
lecture 9: object detection
deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2018 – Jan. 2019

outline

background
two-stage detection
object parts and deformation
scale and feature pyramids∗

one-stage detection

..

background

data-driven approach

feature extraction

classifier

“dog”

“cat”

modelparameters representation

data-driven approach

feature extraction

classifier

“dog”

“cat”

representation

modelparameters representation

data-driven approach

feature extraction

classifier

“dog”

“cat”

representation

parameters

modelparameters representation

data-driven approach

feature extraction

classifier

“dog”

“cat”

modelparameters

representation

data-driven approach

feature extraction

classifier

“dog”

“cat”

modelparameters representation

data-driven approach

feature extraction

classifier

“dog”

“cat”

modelparameters representation

data-driven approach

feature extraction

classifier

“dog”

“cat”

modelparameters representation

beyond classification

wall

shelves

book

cat

floor

table

object localization

semantic segmentation

classify + regress

pixel-wise classify

bounding box (x, y, w, h)

object detection instance segmentation
per region: classify + regress per region: pixel-wise classify

bounding box (x, y, w, h)

beyond classification

wall

shelves

book

cat

floor

table

object localization semantic segmentation
classify + regress pixel-wise classify

bounding box (x, y, w, h)

object detection instance segmentation
per region: classify + regress per region: pixel-wise classify

bounding box (x, y, w, h)

beyond classification

wall

shelves

book

cat

floor

table

object localization semantic segmentation
classify + regress pixel-wise classify

bounding box (x, y, w, h)

object detection

instance segmentation

per region: classify + regress

per region: pixel-wise classify

bounding box (x, y, w, h)

beyond classification

wall

shelves

book

cat

floor

table

object localization semantic segmentation
classify + regress pixel-wise classify

bounding box (x, y, w, h)

object detection instance segmentation
per region: classify + regress per region: pixel-wise classify

bounding box (x, y, w, h)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score

(e.g. cross-correlation)

template matching, or sliding window

• slide template over image at multiple positions

• positions can be overlapping, or even dense (every pixel)

• seek maximum similarity score (e.g. cross-correlation)

two problems

• to detect a given instance (template), a similarity score may be
enough; but to detect an object of a given class, we need strong
features and a good classifier

• with unknown position, scale and aspect ratio, the search space is
4-dimensional: to search efficiently, we need something better than
exhaustive search

real-time face detection
[Viola and Jones 2001]

• millions of simple features exhaustively evaluated on integral image

• learning weak classifiers by AdaBoost

• classifier cascade provides a focus-of-attention mechanism

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.

integral image: construction

x

• given an image, precompute its sum over the rectangle with vertices
the top-left corner and any point x in the image

• the collection of all sums is the integral image: it can be computed by
one pass over the original image and takes the same space as the
original image

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.

integral image: use

a b

c d

A

DC

B

=

b

d

A

DC

B

− a

c

A

DC

B

=


 d

A

DC

B

− b

A

DC

B



−


 c

A

DC

B

− a

A

DC

B




• then, the sum over any rectangle (D) can be evaluated by 3 scalar
operations on its vertices (a, b, c, d)

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.

integral image: use

a b

c d

A

DC

B

=

b

d

A

DC

B

− a

c

A

DC

B

=


 d

A

DC

B

− b

A

DC

B



−


 c

A

DC

B

− a

A

DC

B




• then, the sum over any rectangle (D) can be evaluated by 3 scalar
operations on its vertices (a, b, c, d)

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.

integral image: use

a b

c d

A

DC

B

=

b

d

A

DC

B

− a

c

A

DC

B

=


 d

A

DC

B

− b

A

DC

B



−


 c

A

DC

B

− a

A

DC

B




• then, the sum over any rectangle (D) can be evaluated by 3 scalar
operations on its vertices (a, b, c, d)

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.

histogram of oriented gradients (HOG)
[Dalal and Triggs 2005]

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

• dense, SIFT-like descriptors

• SVM classifier

• sliding window detection at all positions and scales

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection.

deformable part model (DPM)
[Felzenszwalb et al. 2008]

A Discriminatively Trained, Multiscale, Deformable Part Model

Pedro Felzenszwalb
University of Chicago
pff@cs.uchicago.edu

David McAllester
Toyota Technological Institute at Chicago

mcallester@tti-c.org

Deva Ramanan
UC Irvine

dramanan@ics.uci.edu

Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction

We consider the problem of detecting and localizing ob-
jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty

This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

object categories. Figure 1 shows an example detection ob-
tained with our person model.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6,10, 12, 13,15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a

1

• appearance represented by HOG

• spatial configuration inspired by “pictorial structures”

• part locations treated as latent variables: latent SVM

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.

deformable part model: inference

input model

responses

? +

features “root” combined score

? ∧
“head” deformation

? ∧
“shoulder” deformation

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.

deformable part model: inference

input model

responses

? +

features

“root” combined score

? ∧
“head” deformation

? ∧
“shoulder” deformation

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.

deformable part model: inference

input model

responses

?

+

features “root”

combined score

?

∧

“head”

deformation

?

∧

“shoulder”

deformation

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.

deformable part model: inference

input model

responses

?

+

features “root”

combined score

? ∧
“head” deformation

? ∧
“shoulder” deformation

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.

deformable part model: inference

input model

responses

? +

features “root” combined score

? ∧
“head” deformation

? ∧
“shoulder” deformation

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.

hard example mining (bootstrapping)

• an example is called hard for a model with parameters θ if it
contributes non-zero loss (is incorrectly classified or inside the
margin); otherwise easy

• repeat:

1 optimize the model θ on a subset C (cache) of the training set D
2 if all hard examples of D are included in C, stop
3 shrink: remove any number of easy examples from C
4 grow: add to C any number of new samples from D, including at

least a new hard one

• this algorithm terminates and finds the optimal model for D

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.
Sung and Poggio. PAMI 1998. Example-Based Learning for View-Based Human Face Detection.

hard example mining (bootstrapping)

• an example is called hard for a model with parameters θ if it
contributes non-zero loss (is incorrectly classified or inside the
margin); otherwise easy

• repeat:

1 optimize the model θ on a subset C (cache) of the training set D
2 if all hard examples of D are included in C, stop
3 shrink: remove any number of easy examples from C
4 grow: add to C any number of new samples from D, including at

least a new hard one

• this algorithm terminates and finds the optimal model for D

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.
Sung and Poggio. PAMI 1998. Example-Based Learning for View-Based Human Face Detection.

hard example mining (bootstrapping)

• an example is called hard for a model with parameters θ if it
contributes non-zero loss (is incorrectly classified or inside the
margin); otherwise easy

• repeat:

1 optimize the model θ on a subset C (cache) of the training set D
2 if all hard examples of D are included in C, stop
3 shrink: remove any number of easy examples from C
4 grow: add to C any number of new samples from D, including at

least a new hard one

• this algorithm terminates and finds the optimal model for D

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.
Sung and Poggio. PAMI 1998. Example-Based Learning for View-Based Human Face Detection.

implicit shape model (ISM): training
[Leibe et al. 2008]

7

Appearance Codebook
(Cluster Centers)

Spatial Occurrence Distributions
(non-parametric)

Local
Features

Training Images
(+Reference Segmentations)

x

y

s
x

y

s

x

y

s
x

y

s

…

……
……

Fig. 2. The training procedure. Local features are extracted around interest points and clustered to form an appearance codebook. For each codebook entry, a
spatial occurrence distribution is learned and stored in non-parametric form (as a list of occurrences).

as similarity measure. As the method relies heavily on the
search for nearest neighbors, its expected-time complexity can
in some cases further be improved by using efficient NN-
search techniques.

