathbf{w}_{j}^{\top} \star \mathbf{x}\right)[\mathbf{n}] & :=\sum_{i}\left(w_{i j} \star x_{i}\right)[\mathbf{n}]=\sum_{i, \mathbf{k}} w_{i j}[\mathbf{k}] x_{i}[\mathbf{k}+\mathbf{n}] \\
& =\sum_{i} w_{i j} x_{i}[\mathbf{n}]=\mathbf{w}_{j}^{\top} \mathbf{x}[\mathbf{n}]
\end{aligned}
$$

- the operation becomes a matrix multiplication just as in fully-connected layers, but now it is performed independently at each spatial location

1×1 convolution

- if W has no spatial extent, it becomes a 2d matrix again

$$
\begin{aligned}
\left(\mathbf{w}_{j}^{\top} \star \mathbf{x}\right)[\mathbf{n}] & :=\sum_{i}\left(w_{i j} \star x_{i}\right)[\mathbf{n}]=\sum_{i, \mathbf{k}} w_{i j}[\mathbf{k}] x_{i}[\mathbf{k}+\mathbf{n}] \\
& =\sum_{i} w_{i j} x_{i}[\mathbf{n}]=\mathbf{w}_{j}^{\top} \mathbf{x}[\mathbf{n}]
\end{aligned}
$$

- the operation becomes a matrix multiplication just as in fully-connected layers, but now it is performed independently at each spatial location

$$
\begin{aligned}
\left(W^{\top} \star \mathbf{x}\right)[\mathbf{n}] & =W^{\top} \mathbf{x}[\mathbf{n}] \\
W^{\top} \star \mathbf{x} & =W^{\top} \mathbf{x}
\end{aligned}
$$

1×1 convolution

kernel weights shared among all spatial positions

input \mathbf{x}

1×1 convolution

kernel weights shared among all spatial positions

1×1 convolution

kernel weights shared among all spatial positions

1×1 convolution

kernel weights shared among all spatial positions

input \mathbf{x}

1×1 convolution

input \mathbf{x}

kernel weights shared among all spatial positions

output $y_{1}=h\left(\mathbf{w}_{1}^{\top} \star \mathbf{x}+b_{1}\right)$

1×1 convolution

kernel weights shared among all spatial positions

input \mathbf{x}

1×1 convolution

kernel weights shared among all spatial positions

input \mathbf{x}

1×1 convolution

kernel weights shared among all spatial positions

input \mathbf{x}

1×1 convolution

kernel weights shared among all spatial positions

1×1 convolution

kernel weights shared among all spatial positions

1×1 convolution

kernel weights shared among all spatial positions

input \mathbf{x}

1×1 convolution

kernel weights shared among all spatial positions

input \mathbf{x}

1×1 convolution

kernel weights shared among all spatial positions

1×1 convolution

new kernel, but still shared among all spatial positions

1×1 convolution

new kernel, but still shared among all spatial positions

1×1 convolution

new kernel, but still shared among all spatial positions

1×1 convolution

new kernel, but still shared among all spatial positions

1×1 convolution

input \mathbf{x}
new kernel, but still shared among all spatial positions

output $y_{2}=h\left(\mathbf{w}_{2}^{\top} \star \mathbf{x}+b_{2}\right)$

1×1 convolution

new kernel, but still shared among all spatial positions

1×1 convolution

new kernel, but still shared among all spatial positions

input \mathbf{x}

1×1 convolution

new kernel, but still shared among all spatial positions

1×1 convolution

input \mathbf{x}
new kernel, but still shared among all spatial positions

output $y_{2}=h\left(\mathbf{w}_{2}^{\top} \star \mathbf{x}+b_{2}\right)$

1×1 convolution

new kernel, but still shared among all spatial positions

1×1 convolution

new kernel, but still shared among all spatial positions

input \mathbf{x}

1×1 convolution

input \mathbf{x}
new kernel, but still shared among all spatial positions

output $y_{2}=h\left(\mathbf{w}_{2}^{\top} \star \mathbf{x}+b_{2}\right)$

1×1 convolution

input \mathbf{x}
new kernel, but still shared among all spatial positions

output $y_{2}=h\left(\mathbf{w}_{2}^{\top} \star \mathbf{x}+b_{2}\right)$

1×1 convolution

different kernel for each output dimension

input \mathbf{x}

1×1 convolution

different kernel for each output dimension

input \mathbf{x}

1×1 convolution

different kernel for each output dimension

input \mathbf{x}

convolution as regularization

- suppose a fully connected layer is given by

$$
\mathbf{a}=\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3} \\
w_{4} & w_{5} & w_{6}
\end{array}\right) \mathbf{x}
$$

- now if we add the following term to our error function

then, as $\lambda \rightarrow \infty$, the weight matrix tends to the constrained Toeplitz form

and the layer becomes convolutional

convolution as regularization

- suppose a fully connected layer is given by

$$
\mathbf{a}=\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3} \\
w_{4} & w_{5} & w_{6}
\end{array}\right) \mathbf{x}
$$

- now if we add the following term to our error function

$$
\frac{\lambda}{2}\left(\left(w_{6}-w_{2}\right)^{2}+\left(w_{5}-w_{1}\right)^{2}+w_{3}^{2}+w_{4}^{2}\right)
$$

then, as $\lambda \rightarrow \infty$, the weight matrix tends to the constrained Toeplitz form

$$
\left(\begin{array}{ccc}
w_{1} & w_{2} & 0 \\
0 & w_{1} & w_{2}
\end{array}\right)
$$

and the layer becomes convolutional

convolution as Gaussian mixture prior*

- remember, weight decay is equivalent to a zero-centered Gaussian prior if the weight vector/matrix is considered a random variable
- in this analogy, error term

$$
\frac{\lambda}{2}\left(\left(w_{6}-w_{2}\right)^{2}+\left(w_{5}-w_{1}\right)^{2}+w_{3}^{2}+w_{4}^{2}\right)
$$

corresponds to two Gaussian priors centered at w_{1}, w_{2} for w_{5}, w_{6} and one zero-centered Gaussian for w_{3}, w_{4}

- that is, a Gaussian mixture prior

structured convolution*

- we can constrain parameters even more by considering a fixed basis of streerable filters consisting of separable Gaussian derivatives
- the network then only learns the parameters needed to construct a filter as a linear combination of the basis filters
- this applies to all layers

variants and their derivatives

convolution variants

- we will examine a number of variants of convolution, each only in one dimension
- this leaves an extension to one more spatial dimension (convolution), and one more feature dimension (matrix multiplication)
- in each case, we will write convolution as matrix multiplication, where the matrix has some special structure: derivatives are then straightforward

standard convolution

- input size n, kernel size r, output size n^{\prime}

$$
a=w \star x
$$

$$
n^{\prime}=n-r+1=5
$$

- written as matrix multiplication

standard convolution

- input size n, kernel size r, output size n^{\prime}

$$
a=w \star x
$$

$$
n^{\prime}=n-r+1=5
$$

- written as matrix multiplication

standard convolution

- input size n, kernel size r, output size n^{\prime}

$$
a=w \star x
$$

$$
n^{\prime}=n-r+1=5
$$

- written as matrix multiplication

standard convolution

- input size n, kernel size r, output size n^{\prime}

$$
a=w \star x
$$

$$
n^{\prime}=n-r+1=5
$$

- written as matrix multiplication

standard convolution

- input size n, kernel size r, output size n^{\prime}

$$
a=w \star x
$$

$$
n^{\prime}=n-r+1=5
$$

- written as matrix multiplication

standard convolution

- input size n, kernel size r, output size n^{\prime}

$$
a=w \star x
$$

$$
n^{\prime}=n-r+1=5
$$

- written as matrix multiplication

$$
\begin{gathered}
\mathbf{a}=W^{\top} \cdot \mathbf{x} \\
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right)=\left(\begin{array}{ccccccc}
w_{1} & w_{2} & w_{3} & & & & \\
& w_{1} & w_{2} & w_{3} & & & \\
& & w_{1} & w_{2} & w_{3} & & \\
& & & w_{1} & w_{2} & w_{3} & \\
& & & & w_{1} & w_{2} & w_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)
\end{gathered}
$$

standard convolution: input derivative

- in general, $C=A B \rightarrow d A=(d C) B^{\top}, d B=A^{\top} d C$
- here, $\mathbf{a}=W^{\top} \mathbf{x}$: derivative with respect to input \mathbf{x}

$$
\begin{aligned}
d \mathbf{x} & =W \cdot d \mathbf{a} \\
d\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right) & =\left(\begin{array}{lllll}
w_{1} & & & & \\
w_{2} & w_{1} & & & \\
w_{3} & w_{2} & w_{1} & & \\
& w_{3} & w_{2} & w_{1} & \\
& & w_{3} & w_{2} & w_{1} \\
& & & w_{3} & w_{2} \\
& & & & w_{3}
\end{array}\right) \cdot d\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right)
\end{aligned}
$$

standard convolution: weight derivative

- in general, $C=A B \rightarrow d A=(d C) B^{\top}, d B=A^{\top} d C$
- here, $\mathbf{a}=W^{\top} \mathbf{x}$: derivative with respect to weights W

$$
\begin{aligned}
d W & =\mathbf{x} \cdot d \mathbf{a}^{\top} \\
d W & =\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right) \cdot d\left(\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right)
\end{aligned}
$$

- this is not convenient: we really want $d \mathrm{w}=\left(d w_{1}, d w_{2}, d w_{3}\right.$
- if $d a_{i}=\mathbb{1}[i=4]$, then $d \mathbf{w}=\left(x_{4}, x_{5}, x_{6}\right)$: we learn the pattern that

standard convolution: weight derivative

- in general, $C=A B \rightarrow d A=(d C) B^{\top}, d B=A^{\top} d C$
- here, $\mathbf{a}=W^{\top} \mathbf{x}$: derivative with respect to weights W

$$
\begin{aligned}
& d W=\mathbf{x} \cdot d \mathbf{a}^{\top} \\
& d\left(\begin{array}{ccccc}
w_{1} & & & & \\
w_{2} & w_{1} & & & \\
w_{3} & w_{2} & w_{1} & & \\
& w_{3} & w_{2} & w_{1} & \\
& & w_{3} & w_{2} & w_{1} \\
& & & w_{3} & w_{2} \\
& & & & w_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right) \cdot d\left(\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right)
\end{aligned}
$$

- this is not convenient: we really want $d \mathbf{w}=\left(d w_{1}, d w_{2}, d w_{3}\right)$
generated the activation

standard convolution: weight derivative

- in general, $C=A B \rightarrow d A=(d C) B^{\top}, d B=A^{\top} d C$
- here, $\mathbf{a}=W^{\top} \mathbf{x}$: derivative with respect to weights W

$$
\begin{aligned}
d w & =d a \star x \\
d\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) & =d\left(\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & & \\
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \\
& & a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)
\end{aligned}
$$

- sharing in forward \equiv adding in backward

standard convolution: weight derivative

- in general, $C=A B \rightarrow d A=(d C) B^{\top}, d B=A^{\top} d C$
- here, $\mathbf{a}=W^{\top} \mathbf{x}$: derivative with respect to weights W

$$
\begin{aligned}
d w & =d a \star x \\
d\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) & =d\left(\begin{array}{lllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & & \\
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & \\
& & a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)
\end{aligned}
$$