As a side note, we want to point out that for the cases
considered in our experiments, where the number k of clusters
is almost of the same order as N , average-link clustering and
standard k-means have the same asymptotic time complexity.
Since in our experiments between 10 and 25 iterations were
necessary for k-means to converge, this number combines with
the value of k to form an effective time complexity of O(N 2d).

Which clustering method is better suited for our application
can only be evaluated in the context of an entire system. In
Section VII-C, we therefore compare codebooks generated by
k-means and agglomerative clustering for an object detection
task. The results suggest that, although very similar detection
performance can be achieved with both clustering methods, the
lesser compactness of k-means clusters makes it more costly
for later stages of the system to represent the matching uncer-
tainty sufficiently well. In the following sections, we therefore
use agglomerative clustering for codebook generation.

IV. OBJECT CATEGORIZATION WITH AN IMPLICIT SHAPE

MODEL

A. Shape Representation

As basic representation for our approach we introduce the
Implicit Shape Model ISM(C) = (C, PC), which consists of
a class-specific alphabet C (the codebook) of local appearances
that are prototypical for the object category, and of a spatial
probability distribution PC which specifies where each code-
book entry may be found on the object.

We make two explicit design choices for the probability
distribution PC . The first is that the distribution is defined
independently for each codebook entry. This results in a star-
shaped structural model, where the position of each local part
is only dependent on the object center. The approach is flexi-
ble, since it allows to combine object parts during recognition
that were initially observed on different training examples. In
addition, it is able to learn recognition models from relatively
small training sets, as our experiments will demonstrate. The
second constraint is that the spatial probability distribution for
each codebook entry is estimated in a non-parametric manner.
This enables the method to model the true distribution in as

Algorithm 2 The training procedure.
// Create an appearance codebook C.
F ← ∅ // Initialize the set of feature vectors F
for all training images do

Apply the interest point detector.
for all interest regions �k = (�x, �y, �s) with descriptors fk do
F ← F ∪ fk

end for
end for
Cluster F with cut-off threshold t and keep cluster centers C.

// Compute occurrences Occ.
for all codebook entries Ci do

Occ[i] ← ∅ // Initialize occurrences for codebook entry Ci
end for
for all training images do

Let (cx, cy) be the object center at a reference scale.
Apply the interest point detector.
for all interest regions �k = (�x, �y, �s) with descriptors fk do

for all codebook entries Ci do
if sim(Ci, fk) ≥ t then

// Record an occurrence of codebook entry Ci
Occ[i] ← Occ[i] ∪ (cx − �x, cy − �y, �s)

end if
end for

end for
end for

much detail as the training data permits instead of making a
possibly oversimplifying Gaussian assumption.

B. Learning the Shape Model

Let C be the learned appearance codebook, as described
in the previous section. The next step is to learn the spatial
probability distribution PC (see Figure 2 and Algorithm 2). For
this, we perform a second iteration over all training images and
match the codebook entries to the images. Here, we activate
not only the best-matching codebook entry, but all entries
whose similarity is above t, the cut-off threshold already used
during agglomerative clustering. For every codebook entry, we
store all positions it was activated in, relative to the object
center.

By this step, we model the uncertainty in the codebook
generation process. If a codebook is “perfect” in the sense
that each feature can be uniquely assigned to exactly one
cluster, then the result is equivalent to a nearest-neighbor
matching strategy. However, it is unrealistic to expect such

• local features and descriptors extracted on training images

• appearance codebook built

• spatial occurrence distribution of features learned, relative to ground
truth bounding boxes

Leibe, Leonardis and Schiele. IJCV 2008. Robust Object Detection With Interleaved Categorization and Segmentation.

implicit shape model (ISM): inference 8

Segmentation

Refined Hypotheses
(optional)

Backprojected
Hypotheses

Backprojection
of Maxima

3D Voting Space
(continuous)

x

y

s

Probabilistic
Voting

Matched Codebook
Entries

Interest PointsOriginal Image

Fig. 3. The recognition procedure. Local features are extracted around interest points and compared to the codebook. Matching patches then cast probabilistic
votes, which lead to object hypotheses that can optionally be later refined by sampling more features. Based on the backprojected hypotheses, we then compute a
category-specific segmentation.

clean data in practical applications. We therefore keep each
possible assignment, but weight it with the probability that this
assignment is correct. It is easy to see that for similarity scores
smaller than t, the probability that this patch could have been
assigned to the cluster during the codebook generation process
is zero; therefore we do not need to consider those matches.
The stored occurrence locations, on the other hand, reflect the
spatial distribution of a codebook entry over the object area in
a non-parametric form. Algorithm 2 summarizes the training
procedure.

C. Recognition Approach

Figure 3 illustrates the following recognition procedure.
Given a new test image, we again apply an interest point
detector and extract features around the selected locations. The
extracted features are then matched to the codebook to activate
codebook entries using the same mechanism as described
above. From the set of all those matches, we collect consistent
configurations by performing a Generalized Hough Transform
[29], [3], [40]. Each activated entry casts votes for possible
positions of the object center according to the learned spatial
distribution PC . Consistent hypotheses are then searched as
local maxima in the voting space. When pursuing such an
approach, it is important to avoid quantization artifacts. In con-
trast to usual practice (e.g. [41]), we therefore do not discretize
the votes, but keep their original, continuous values. Maxima
in this continuous space can be accurately and efficiently
found using Mean-Shift Mode Estimation [10], [12]. Once a
hypothesis has been selected, all patches that contributed to
it are collected (Fig. 3(bottom)), thereby visualizing what the
system reacts to. As a result, we get a representation of the
object including a certain border area. This representation can
optionally be further refined by sampling more local features.
The backprojected response will later serve as the basis for
computing a category-specific segmentation, as described in
Section V.