- sharing in forward \equiv adding in backward
- if $d a_{i}=\mathbb{1}[i=4]$, then $d \mathbf{w}=\left(x_{4}, x_{5}, x_{6}\right)$: we learn the pattern that generated the activation

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
a=w \star x_{(p)}
$$

$$
n^{\prime}=(n+2 p)-r+1=7
$$

- written as matrix multiplication

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
a=w \star x_{(p)}
$$

$n^{\prime}=(n+2 p)-r+1=7$

- written as matrix multiplication

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
a=w \star x_{(p)}
$$

$$
n^{\prime}=(n+2 p)-r+1=7
$$

- written as matrix multiplication

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
a=w \star x_{(p)}
$$

$$
n^{\prime}=(n+2 p)-r+1=7
$$

- written as matrix multiplication

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
a=w \star x_{(p)}
$$

$$
n^{\prime}=(n+2 p)-r+1=7
$$

- written as matrix multiplication

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
a=w \star x_{(p)}
$$

$$
n^{\prime}=(n+2 p)-r+1=7
$$

- written as matrix multiplication

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
a=w \star x_{(p)}
$$

$$
n^{\prime}=(n+2 p)-r+1=7
$$

- written as matrix multiplication

padded convolution*

- input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=\left(\mathbf{0}_{p} ; \mathbf{x} ; \mathbf{0}_{p}\right)$, output size n^{\prime}

$$
\begin{aligned}
& x_{(p)} \begin{array}{|l|l|l|l|l|l|l|l|l|l}
& & & & & & 1 & 2 & 3 \\
\hline
\end{array} \\
& a=w \star x_{(p)} \\
& n^{\prime}=(n+2 p)-r+1=7
\end{aligned}
$$

- written as matrix multiplication

$$
\begin{aligned}
& \mathbf{a}=W^{\top} \cdot \mathbf{x} \\
&\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right)=\left(\begin{array}{lllllll}
w_{2} & w_{3} & & & & & \\
w_{1} & w_{2} & w_{3} & & & & \\
& w_{1} & w_{2} & w_{3} & & & \\
& & w_{1} & w_{2} & w_{3} & & \\
& & & w_{1} & w_{2} & w_{3} & \\
& & & & w_{1} & w_{2} & w_{3} \\
& & & & & w_{1} & w_{2}
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)
\end{aligned}
$$

padding preserves size

- if kernel size $r=2 \ell+1$ and $p=\ell$, then $n^{\prime}=n+2 p-r+1=n$ and the size is preserved
- over several layers:

padding preserves size

- if kernel size $r=2 \ell+1$ and $p=\ell$, then $n^{\prime}=n+2 p-r+1=n$ and the size is preserved
- over several layers:

padding preserves size

- if kernel size $r=2 \ell+1$ and $p=\ell$, then $n^{\prime}=n+2 p-r+1=n$ and the size is preserved
- over several layers:

strided convolution (down-sampling)*

- input size n, kernel size r, stride s, output size n^{\prime}

$$
\begin{array}{ll|l|l|l|l|l}
x & \square & & & & & n=7, r=3, s=2 \\
a=(w \star x) \downarrow_{s} & \square & & n^{\prime}=\lfloor(n-r) / s\rfloor+1=3
\end{array}
$$

- like standard convolution followed by down-sampling, but efficient
- written as matrix multiplication (rows sub-sampled)

strided convolution (down-sampling)*

- input size n, kernel size r, stride s, output size n^{\prime}

$$
\begin{aligned}
& x \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & & & & \\
\hline
\end{array} \\
& n=7, r=3, s=2 \\
& a=(w \star x) \downarrow_{s} \\
& n^{\prime}=\lfloor(n-r) / s\rfloor+1=3
\end{aligned}
$$

- like standard convolution followed by down-sampling, but efficient - written as matrix multiplication (rows sub-sampled)

strided convolution (down-sampling)*

- input size n, kernel size r, stride s, output size n^{\prime}

$$
\begin{array}{lll|l|l|l|l|l}
x & & n=7, r=3, s=2 \\
\cline { 2 - 5 } & & & 1 & 2 & 3 & & \\
\\
a=(w \star x) \downarrow_{s} & \quad & & n^{\prime}=\lfloor(n-r) / s\rfloor+1=3
\end{array}
$$

- like standard convolution followed by down-sampling, but efficient
- written as matrix multiplication (rows sub-sampled)

strided convolution (down-sampling)*

- input size n, kernel size r, stride s, output size n^{\prime}

$$
\begin{array}{lll|l|l|l|l|l|}
& x & & & & & & 1 \\
\hline
\end{array}
$$

- like standard convolution followed by down-sampling, but efficient
- written as matrix multiplication (rows sub-sampled)

$$
\begin{gathered}
\mathbf{a}=W^{\top} \cdot \mathbf{x} \\
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{lllllll}
w_{1} & w_{2} & w_{3} & & & & \\
& & w_{1} & w_{2} & w_{3} & & \\
& & & & w_{1} & w_{2} & w_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)
\end{gathered}
$$

strided convolution: input derivative*

- in general, $C=A B \rightarrow d A=(d C) B^{\top}, d B=A^{\top} d C$
- here, $\mathbf{a}=W^{\top} \mathbf{x}$: derivative with respect to input \mathbf{x}

$$
\begin{aligned}
d \mathbf{x} & =W \cdot d \mathbf{a} \\
d\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right) & =\left(\begin{array}{lll}
w_{1} & & \\
w_{2} & & \\
w_{3} & w_{1} & \\
& w_{2} & \\
& w_{3} & w_{1} \\
& & w_{2} \\
& & w_{3}
\end{array}\right) \cdot d\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
\end{aligned}
$$

strided convolution: weight derivative*

- in general, $C=A B \rightarrow d A=(d C) B^{\top}, d B=A^{\top} d C$
- here, $\mathbf{a}=W^{\top} \mathbf{x}$: derivative with respect to weights W

$$
\begin{gathered}
d W=\mathbf{x} \cdot d \mathbf{a}^{\top} \\
d\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=d\left(\begin{array}{lllllll}
a_{1} & & a_{2} & & a_{3} & & \\
& a_{1} & & a_{2} & & a_{3} & \\
& & a_{1} & & a_{2} & & a_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)
\end{gathered}
$$

- again e.g. by writing W as a function of $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ and applying the chain rule, or by just observing the moving pattern

dilated convolution (up-sampling)*

- input size n, kernel size r, dilation factor t, effective kernel size $\hat{r}=r+(r-1)(t-1)$, output size n^{\prime}

$$
n=7, r=3, t=2
$$

$$
a=w \uparrow^{t} \star x
$$

$$
n^{\prime}=n-\hat{r}+1=3
$$

written as matrix multiplication (like strided backward!)

dilated convolution (up-sampling)*

- input size n, kernel size r, dilation factor t, effective kernel size $\hat{r}=r+(r-1)(t-1)$, output size n^{\prime}

$$
n=7, r=3, t=2
$$

$$
a=w \uparrow^{t} \star x
$$

$$
n^{\prime}=n-\hat{r}+1=3
$$

- written as matrix multiplication (like strided backward!)

dilated convolution (up-sampling)*

- input size n, kernel size r, dilation factor t, effective kernel size $\hat{r}=r+(r-1)(t-1)$, output size n^{\prime}

$$
n=7, r=3, t=2
$$

$$
a=w \uparrow^{t} \star x
$$

$$
n^{\prime}=n-\hat{r}+1=3
$$

written as matrix multiplication (like strided backward!)

dilated convolution (up-sampling)*

- input size n, kernel size r, dilation factor t, effective kernel size $\hat{r}=r+(r-1)(t-1)$, output size n^{\prime}

$$
n^{\prime}=n-\hat{r}+1=3
$$

$$
\begin{equation*}
a=w \uparrow^{t} \star x \tag{tabular}
\end{equation*}
$$

- written as matrix multiplication (like strided backward!)

$$
\begin{aligned}
\mathbf{a} & =W^{\top} \cdot \mathbf{x} \\
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) & =\left(\begin{array}{llllll}
w_{1} & & w_{2} & & w_{3} & \\
\\
& w_{1} & & w_{2} & & w_{3} \\
& & w_{1} & & w_{2} & \\
\\
& & & & & \\
w_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)
\end{aligned}
$$

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2
\square
\square

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

| \square | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2
\square
\square

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

| \square | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2
\square
\square

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

							1		2		3	

dilated convolution (up-sampling)

- suppose a filter has been trained at a given resolution

- à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

convolutional layer arithmetic*

- input volume $v=w \times h \times k$
- hyperparameters k^{\prime} filters, kernel size r, padding p, stride s, dilation factor t
- effective kernel size $\hat{r}=r+(r-1)(t-1)$
- output volume $v^{\prime}=w^{\prime} \times h^{\prime} \times k^{\prime}$ with

$$
\begin{aligned}
w^{\prime} & =\lfloor(w+2 p-\hat{r}) / s\rfloor+1 \\
h^{\prime} & =\lfloor(h+2 p-\hat{r}) / s\rfloor+1
\end{aligned}
$$

- $r^{2} k k^{\prime}$ weights, k^{\prime} biases, $\left(r^{2} k+1\right) k^{\prime}$ parameters in total

convolutional layer arithmetic*

- input volume $v=w \times h \times k$
- hyperparameters k^{\prime} filters, kernel size r, padding p, stride s, dilation factor t
- effective kernel size $\hat{r}=r+(r-1)(t-1)$
- output volume $v^{\prime}=w^{\prime} \times h^{\prime} \times k^{\prime}$ with

$$
\begin{aligned}
w^{\prime} & =\lfloor(w+2 p-\hat{r}) / s\rfloor+1 \\
h^{\prime} & =\lfloor(h+2 p-\hat{r}) / s\rfloor+1
\end{aligned}
$$

- $r^{2} k k^{\prime}$ weights, k^{\prime} biases, $\left(r^{2} k+1\right) k^{\prime}$ parameters in total
- $\left(r^{2} k+1\right) v^{\prime}=\left(r^{2} k+1\right) k^{\prime} \times w^{\prime} \times h^{\prime}$ operations in total

pooling

spatial pooling

- the deeper a layer is, the larger becomes the receptive field of each cell and the density of cells decreases accordingly
- gradually introduces translation and deformation invariance
- pooling is independent per feature map and connections are fixed

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

spatial pooling

$n=6, r=2, s=2$

$n^{\prime}=\lfloor n / s\rfloor=3$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride $s>1$
- typically, $r=s$ such that $n^{\prime}=\lfloor(n-r) / s\rfloor+1=\lfloor n / s\rfloor$

feature pooling e.g. maxout

- unlike most activation functions that are element-wise, maxout groups several (e.g. k) activations together and takes their maximum

$$
a=\max _{j} \mathbf{w}_{j}^{\top} \mathbf{x}+b_{j}
$$

- does not saturate or "die", but increases the cost by k
- can approximate any convex function
- two such units can approximate any smooth function!