1) Probabilistic Hough Voting: In the following, we cast
the voting procedure into a probabilistic framework [34], [33].
Let f be our evidence, an extracted image feature observed

at location �. By matching it to the codebook, we obtain a
set of valid interpretations Ci with probabilities p(Ci|f, �). If
a codebook cluster matches, it casts votes for different object
positions. That is, for every Ci, we can obtain votes for several
object categories/viewpoints on and positions x, according to
the learned spatial distribution p(on, x|Ci, �). Formally, this
can be expressed by the following marginalization:

p(on, x|f, �) =
∑

i

p(on, x|f, Ci, �)p(Ci|f, �). (8)

Since we have replaced the unknown image feature by a
known interpretation, the first term can be treated as indepen-
dent from f . In addition, we match patches to the codebook
independent of their location. The equation thus reduces to

p(on, x|f, �) =
∑

i

p(on, x|Ci, �)p(Ci|f). (9)

=
∑

i

p(x|on, Ci, �)p(on|Ci, �)p(Ci|f). (10)

The first term is the probabilistic Hough vote for an object
position given its class label and the feature interpretation. The
second term specifies a confidence that the codebook cluster
is really matched on the target category as opposed to the
background. This can be used to include negative examples in
the training process. Finally, the third term reflects the quality
of the match between image feature and codebook cluster.

When casting votes for the object center, the object scale
is treated as a third dimension in the voting space [35]. If an
image feature found at location (ximg , yimg, simg) matches
to a codebook entry that has been observed at position
(xocc, yocc, socc) on a training image, it votes for the following
coordinates:

xvote = ximg − xocc(simg/socc) (11)

yvote = yimg − yocc(simg/socc) (12)

svote = (simg/socc). (13)

Thus, the vote distribution p(x|on, Ci, �) is obtained by casting
a vote for each stored observation from the learned occurrence
distribution PC . The ensemble of all such votes together is then

• local features and descriptors extracted on test image

• descriptors assigned to visual words

• generalized Hough transform: probabilistic class-specific votes for the
object center

• optionally, back-project hypotheses for top-down segmentation

Leibe, Leonardis and Schiele. IJCV 2008. Robust Object Detection With Interleaved Categorization and Segmentation.

efficient subwindow search (ESS)
[Lampert et al. 2008]

x

y

L = [`1, `2] R = [r1, r2]

B = [b1, b2]

T = [t1, t2]

smallest (t1, b2, `2, r1)

largest (t2, b1, `1, r2)

all possible A

2

= (T,B, L,R)

• the filled area A represents the set of all rectangles lying in this area

• this set is split as A = A1 ∪A2 along the largest side and bounds of
the objective function are estimated for both subsets

• optimization is performed by branch-and-bound

Lampert, Blaschko and Hofmann. CVPR 2008. Beyond Sliding Windows: Object Localization By Efficient Subwindow Search.

efficient subwindow search (ESS)
[Lampert et al. 2008]

x

y

L = [`1, `2] R = [r1, r2]

B = [b1, b2]

T = [t1, t2]

smallest (t1, b2, `2, r1)

largest (t2, b1, `1, r2)

all possible A

2

= (T,B, L,R)

• the filled area A represents the set of all rectangles lying in this area

• this set is split as A = A1 ∪A2 along the largest side and bounds of
the objective function are estimated for both subsets

• optimization is performed by branch-and-bound

Lampert, Blaschko and Hofmann. CVPR 2008. Beyond Sliding Windows: Object Localization By Efficient Subwindow Search.

efficient subwindow search (ESS)
[Lampert et al. 2008]

x

y

L = [`1, `2] R = [r1, r2]

B = [b1, b2]

T = [t1, t2]

smallest (t1, b2, `2, r1)

largest (t2, b1, `1, r2)

all possible A1 = (T,B, L,R)

• the filled area A represents the set of all rectangles lying in this area

• this set is split as A = A1 ∪A2 along the largest side and bounds of
the objective function are estimated for both subsets

• optimization is performed by branch-and-bound

Lampert, Blaschko and Hofmann. CVPR 2008. Beyond Sliding Windows: Object Localization By Efficient Subwindow Search.

efficient subwindow search (ESS)
[Lampert et al. 2008]

x

y

L = [`1, `2] R = [r1, r2]

B = [b1, b2]

T = [t1, t2]

smallest (t1, b2, `2, r1)

largest (t2, b1, `1, r2)

all possible A2 = (T,B, L,R)

• the filled area A represents the set of all rectangles lying in this area

• this set is split as A = A1 ∪A2 along the largest side and bounds of
the objective function are estimated for both subsets

• optimization is performed by branch-and-bound

Lampert, Blaschko and Hofmann. CVPR 2008. Beyond Sliding Windows: Object Localization By Efficient Subwindow Search.

efficient subwindow search (ESS)
[Lampert et al. 2008]

x

y

L = [`1, `2] R = [r1, r2]

B = [b1, b2]

T = [t1, t2]

smallest (t1, b2, `2, r1)

largest (t2, b1, `1, r2)

all possible A2 = (T,B, L,R)

• the filled area A represents the set of all rectangles lying in this area

• this set is split as A = A1 ∪A2 along the largest side and bounds of
the objective function are estimated for both subsets

• optimization is performed by branch-and-bound

Lampert, Blaschko and Hofmann. CVPR 2008. Beyond Sliding Windows: Object Localization By Efficient Subwindow Search.

what is an object?
[Alexe et al. 2010]

• seek a generic, class-agnostic objectness measure, quantifying how
likely it is for an image region to contain an object

• if the measure is simple and fast to compute, it can yield a number of
candidate object proposals or regions of interest (RoI) where to apply
a more expensive classifier

• score the blue regions, partially covering the objects, lower than the
green ground truth regions

• even lower the red regions containing only stuff or small object parts

Alexe, Deselaers and Ferrari. CVPR 2010. What is an Object?

what is an object?
[Alexe et al. 2010]

• seek a generic, class-agnostic objectness measure, quantifying how
likely it is for an image region to contain an object

• if the measure is simple and fast to compute, it can yield a number of
candidate object proposals or regions of interest (RoI) where to apply
a more expensive classifier

• score the blue regions, partially covering the objects, lower than the
green ground truth regions

• even lower the red regions containing only stuff or small object parts

Alexe, Deselaers and Ferrari. CVPR 2010. What is an Object?

selective search (SS)
[van de Sande et al. 2011]

input image ground truth

hierarchical grouping object proposals

van de Sande, Uijlings, Gevers and Smeulders. ICCV 2011. Segmentation As Selective Search for Object Recognition.

selective search (SS)
[van de Sande et al. 2011]

input image ground truth

hierarchical grouping object proposals

van de Sande, Uijlings, Gevers and Smeulders. ICCV 2011. Segmentation As Selective Search for Object Recognition.

selective search (SS)

• hierarchical segmentation at all scales

• simple geometric and appearance features (e.g. size, texture)

• high recall: ∼ 97% of ground truth objects found with ∼ 1000− 2000
proposals/image at ∼ 2-5s/image

van de Sande, Uijlings, Gevers and Smeulders. ICCV 2011. Segmentation As Selective Search for Object Recognition.

edge boxes (EB)
[Zitnick and Dollar 2014]

• fast evaluation of millions of regions of different scales/aspect ratios
at different positions

• measures edges that are contained in a region and do not intersect its
boundary

• performance similar to SS, but at ∼ 0.25s/image on average

Zitnick and Dollar. ECCV 2014. Edge Boxes: Locating Object Proposals From Edges.

non-maximum suppression (NMS)

non-maximum suppression (NMS)

1

region 1 remains

non-maximum suppression (NMS)

11

region 2 remainsregion 2 is rejected because J(r2, r0) = 0 > 0.25

2

non-maximum suppression (NMS)

11
22

region 3 remainsregion 3 is rejected because J(r3, r0) = 0 > 0.25

3

non-maximum suppression (NMS)

11
22

33

region 4 remainsregion 4 is rejected because J(r4, r1) = 0.2750 > 0.25

4

non-maximum suppression (NMS)

11
22

33

44

region 5 remainsregion 5 is rejected because J(r5, r1) = 0.5366 > 0.25

5

non-maximum suppression (NMS)

11
22

33

4455

region 6 remainsregion 6 is rejected because J(r6, r2) = 0.3268 > 0.25

6

non-maximum suppression (NMS)

11
22

33

4455 66

region 7 remainsregion 7 is rejected because J(r7, r3) = 0.3011 > 0.25

7

non-maximum suppression (NMS)

11
22

33

4455 66

77

region 8 remainsregion 8 is rejected because J(r8, r0) = 0 > 0.25

8

non-maximum suppression (NMS)

11
22

33

4455 66

77
88

region 9 remainsregion 9 is rejected because J(r9, r3) = 0.4706 > 0.25

9

non-maximum suppression (NMS)

11
22

33

4455 66

77
88 99

1
2

38

in the end, regions 1, 2, 3, 8 remain

non-maximum suppression on regions

• given regions r1, r2, ... of each class independently, ranked by
decreasing order of confidence score

• for i = 2, 3, ..., reject region ri if it has intersection-over-union (IoU)
overlap higher then a threshold τ

J(ri, rj) > τ

with some higher scoring region rj with j < i that has not been
rejected

non-maximum suppression is everywhere

accumulator local maxima

• we have used NMS to reject pixels or 1d-vector elements (rather than
regions) accoding to some neighborhood relation, in

• corner detection
• feature point tracking
• SIFT dominant orientation selection
• Hough transform

region overlap

A

B A ∩B A ∪B

• given regions A,B ⊂ R2 represented as planar point sets (including
interior)

• their intersection over union (IoU) or Jaccard index is

J(A,B) =
|A ∩B|
|A ∪B|

the problem of non-maximum suppression

domain, x

sc
or

e,
s(
x
)

• ground truth positions

Hosang, Benenson and Schiele. 2015. A Convnet for Non-Maximum Suppression.

the problem of non-maximum suppression

domain, x

sc
or

e,
s(
x
)

• with a narrow neighborhood, there are two true positives () but also
two false positives (): precision is low

Hosang, Benenson and Schiele. 2015. A Convnet for Non-Maximum Suppression.

the problem of non-maximum suppression

domain, x

sc
or

e,
s(
x
)

• with a wide neighborhood, there is only one true positive (), one false
positive () and one false negative (): recall is low

Hosang, Benenson and Schiele. 2015. A Convnet for Non-Maximum Suppression.

non-maximum suppression

• there are several recent attempts to improve NMS, e.g. merging or
down-weighting instead of rejecting, replace it by a CNN, or integrate
a differentiable version so that the entire pipeline is end-to-end
trainable

• here we assume there is always NMS as the last post-processing stage
after each detector

detection evaluation
[Russakovsky et al. 2015]

• for each image and for each class independently, rank predicted
regions by descending order of confidence and assign each region r to
the ground truth region g∗ = argmaxg J(r, g) of maximum overlap if
J(r, g∗) > τ and mark it as true positive, else false

• each ground truth region can be assigned up to one predicted region

• now for each class independently, rank predicted regions of all images
by descending order of confidence and compute average precision
(AP) according to true/false labels

• the mean average precision (mAP) is the mean over classes

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg and Fei-Fei. IJCV 2015. Imagenet
Large Scale Visual Recognition Challenge.

detection evaluation
[Russakovsky et al. 2015]

• for each image and for each class independently, rank predicted
regions by descending order of confidence and assign each region r to
the ground truth region g∗ = argmaxg J(r, g) of maximum overlap if
J(r, g∗) > τ and mark it as true positive, else false

• each ground truth region can be assigned up to one predicted region

• now for each class independently, rank predicted regions of all images
by descending order of confidence and compute average precision
(AP) according to true/false labels

• the mean average precision (mAP) is the mean over classes

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg and Fei-Fei. IJCV 2015. Imagenet
Large Scale Visual Recognition Challenge.

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17

k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17

k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33

k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33

k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33

k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33

k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50

k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50

k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50

k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50

k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50

k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50

k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67

k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67

k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67

k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67

k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83

k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83

k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00

k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00

k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00

k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00

k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• # total ground truth n, current rank k, # true positives t

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• average precision = area under curve

(filled-in curve)

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

average precision (AP)

• ranked list of items with true/false labels

1

T

2

T

3

F

4

T

5

F

6

F

7

T

8

F

9

T

10

T

11

F

12

F

k = 1

n = 6

t = 1

p = t
k = 1

1 = 1.00

r = t
n = 1

6 = 0.17
k = 2

n = 6

t = 2

p = t
k = 2

2 = 1.00

r = t
n = 2

6 = 0.33
k = 3

n = 6

t = 2

p = t
k = 2

3 = 0.67

r = t
n = 2

6 = 0.33
k = 4

n = 6

t = 3

p = t
k = 3

4 = 0.75

r = t
n = 3

6 = 0.50
k = 5

n = 6

t = 3

p = t
k = 3

5 = 0.60

r = t
n = 3

6 = 0.50
k = 6

n = 6

t = 3

p = t
k = 3

6 = 0.50

r = t
n = 3

6 = 0.50
k = 7

n = 6

t = 4

p = t
k = 4

7 = 0.57

r = t
n = 4

6 = 0.67
k = 8

n = 6

t = 4

p = t
k = 4

8 = 0.50

r = t
n = 4

6 = 0.67
k = 9

n = 6

t = 5

p = t
k = 5

9 = 0.56

r = t
n = 5

6 = 0.83
k = 10

n = 6

t = 6

p = t
k = 6

10 = 0.60

r = t
n = 6

6 = 1.00
k = 11

n = 6

t = 6

p = t
k = 6

11 = 0.55

r = t
n = 6

6 = 1.00
k = 12

n = 6

t = 6

p = t
k = 6

12 = 0.50

r = t
n = 6

6 = 1.00

p

r0.5 1

1

0.5

0.6

0.7

0

• average precision = area under curve (filled-in curve)