feature pooling e.g. maxout

- unlike most activation functions that are element-wise, maxout groups several (e.g. k) activations together and takes their maximum

$$
a=\max _{j} \mathbf{w}_{j}^{\top} \mathbf{x}+b_{j}
$$

- does not saturate or "die", but increases the cost by k
- can approximate any convex function
- two such units can approximate any smooth function!

feature pooling: pose invariance

- if each activation responds to a different pose or view, maxout will respond to any

feature pooling: pose invariance

- if each activation responds to a different pose or view, maxout will respond to any

more fun

[^1]
convolutional network

		MNIST						CIFAR10
			param	ops	volume	param	ops	volume
$\mathbf{x}=$	input		0	0	$28 \times 28 \times 1$	0	0	$32 \times 32 \times 3$
$\mathbf{z}_{1}=$	$\operatorname{conv}(5,32)$	(\mathbf{x})	832	479232	$24 \times 24 \times 32$	2432	1906688	$28 \times 28 \times 32$
$\mathbf{p}_{1}=$	$\operatorname{pool}(2)$	$\left(\mathbf{z}_{1}\right)$	0	18432	$12 \times 12 \times 32$	0	25088	$14 \times 14 \times 32$
$\mathbf{z}_{2}=$	$\operatorname{conv}(5,64)$	$\left(\mathbf{p}_{1}\right)$	51264	3280896	$8 \times 8 \times 64$	51264	5126400	$10 \times 10 \times 64$
$\mathbf{p}_{2}=$	$\operatorname{pool}(2)$	$\left(\mathbf{z}_{2}\right)$	0	4096	$4 \times 4 \times 64$	0	6400	$5 \times 5 \times 64$
$\mathbf{z}_{3}=$	$\mathrm{fc}(100)$	$\left(\mathbf{p}_{2}\right)$	102500	102500	100	160100	160100	100
$\mathbf{a}_{4}=$	$\mathrm{fc}(10)$	$\left(\mathbf{z}_{3}\right)$	1010	1010	10	1010	1010	10
$\mathbf{y}=$	$\operatorname{softmax}$	$\left(\mathbf{a}_{4}\right)$	0	0	10	0	0	10

- ReLU nonlinearity after each convolutional and FC layer
- most narameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional layer
$\operatorname{conv}\left(r, k^{\prime}[, p=0][, s=1]\right) ;(\max)-\operatorname{pool}(r[, s=r][, p=0]) ;$

convolutional network

input	0	0	$28 \times 28 \times 1$	0	0	$32 \times 32 \times 3$
conv (5,32)	832	479232	$24 \times 24 \times 32$	2432	1906688	$28 \times 28 \times 32$
pool(2)	0	18432	$12 \times 12 \times 32$	0	25088	$14 \times 14 \times 32$
conv (5, 64)	51264	3280896	$8 \times 8 \times 64$	51264	5126400	$10 \times 10 \times 64$
pool(2)	0	4096	$4 \times 4 \times 64$	0	6400	$5 \times 5 \times 64$
$\mathrm{fc}(100)$	102500	102500	100	160100	160100	100
$\mathrm{fc}(10)$	1010	1010	10	1010	1010	10
softmax	0	0	10	0	0	10

- ReLU nonlinearity after each convolutional and FC layer
- most parameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional laver
$\operatorname{conv}\left(r, k^{\prime}[, p=0][, s=1]\right) ;(\max)-\operatorname{pool}(r[, s=r][, p=0]) ;$

convolutional network

	param	$\begin{gathered} \text { MNIST } \\ \text { ops } \end{gathered}$	volume	param	CIFAR10 ops	volume
input	0	0	$28 \times 28 \times 1$	0	0	$32 \times 32 \times 3$
conv (5,32)	832	479232	$24 \times 24 \times 32$	2432	1906688	$28 \times 28 \times 32$
pool(2)	0	18432	$12 \times 12 \times 32$	0	25088	$14 \times 14 \times 32$
conv (5, 64)	51264	3280896	$8 \times 8 \times 64$	51264	5126400	$10 \times 10 \times 64$
pool(2)	0	4096	$4 \times 4 \times 64$	0	6400	$5 \times 5 \times 64$
$\mathrm{fc}(100)$	102500	102500	100	160100	160100	100
$\mathrm{fc}(10)$	1010	1010	10	1010	1010	10
softmax	0	0	10	0	0	10

- ReLU nonlinearity after each convolutional and FC layer
- most parameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional layer
$\operatorname{conv}\left(r, k^{\prime}[, p=0][, s=1]\right) ;(\max)-\operatorname{pool}(r[, s=r][, p=0]) ;$

convolutional network

	param	MNIST ops	volume	param	CIFAR10 ops	volume
input	0	0	$28 \times 28 \times 1$	0	0	$32 \times 32 \times 3$
$\operatorname{conv}(5,32)$	832	479232	$24 \times 24 \times 32$	2432	1906688	$28 \times 28 \times 32$
$\operatorname{pool}(2)$	0	18432	$12 \times 12 \times 32$	0	25088	$14 \times 14 \times 32$
$\operatorname{conv}(5,64)$	51264	3280896	$8 \times 8 \times 64$	51264	5126400	$10 \times 10 \times 64$
pool(2)	0	4096	$4 \times 4 \times 64$	0	6400	$5 \times 5 \times 64$
$\mathrm{fc}(100)$	102500	102500	100	160100	160100	100
$\mathrm{fc}(10)$	1010	1010	10	1010	1010	10
softmax	0	0	10	0	0	10

- ReLU nonlinearity after each convolutional and FC layer
- most parameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional layer
$\operatorname{conv}\left(r, k^{\prime}[, p=0][, s=1]\right) ;(\max)-\operatorname{pool}(r[, s=r][, p=0]) ;$