• precision p = t
k , recall r = t

n
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

object detection datasets

• PASCAL VOC 2007-12: 20 classes; images 5-11k train/val, 5-11k
test (public for 2007)

• ImageNet ILSVRC 2010-17: 200 classes (subset or merged from
classification task); images 400-450k train (partially annotated), 20k
val, 40k test

• COCO 2015-: 80 classes; images 80k train, 40k val (115k/5k in
2017), 40k test, 120k unlabeled; smaller objects

• Open Images 2018-: 600 classes; images 1.74M train, 41k val, 125k
test

Everingham et al. IJCV 2015. The PASCAL Visual Object Classes Challenge: a Retrospective.
Russakovsky et al. IJCV 2015. Imagenet Large Scale Visual Recognition Challenge.
Lin et al. ECCV 2014. Microsoft COCO: Common Objects in Context.
Kuznetsova et al. 2018. The Open Images Dataset V4: Unified image classification, object detection, and visual relationship
detection at scale.

..

two-stage detection

regions with CNN features (R-CNN)
[Girshick et al. 2014]

H

W

3

→
warp



w

h

h

h

3



→
CNN



1

1

1

1

k



→
SVM

→
bbox

• 3-channel RGB input, fixed width W = 500 pixels

• ∼ 2000 SS region proposals warped into fixed w × h = 227× 227

• each proposal yields a k = 4096 dimensional feature by CaffeNet

• each feature is classified into c classes by c one-vs. -rest SVMs and
localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)
[Girshick et al. 2014]

H

W

3

→
warp



w

h

h

h

3



→
CNN



1

1

1

1

k



→
SVM

→
bbox

• 3-channel RGB input, fixed width W = 500 pixels

• ∼ 2000 SS region proposals warped into fixed w × h = 227× 227

• each proposal yields a k = 4096 dimensional feature by CaffeNet

• each feature is classified into c classes by c one-vs. -rest SVMs and
localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)
[Girshick et al. 2014]

H

W

3

→
warp



w

h

h

h

3



→
CNN



1

1

1

1

k



→
SVM

→
bbox

• 3-channel RGB input, fixed width W = 500 pixels

• ∼ 2000 SS region proposals warped into fixed w × h = 227× 227

• each proposal yields a k = 4096 dimensional feature by CaffeNet

• each feature is classified into c classes by c one-vs. -rest SVMs and
localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)
[Girshick et al. 2014]

H

W

3

→
warp



w

h

h

h

3



→
CNN



1

1

1

1

k



→
SVM

→
bbox

• 3-channel RGB input, fixed width W = 500 pixels

• ∼ 2000 SS region proposals warped into fixed w × h = 227× 227

• each proposal yields a k = 4096 dimensional feature by CaffeNet

• each feature is classified into c classes by c one-vs. -rest SVMs and
localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)
[Girshick et al. 2014]

H

W

3

→
warp



w

h

h

h

3



→
CNN



1

1

1

1

k



→
SVM

→
bbox

• 3-channel RGB input, fixed width W = 500 pixels

• ∼ 2000 SS region proposals warped into fixed w × h = 227× 227

• each proposal yields a k = 4096 dimensional feature by CaffeNet

• each feature is classified into c classes by c one-vs. -rest SVMs and
localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)

pros

• region proposals, SVM classifier and NMS are standard; here one just
replaces the features (e.g. HOG) by CNN

• CNN features are 4k-dimensional, compared e.g. to 360k dimensions
of previous state of the art

• transfer learning: network pre-trained on 1.2M ImageNet images, then
ImageNet-specific 1000-way classification layer replaced by randomly
initialized (c+ 1)-way (c classes plus background) and fine-tuning

cons

• slow (13s/image): image warped and forwarded through network for
each of the ∼ 2000 region proposals

• 4 stages: region extraction, CNN features, SVM classifier, regressor

• positives/negatives defined differently in fine-tuning vs. SVM

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)

pros

• region proposals, SVM classifier and NMS are standard; here one just
replaces the features (e.g. HOG) by CNN

• CNN features are 4k-dimensional, compared e.g. to 360k dimensions
of previous state of the art

• transfer learning: network pre-trained on 1.2M ImageNet images, then
ImageNet-specific 1000-way classification layer replaced by randomly
initialized (c+ 1)-way (c classes plus background) and fine-tuning

cons

• slow (13s/image): image warped and forwarded through network for
each of the ∼ 2000 region proposals

• 4 stages: region extraction, CNN features, SVM classifier, regressor

• positives/negatives defined differently in fine-tuning vs. SVM

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)

pros

• region proposals, SVM classifier and NMS are standard; here one just
replaces the features (e.g. HOG) by CNN

• CNN features are 4k-dimensional, compared e.g. to 360k dimensions
of previous state of the art

• transfer learning: network pre-trained on 1.2M ImageNet images, then
ImageNet-specific 1000-way classification layer replaced by randomly
initialized (c+ 1)-way (c classes plus background) and fine-tuning

cons

• slow (13s/image): image warped and forwarded through network for
each of the ∼ 2000 region proposals

• 4 stages: region extraction, CNN features, SVM classifier, regressor

• positives/negatives defined differently in fine-tuning vs. SVM

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)

pros

• region proposals, SVM classifier and NMS are standard; here one just
replaces the features (e.g. HOG) by CNN

• CNN features are 4k-dimensional, compared e.g. to 360k dimensions
of previous state of the art

• transfer learning: network pre-trained on 1.2M ImageNet images, then
ImageNet-specific 1000-way classification layer replaced by randomly
initialized (c+ 1)-way (c classes plus background) and fine-tuning

cons

• slow (13s/image): image warped and forwarded through network for
each of the ∼ 2000 region proposals

• 4 stages: region extraction, CNN features, SVM classifier, regressor

• positives/negatives defined differently in fine-tuning vs. SVM

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)

pros

• region proposals, SVM classifier and NMS are standard; here one just
replaces the features (e.g. HOG) by CNN

• CNN features are 4k-dimensional, compared e.g. to 360k dimensions
of previous state of the art

• transfer learning: network pre-trained on 1.2M ImageNet images, then
ImageNet-specific 1000-way classification layer replaced by randomly
initialized (c+ 1)-way (c classes plus background) and fine-tuning

cons

• slow (13s/image): image warped and forwarded through network for
each of the ∼ 2000 region proposals

• 4 stages: region extraction, CNN features, SVM classifier, regressor

• positives/negatives defined differently in fine-tuning vs. SVM

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

regions with CNN features (R-CNN)

pros

• region proposals, SVM classifier and NMS are standard; here one just
replaces the features (e.g. HOG) by CNN

• CNN features are 4k-dimensional, compared e.g. to 360k dimensions
of previous state of the art

• transfer learning: network pre-trained on 1.2M ImageNet images, then
ImageNet-specific 1000-way classification layer replaced by randomly
initialized (c+ 1)-way (c classes plus background) and fine-tuning

cons

• slow (13s/image): image warped and forwarded through network for
each of the ∼ 2000 region proposals

• 4 stages: region extraction, CNN features, SVM classifier, regressor

• positives/negatives defined differently in fine-tuning vs. SVM

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

bounding box regression

• at training, given proposed and ground truth region p, g ∈ R4, define
normalized target t for region center (x, y) and size (w, h)

tx = (gx − px)/pw tw = log(gw/pw)

ty = (gy − py)/ph th = log(gh/ph)

• for j ∈ {x, y, w, h}, learn mapping yj = fj(p) according to least
squares loss

L(yj , tj) = (yj − tj)2

• at inference, given proposal p, predict region p̂ according to

p̂x = pwfx(p) + px p̂w = pw exp(fw(p))

p̂y = phfy(p) + py p̂h = ph exp(fh(p))

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

bounding box regression

• at training, given proposed and ground truth region p, g ∈ R4, define
normalized target t for region center (x, y) and size (w, h)

tx = (gx − px)/pw tw = log(gw/pw)

ty = (gy − py)/ph th = log(gh/ph)

• for j ∈ {x, y, w, h}, learn mapping yj = fj(p) according to least
squares loss

L(yj , tj) = (yj − tj)2

• at inference, given proposal p, predict region p̂ according to

p̂x = pwfx(p) + px p̂w = pw exp(fw(p))

p̂y = phfy(p) + py p̂h = ph exp(fh(p))

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

bounding box regression

• at training, given proposed and ground truth region p, g ∈ R4, define
normalized target t for region center (x, y) and size (w, h)

tx = (gx − px)/pw tw = log(gw/pw)

ty = (gy − py)/ph th = log(gh/ph)

• for j ∈ {x, y, w, h}, learn mapping yj = fj(p) according to least
squares loss

L(yj , tj) = (yj − tj)2

• at inference, given proposal p, predict region p̂ according to

p̂x = pwfx(p) + px p̂w = pw exp(fw(p))

p̂y = phfy(p) + py p̂h = ph exp(fh(p))

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.

spatial pyramid pooling (SPP)
[He et al. 2014]

crop warp

image crop/warp conv layers fc layers output

image conv layers SPP fc layers output

• we need to extract features and classify each region

• we can crop or warp them to fixed size, then feed to CNN for both

• or we can extract features of arbitrary size with convolutions,
max-pool features to fixed size, then classify

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

spatial pyramid pooling (SPP)
[He et al. 2014]

crop warp

image crop/warp conv layers fc layers output

image conv layers SPP fc layers output

• we need to extract features and classify each region

• we can crop or warp them to fixed size, then feed to CNN for both

• or we can extract features of arbitrary size with convolutions,
max-pool features to fixed size, then classify

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

spatial pyramid pooling (SPP)
[He et al. 2014]

crop warp

image crop/warp conv layers fc layers output

image conv layers SPP fc layers output

• we need to extract features and classify each region

• we can crop or warp them to fixed size, then feed to CNN for both

• or we can extract features of arbitrary size with convolutions,
max-pool features to fixed size, then classify

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

spatial pyramid pooling (SPP)

H

W

3

→
CNN h

w

k

→
SPP



1

2

4

1

2

4

k



• 3-channel RGB input, arbitrary size

• input yields a single k dimensional feature map

• each region proposal projected onto feature maps

• then max-pooled into a number of fixed sizes 1× 1, 2× 2, 4× 4 etc.
and concatenated into fixed-length representation

• when the pyramid has only one level, we call this RoI pooling

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

spatial pyramid pooling (SPP)

H

W

3

→
CNN h

w

k

→
SPP



1

2

4

1

2

4

k



• 3-channel RGB input, arbitrary size

• input yields a single k dimensional feature map

• each region proposal projected onto feature maps

• then max-pooled into a number of fixed sizes 1× 1, 2× 2, 4× 4 etc.
and concatenated into fixed-length representation

• when the pyramid has only one level, we call this RoI pooling

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

spatial pyramid pooling (SPP)

H

W

3

→
CNN h

w

k

→
SPP



1

2

4

1

2

4

k



• 3-channel RGB input, arbitrary size

• input yields a single k dimensional feature map

• each region proposal projected onto feature maps

• then max-pooled into a number of fixed sizes 1× 1, 2× 2, 4× 4 etc.
and concatenated into fixed-length representation

• when the pyramid has only one level, we call this RoI pooling

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

spatial pyramid pooling (SPP)

H

W

3

→
CNN h

w

k

→
SPP



1

2

4

1

2

4

k


• 3-channel RGB input, arbitrary size

• input yields a single k dimensional feature map

• each region proposal projected onto feature maps

• then max-pooled into a number of fixed sizes 1× 1, 2× 2, 4× 4 etc.
and concatenated into fixed-length representation

• when the pyramid has only one level, we call this RoI pooling

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

spatial pyramid pooling (SPP)

H

W

3

→
CNN h

w

k

→
SPP



1

2

4

1

2

4

k


• 3-channel RGB input, arbitrary size

• input yields a single k dimensional feature map

• each region proposal projected onto feature maps

• then max-pooled into a number of fixed sizes 1× 1, 2× 2, 4× 4 etc.
and concatenated into fixed-length representation

• when the pyramid has only one level, we call this RoI pooling

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

fast R-CNN (FRCN)
[Girshick 2015]

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• 3-channel RGB input, arbitrary size

• input yields a single k = 4096 dimensional feature map by VGG-16

• ∼ 2000 region proposals, projected onto feature maps and RoI-pooled
into fixed size w′ × h′ × k = 7× 7× k

• several fully-connected layers follow, for each pooled map

• each pooled map is classified into c+ 1 classes (c + background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)
[Girshick 2015]

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• 3-channel RGB input, arbitrary size

• input yields a single k = 4096 dimensional feature map by VGG-16

• ∼ 2000 region proposals, projected onto feature maps and RoI-pooled
into fixed size w′ × h′ × k = 7× 7× k

• several fully-connected layers follow, for each pooled map

• each pooled map is classified into c+ 1 classes (c + background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)
[Girshick 2015]

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• 3-channel RGB input, arbitrary size