MNIST layer 1 filters

- mini-batch $m=128$, learning rate $\epsilon=10^{-2}$, regularization strength $\lambda=10^{-2}$, Gaussian initialization $\sigma=0.1$
- test error: 1.2%

CIFAR10 layer 1 filters

- mini-batch $m=128$, learning rate $\epsilon=10^{-2}$, regularization strength $\lambda=10^{-2}$, Gaussian initialization $\sigma=0.1$
- test error: 28%

towards deeper networks

[Montufar et al. 2014]

2-layer: solid; 3-layer: dashed (20 hidden units each)

close-up

- "deep networks are able to separate their input space into exponentially more linear response regions than their shallow counterparts, despite using the same number of computational units"

network architectures

LeNet-5

[LeCun et al. 1998]

- first convolutional neural network to use back-propagation
- applied to character recognition

LeNet-5

	parameters	operations	volume
$\operatorname{input}(32,1)$	0	0	$32 \times 32 \times 1$
$\operatorname{conv}(5,6)$	156	122,304	$28 \times 28 \times 6$
$\operatorname{avg}(2)$	0	4,704	$14 \times 14 \times 6$
$\operatorname{conv}(5,16)$	2,416	241,600	$10 \times 10 \times 16$
$\operatorname{avg}(2)$	0	1,600	$5 \times 5 \times 16$
$\operatorname{conv}(5,120)$	48,120	48,120	$1 \times 1 \times 120$
$\operatorname{fc}(84)$	10,164	10,164	84
$\operatorname{RBF}(10)$	850	850	10
$\operatorname{softmax}$	0	10	10

- subsampling by average pooling with learnable global weight and bias
- scaled tanh nonlinearity after first pooling layer and FC layer
- last convolutional layer allows variable-sized input
- output RBF units: Euclidean distance to 7×12 distributed codes
- softmax-like loss function

LeNet-5 distributed codes

प
ПП
\#
\square

7

0

4
3
3
$\frac{\square}{4}$ 픈

7
7

\square
\square
\square

\square
$=$

B

$\frac{\square}{\square}$

ت

4

- 7×12 character bitmaps
- chosen by hand to initialize the FC-RBF connections
- structured output

LeNet-5 connections between convolutional layers

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				X	X	X			X	X	X	X		X	X
1	X	X				X	X	X			X	X	X	X		X
2	X	X	X				X	X	X			X		X	X	X
3		X	X	X			X	X	X	X			X		X	X
4			X	X	X			X	X	X	X		X	X		X
5				X	X	X			X	X	X	X		X	X	X

- number of connections limited
- forces break of symmetry

ImageNet

[Russakovsky et al. 2014]

- 22 k classes, 15 M samples
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000 classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

ImageNet classification performance

AlexNet

[Krizhevsky et al. 2012]

- 16.4% top- 5 error on on ILSVRC'12, outperformed all by 10%
- 8 layers
- ReLU, local response normalization, data augmentation, dropout
- stochastic gradient descent with momentum
- implementation on two GPUs; connectivity between the two subnetworks is limited

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

AlexNet

[Krizhevsky et al. 2012]

- 16.4% top- 5 error on on ILSVRC'12, outperformed all by 10%
- 8 layers
- ReLU, local response normalization, data augmentation, dropout
- stochastic gradient descent with momentum
- implementation on two GPUs; connectivity between the two subnetworks is limited

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

learned layer 1 kernels

- 96 kernels of size $11 \times 11 \times 3$
- top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

AlexNet

parameters

0	0	$227 \times 227 \times 3$
34,944	$105,705,600$	$55 \times 55 \times 96$
0	290,400	$27 \times 27 \times 96$
0	69,984	$27 \times 27 \times 96$
614,656	$448,084,224$	$27 \times 27 \times 256$
0	186,624	$13 \times 13 \times 256$
0	43,264	$13 \times 13 \times 256$
885,120	$149,585,280$	$13 \times 13 \times 384$
$1,327,488$	$224,345,472$	$13 \times 13 \times 384$
884,992	$149,563,648$	$13 \times 13 \times 256$
0	43,264	$6 \times 6 \times 256$
$37,752,832$	$37,752,832$	4,096
$16,781,312$	$16,781,312$	4,096
$4,097,000$	$4,097,000$	1,000
0	1,000	1,000

- ReLU follows each convolutional and fully connected layer
$\operatorname{conv}\left(r, k^{\prime}[, p=0][, s=1]\right) ;(\max)-\operatorname{pool}(r[, s=r][, p=0]) ;$

AlexNet (CaffeNet)

input(227, 3)	0	0	$227 \times 227 \times 3$
$\operatorname{conv}(11,96, s 4)$	34,944	105, 705, 600	$55 \times 55 \times 96$
$\operatorname{pool}(3,2)$	0	290, 400	$27 \times 27 \times 96$
norm	0	69,984	$27 \times 27 \times 96$
$\operatorname{conv}(5,256, p 2)$	614,656	448, 084, 224	$27 \times 27 \times 256$
$\operatorname{pool}(3,2)$	0	186, 624	$13 \times 13 \times 256$
norm	0	43,264	$13 \times 13 \times 256$
$\operatorname{conv}(3,384, p 1)$	885, 120	149, 585, 280	$13 \times 13 \times 384$
$\operatorname{conv}(3,384, p 1)$	1,327,488	224, 345, 472	$13 \times 13 \times 384$
$\operatorname{conv}(3,256, p 1)$	884, 992	149, 563, 648	$13 \times 13 \times 256$
$\operatorname{pool}(3,2)$	0	43,264	$6 \times 6 \times 256$
$\mathrm{fc}(4096)$	37, 752, 832	37,752, 832	4,096
fc(4096)	16, 781,312	16,781,312	4,096
$\mathrm{fc}(1000)$	4, 097, 000	4, 097, 000	1,000
softmax	0	1,000	1,000