• input yields a single k = 4096 dimensional feature map by VGG-16

• ∼ 2000 region proposals, projected onto feature maps and RoI-pooled
into fixed size w′ × h′ × k = 7× 7× k

• several fully-connected layers follow, for each pooled map

• each pooled map is classified into c+ 1 classes (c + background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)
[Girshick 2015]

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k



→
FC



1
1

1

1
k′



→
softmax

→
bbox

• 3-channel RGB input, arbitrary size

• input yields a single k = 4096 dimensional feature map by VGG-16

• ∼ 2000 region proposals, projected onto feature maps and RoI-pooled
into fixed size w′ × h′ × k = 7× 7× k

• several fully-connected layers follow, for each pooled map

• each pooled map is classified into c+ 1 classes (c + background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)
[Girshick 2015]

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• 3-channel RGB input, arbitrary size

• input yields a single k = 4096 dimensional feature map by VGG-16

• ∼ 2000 region proposals, projected onto feature maps and RoI-pooled
into fixed size w′ × h′ × k = 7× 7× k

• several fully-connected layers follow, for each pooled map

• each pooled map is classified into c+ 1 classes (c + background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)
[Girshick 2015]

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• 3-channel RGB input, arbitrary size

• input yields a single k = 4096 dimensional feature map by VGG-16

• ∼ 2000 region proposals, projected onto feature maps and RoI-pooled
into fixed size w′ × h′ × k = 7× 7× k

• several fully-connected layers follow, for each pooled map

• each pooled map is classified into c+ 1 classes (c + background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)

pros

• fast (0.32s/image; 9× training, 213× test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
region-specific

• 2 stages: only region proposals are separate; features, classifier and
regressor are trained end-to-end with multi-task loss

• better performance

cons

• region proposals are still needed for performance, but are now the
bottleneck (∼ 2s/image)

• single-scale

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)

pros

• fast (0.32s/image; 9× training, 213× test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
region-specific

• 2 stages: only region proposals are separate; features, classifier and
regressor are trained end-to-end with multi-task loss

• better performance

cons

• region proposals are still needed for performance, but are now the
bottleneck (∼ 2s/image)

• single-scale

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)

pros

• fast (0.32s/image; 9× training, 213× test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
region-specific

• 2 stages: only region proposals are separate; features, classifier and
regressor are trained end-to-end with multi-task loss

• better performance

cons

• region proposals are still needed for performance, but are now the
bottleneck (∼ 2s/image)

• single-scale

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)

pros

• fast (0.32s/image; 9× training, 213× test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
region-specific

• 2 stages: only region proposals are separate; features, classifier and
regressor are trained end-to-end with multi-task loss

• better performance

cons

• region proposals are still needed for performance, but are now the
bottleneck (∼ 2s/image)

• single-scale

Girshick. ICCV 2015. Fast R-CNN.

fast R-CNN (FRCN)

pros

• fast (0.32s/image; 9× training, 213× test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
region-specific

• 2 stages: only region proposals are separate; features, classifier and
regressor are trained end-to-end with multi-task loss

• better performance

cons

• region proposals are still needed for performance, but are now the
bottleneck (∼ 2s/image)

• single-scale

Girshick. ICCV 2015. Fast R-CNN.

regression loss

• given region p and target t, learn mapping y = f(p) according to
smooth `1 or Huber loss, which prevents exploding gradients

L(y, t) =
∑

j∈{x,y,h,w}
`s1(yj − tj)

`s1(x) =

{
x2

2 , if |x| < 1
|x| − 1

2 , otherwise

−3 −2 −1 0 1 2 3

0

1

2

3

4

−2 0 2

0

1

2

3

4

x

x2

|x|
`s1(x)

Huber. AS 1964. Robust Estimation of a Location Parameter.

learning object proposals: MultiBox detector∗
[Erhan et al. 2014]

• a fixed number (e.g. 100 or 200) of class-agnostic object proposals
are learned by regression on image representation

• this is faster than e.g. selective search

• however, proposal generation is not convolutional, but rather based on
a fully connected layer

• the next step would be to integrate object proposals and classifier,
making the pipeline end-to-end trainable

Erhan, Szegedy, Toshev and Anguelov. CVPR 2014. Scalable Object Detection Using Deep Neural Networks.

faster R-CNN
[Ren et al. 2015]

h

w →
softmax

→
bbox

↑ RPN

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• same input, same VGG-16 feature maps as Fast R-CNN

• proposals detected directly on feature maps by RPN and max-pooled

• same classifier, same bounding box regression, but now also for RPN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN
[Ren et al. 2015]

h

w

→
softmax

→
bbox

↑ RPN

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• same input, same VGG-16 feature maps as Fast R-CNN

• proposals detected directly on feature maps by RPN and max-pooled

• same classifier, same bounding box regression, but now also for RPN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN
[Ren et al. 2015]

h

w

→
softmax

→
bbox

↑ RPN

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k



→
FC



1
1

1

1
k′



→
softmax

→
bbox

• same input, same VGG-16 feature maps as Fast R-CNN

• proposals detected directly on feature maps by RPN and max-pooled

• same classifier, same bounding box regression, but now also for RPN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN
[Ren et al. 2015]

h

w →
softmax

→
bbox

↑ RPN

H

W

3

→
CNN h

w

k

RoI

→
pool



w′

h′

h′

h′

k


→
FC



1
1

1

1
k′



→
softmax

→
bbox

• same input, same VGG-16 feature maps as Fast R-CNN

• proposals detected directly on feature maps by RPN and max-pooled

• same classifier, same bounding box regression, but now also for RPN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

region proposal network (RPN)

H

W

3

→
CNN h

w

4096

3× 3

→
conv h

w

512

1× 1

→
conv h

w

2a 4a

↓ ↓softmax bbox

→
NMS h

w

• same input, same feature maps, dimension reduced to 512

• a = 9 anchors at each position, for 3 scales and 3 aspect ratios

• 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

• softmax on scores, regression loss on coordinates

• region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

region proposal network (RPN)

H

W

3

→
CNN h

w

4096

3× 3

→
conv h

w

512

1× 1

→
conv h

w

2a 4a

↓ ↓softmax bbox

→
NMS h

w

• same input, same feature maps, dimension reduced to 512

• a = 9 anchors at each position, for 3 scales and 3 aspect ratios

• 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

• softmax on scores, regression loss on coordinates

• region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

region proposal network (RPN)

H

W

3

→
CNN h

w

4096

3× 3

→
conv h

w

512

1× 1

→
conv h

w

2a 4a

↓ ↓softmax bbox

→
NMS h

w

• same input, same feature maps, dimension reduced to 512

• a = 9 anchors at each position, for 3 scales and 3 aspect ratios

• 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

• softmax on scores, regression loss on coordinates

• region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

region proposal network (RPN)

H

W

3

→
CNN h

w

4096

3× 3

→
conv h

w

512

1× 1

→
conv h

w

2a 4a

↓ ↓softmax bbox

→
NMS h

w

• same input, same feature maps, dimension reduced to 512

• a = 9 anchors at each position, for 3 scales and 3 aspect ratios

• 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

• softmax on scores, regression loss on coordinates

• region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

region proposal network (RPN)

H

W

3

→
CNN h

w

4096

3× 3

→
conv h

w

512

1× 1

→
conv h

w

2a 4a

↓ ↓softmax bbox

→
NMS h

w

• same input, same feature maps, dimension reduced to 512

• a = 9 anchors at each position, for 3 scales and 3 aspect ratios

• 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

• softmax on scores, regression loss on coordinates

• region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

region proposal network (RPN)

H

W

3

→
CNN h

w

4096

3× 3

→
conv h

w

512

1× 1

→
conv h

w

2a 4a

↓ ↓softmax bbox

→
NMS h

w

• same input, same feature maps, dimension reduced to 512

• a = 9 anchors at each position, for 3 scales and 3 aspect ratios

• 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

• softmax on scores, regression loss on coordinates

• region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN

pros

• faster (0.2s/image including proposals; 10× test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

• trained end-to-end including features, region proposals, classifier and
regressor

• more accurate: region proposals are learned, RPN is convolutional

cons

• still, several fully-connected layers needed for region-specific tasks

• still single-scale

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN

pros

• faster (0.2s/image including proposals; 10× test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

• trained end-to-end including features, region proposals, classifier and
regressor

• more accurate: region proposals are learned, RPN is convolutional

cons

• still, several fully-connected layers needed for region-specific tasks

• still single-scale

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN

pros

• faster (0.2s/image including proposals; 10× test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

• trained end-to-end including features, region proposals, classifier and
regressor

• more accurate: region proposals are learned, RPN is convolutional

cons

• still, several fully-connected layers needed for region-specific tasks

• still single-scale

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN

pros

• faster (0.2s/image including proposals; 10× test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

• trained end-to-end including features, region proposals, classifier and
regressor

• more accurate: region proposals are learned, RPN is convolutional

cons

• still, several fully-connected layers needed for region-specific tasks

• still single-scale

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

faster R-CNN

pros

• faster (0.2s/image including proposals; 10× test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

• trained end-to-end including features, region proposals, classifier and
regressor

• more accurate: region proposals are learned, RPN is convolutional

cons

• still, several fully-connected layers needed for region-specific tasks

• still single-scale

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

online hard example mining (OHEM)∗
[Shrivastava et al. 2016]

• models with separate SVM classifier (R-CNN, SPP) use RoI-centric
mini-batches, sampled from all training images

• to enable end-to-end fine-tuning of all layers, image-centric
mini-batches are used with very few images (1-2) but thousands of
candidate regions

• most regions are negative: this class imbalance can overwhelm the
classifier

• it is standard to use a fixed positive to negative ratio (e.g. 1:1 or 1:4)

• OHEM, instead, evaluates all candidate regions and samples the
hardest ones, without any fixed ratio

Shrivastava, Gupta and Girshick. CVPR 2016. Training Region-Based Object Detectors with Online Hard Example Mining.

online hard example mining (OHEM)∗
[Shrivastava et al. 2016]

• models with separate SVM classifier (R-CNN, SPP) use RoI-centric
mini-batches, sampled from all training images

• to enable end-to-end fine-tuning of all layers, image-centric
mini-batches are used with very few images (1-2) but thousands of
candidate regions

• most regions are negative: this class imbalance can overwhelm the
classifier

• it is standard to use a fixed positive to negative ratio (e.g. 1:1 or 1:4)

• OHEM, instead, evaluates all candidate regions and samples the
hardest ones, without any fixed ratio

Shrivastava, Gupta and Girshick. CVPR 2016. Training Region-Based Object Detectors with Online Hard Example Mining.

online hard example mining (OHEM)∗
[Shrivastava et al. 2016]

• models with separate SVM classifier (R-CNN, SPP) use RoI-centric
mini-batches, sampled from all training images

• to enable end-to-end fine-tuning of all layers, image-centric
mini-batches are used with very few images (1-2) but thousands of
candidate regions

• most regions are negative: this class imbalance can overwhelm the
classifier

• it is standard to use a fixed positive to negative ratio (e.g. 1:1 or 1:4)

• OHEM, instead, evaluates all candidate regions and samples the
hardest ones, without any fixed ratio

Shrivastava, Gupta and Girshick. CVPR 2016. Training Region-Based Object Detectors with Online Hard Example Mining.

..

object parts and deformation

region-based fully convolutional network (R-FCN)
[Ren et al. 2016]

h

w

H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1


avg

→
pool



...

1
1
c+ 1



RPN

• 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

• r × r = 7× 7 position-sensitive score maps per class, RoI pooling

• similarly, 4r2 position-sensitive coordinates for regression

• no FC, just average pooling

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)
[Ren et al. 2016]

h

w

H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1


avg

→
pool



...

1
1
c+ 1



RPN

• 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

• r × r = 7× 7 position-sensitive score maps per class, RoI pooling

• similarly, 4r2 position-sensitive coordinates for regression

• no FC, just average pooling

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)
[Ren et al. 2016]

h

w

H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1



avg

→
pool



...

1
1
c+ 1



RPN

• 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

• r × r = 7× 7 position-sensitive score maps per class, RoI pooling

• similarly, 4r2 position-sensitive coordinates for regression

• no FC, just average pooling

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)
[Ren et al. 2016]

h

w

H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1



avg

→
pool



...

1
1
c+ 1



RPN

• 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

• r × r = 7× 7 position-sensitive score maps per class, RoI pooling

• similarly, 4r2 position-sensitive coordinates for regression

• no FC, just average pooling

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)
[Ren et al. 2016]

h

w

H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1


avg

→
pool



...

1
1
c+ 1



RPN

• 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

• r × r = 7× 7 position-sensitive score maps per class, RoI pooling

• similarly, 4r2 position-sensitive coordinates for regression

• no FC, just average pooling

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

position-sensitive score maps and RoI pooling

image and RoI

position-sensitive score maps

position-sensitive
RoI-pool

vote
yes

Figure 3: Visualization of R-FCN (k × k = 3× 3) for the person category.

no
vote

image and RoI

position-sensitive score maps

position-sensitive
RoI-pool

Figure 4: Visualization when an RoI does not correctly overlap the object.

R-FCN), as is the case in [9] with Faster R-CNN, so the RPN is not affected by the à trous trick. The
following table shows the ablation results of R-FCN (k × k = 7× 7, no hard example mining). The
à trous trick improves mAP by 2.