- ReLU follows each convolutional and fully connected layer
- CaffeNet: input size modified from 224×224, pool/norm switched $\operatorname{conv}\left(r, k^{\prime}[, p=0][, s=1]\right) ;(\max)-\operatorname{pool}(r[, s=r][, p=0]) ;$

AlexNet: classification examples

- correct label on top; its predicted probability with red if visible

ImageNet classification performance

ZFNet*

- 11.7% top-5 error on ILSVRC'13
- 8 layers, refinement of AlexNet
- layer 1 kernel size (stride) reduced from $11(4)$ to $7(2)$ to reduce aliasing artifacts
- conv3,4,5 width increased to $512,1024,512$

ZFNet*

input(224,3)	0	0	$224 \times 224 \times 3$
$\operatorname{conv}(7,96, s 2, p 1)$	14,208	171, 916,800	$110 \times 110 \times 96$
$\operatorname{pool}(3,2, p 1)$	0	1,161,600	$55 \times 55 \times 96$
norm	0	290, 400	$55 \times 55 \times 96$
$\operatorname{conv}(5,256, s 2)$	614,656	415, 507, 456	$26 \times 26 \times 256$
$\operatorname{pool}(3,2, p 1)$	0	173, 056	$13 \times 13 \times 256$
norm	0	43, 264	$13 \times 13 \times 256$
$\operatorname{conv}(3,512, p 1)$	1,180,160	199, 447, 040	$13 \times 13 \times 512$
$\operatorname{conv}(3,1024, p 1)$	4, 719,616	797, 615, 104	$13 \times 13 \times 1024$
$\operatorname{conv}(3,512, p 1)$	4, 719,104	797, 528,576	$13 \times 13 \times 512$
$\operatorname{pool}(3,2)$	0	86,528	$6 \times 6 \times 512$
fc(4096)	75, 501,568	75, 501,568	4,096
$\mathrm{fc}(4096)$	16,781,312	16,781, 312	4,096
$\mathrm{fc}(1000)$	4, 097,000	4, 097,000	1,000
softmax	0	1,000	1,000

- layer widths adjusted by cross-validation; depth matters
$\operatorname{conv}\left(r, k^{\prime}[, p=0][, s=1]\right) ;(\max)-\operatorname{pool}(r[, s=r][, p=0]) ;$

ZFNet: occlusion sensitivity

correct class probability

- image occluded by gray square
- correct class probability as a function of the position of the square

ZFNet: visualizing intermediate layers*

(8)	(1)				(
(3)	Q	$\%$			
8	6	\%		(
+	*	8	(W	
\%	9	ot		,	
	a		2)		

- reconstructed patterns from top 9 activations of selected features of layer 4 and corresponding image patches

VGG

[Simonyan and Zisserman 2014]

ConvNet Configuration					
A	A-LRN	B	C	D	E
$\begin{gathered} \hline 11 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	13 weight layers	$\begin{gathered} 16 \text { weight } \\ \text { layers } \end{gathered}$	$\begin{gathered} 16 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} 19 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$
input ($224 \times 224 \mathrm{RGB}$ image)					
conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { LRN } \end{aligned}$	conv3-64 conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \\ & \hline \end{aligned}$	conv3-64 conv3-64
maxpool					
conv3-128	conv3-128	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$
maxpool					
$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$
maxpool					
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv1-512	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					

- 7.3% top-5 error on ILSVRC'14
- depth increased up to 19 layers, kernel sizes (strides) reduced to 3(1)
- local response normalization doesn't do anything
- top/bottom layers of deep models pre-initialized by trained model A

effective receptive field

- is the part of the visual input that affects a given cell indirectly through previous layers
- grows linearly with depth
- stack of three 3×3 kernels of stride 1 has the same effective receptive field as a single 7×7 kernel, but fewer parameters

effective receptive field

- is the part of the visual input that affects a given cell indirectly through previous layers
- grows linearly with depth
- stack of three 3×3 kernels of stride 1 has the same effective receptive field as a single 7×7 kernel, but fewer parameters

effective receptive field

- is the part of the visual input that affects a given cell indirectly through previous layers
- grows linearly with depth
- stack of three 3×3 kernels of stride 1 has the same effective receptive field as a single 7×7 kernel, but fewer parameters

effective receptive field

- is the part of the visual input that affects a given cell indirectly through previous layers
- grows linearly with depth
- stack of three 3×3 kernels of stride 1 has the same effective receptive field as a single 7×7 kernel, but fewer parameters

VGG-16

input $(224,3)$
conv $(3,64, p 1)$
$\operatorname{conv}(3,64, p 1)$
$\operatorname{pool}(2)$
$\operatorname{conv}(3,128, p 1)$
$\operatorname{conv}(3,128, p 1)$
$\operatorname{pool}(2)$
$\operatorname{conv}(3,256, p 1)$
$\operatorname{conv}(3,256, p 1)$
$\operatorname{conv}(3,256, p 1)$
$\operatorname{pool}(2)$
$\operatorname{conv}(3,512, p 1)$
$\operatorname{conv}(3,512, p 1)$
$\operatorname{conv}(3,512, p 1)$
$\operatorname{pool}(2)$
$\operatorname{conv}(3,512, p 1)$
$\operatorname{conv}(3,512, p 1)$
$\operatorname{conv}(3,512, p 1)$
$\operatorname{pool}(2)$
$\operatorname{fc}(4096)$
$\mathrm{fc}(4096)$
$\mathrm{fc}(1000)$
$\operatorname{softmax}$

parameters	operations	volume
0	0	$224 \times 224 \times 3$
1,792	89,915, 390	$224 \times 224 \times 64$
36,928	1,852,899, 328	$224 \times 224 \times 64$
0	3,211, 264	$112 \times 112 \times 64$
73,856	926, 449, 664	$112 \times 112 \times 128$
147,584	1,851, 293, 696	$112 \times 112 \times 128$
0	1,605,632	$56 \times 56 \times 128$
295, 168	925,646, 848	$56 \times 56 \times 256$
590, 080	1,850,490, 880	$56 \times 56 \times 256$
590,080	1,850,490,880	$56 \times 56 \times 256$
0	802,816	$28 \times 28 \times 256$
1,180, 160	$925,245,440$	$28 \times 28 \times 512$
2,359, 808	1,850,089, 472	$28 \times 28 \times 512$
2,359,808	1,850,089, 472	$28 \times 28 \times 512$
0	401,408	$14 \times 14 \times 512$
2,359, 808	462,522,368	$14 \times 14 \times 512$
2,359,808	462,522,368	$14 \times 14 \times 512$
2,359,808	462,522,368	$14 \times 14 \times 512$
0	100,352	$7 \times 7 \times 512$
102, 764, 544	102, 764, 544	4,096
16,781,312	16,781,312	4,096
4,097,000	4,097,000	1,000
0	1,000	1,000

network in network (NiN)*

[Lin et al. 2013]

- fully connected layers are simply replaced by global average pooling
- activation functions are usually element-wise for simplicity; but here an entire 2-layer network is used as activation function
- but this is nothing but convolution followed by two for dimension reduction

network in network (NiN)*

[Lin et al. 2013]

- fully connected layers are simply replaced by global average pooling
- activation functions are usually element-wise for simplicity; but here an entire 2-layer network is used as activation function
- but this is nothing but convolution followed by two 1×1 convolutions
- 1×1 convolutions are just like matrix multiplications and can be used for dimension reduction

ImageNet classification performance

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

GoogLeNet

[Szegedy et al. 2015]

- 6.7% top-5 error on ILSVRC'14
- depth increased to 22 layers, kernel sizes 1×1 to 5×5
- inception module repeated 9 times
- 1×1 kernels used as "bottleneck" layers (dimensionality reduction)
- 25 times less parameters and faster than AlexNet
- auxiliary classifiers

convolutional features are sparse*

- remember, features play the role of codebooks, and bag-of-words representations can be sparse
- with relu, each feature represents a "detector" that fires when the activation is positive

convolutional features are sparse*

- deep layers have more features (e.g. 1024) and lower resolutions (e.g. 7×7)
- detected patterns in many cases are as small as 3×3 or even 1×1
- the convolution operation resembles more (sparse) matrix multiplication than convolution
- this is not as efficient as dense multiplication on parallel hardware

convolutional features are sparse*

- deep layers have more features (e.g. 1024) and lower resolutions (e.g. 7×7)
- detected patterns in many cases are as small as 3×3 or even 1×1
- the convolution operation resembles more (sparse) matrix multiplication than convolution
- this is not as efficient as dense multiplication on parallel hardware

inception module

- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
- add dimension reduction to control cost, dimensions, and sparsity
- this is referred to as inception module

inception module

271, 418, 048 operations

- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
add dimension reduction to control cost, dimensions, and sparsity
- this is referred to as inception module

inception module

$70,800,688$ operations

- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
- add dimension reduction to control cost, dimensions, and sparsity
this is referred to as inception module
gedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

inception module

70, 800, 688 operations

inc(384, (192, 384), (48, 128), 128)

- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
- add dimension reduction to control cost, dimensions, and sparsity
- this is referred to as inception module

alternatively: low-rank decomposition*

- $X(Y)$: input (output) features (columns $=$ spatial positions)
- W : weights; h : activation function
- low-rank approximation $W \approx U V^{\top} ; V$ is 1×1 spatially
- X was sparse; $V^{\top} X$ is not
- (in fact, V also includes a non-linearity)

alternatively: low-rank decomposition*

- $X(Y)$: input (output) features (columns $=$ spatial positions)
- W : weights; h : activation function
- low-rank approximation $W \approx U V^{\top} ; V$ is 1×1 spatially
- X was sparse; $V^{\prime} X$ is not
- (in fact, V also includes a non-linearity)

alternatively: low-rank decomposition*

- $X(Y)$: input (output) features (columns $=$ spatial positions)
- W : weights; h : activation function
- low-rank approximation $W \approx U V^{\top} ; V$ is 1×1 spatially
- X was sparse; $V^{\top} X$ is not
- (in fact, V also includes a non-linearity)

alternatively: low-rank decomposition*

- $X(Y)$: input (output) features (columns $=$ spatial positions)
- W : weights; h : activation function
- low-rank approximation $W \approx U V^{\top} ; V$ is 1×1 spatially
- X was sparse; $V^{\top} X$ is not
- (in fact, V also includes a non-linearity)

GoogLeNet

GoogLeNet

network performance

summary

- convolution \equiv linearity + translation equivariance
- sparse connections, weight sharing: fully connected \rightarrow convolution
- cross-correlation
- feature maps: matrix multiplication and convolution combined
- 1×1 convolution
- convolution as regularization, structured convolution
- standard, padded, strided, dilated; and their derivatives
- pooling and invariance
- deeper networks
- LeNet-5, AlexNet, ZFNet, VGG-16, NiN, GoogLeNet

[^0]: $4 \square>4$ 鸟 1 引

[^1]:

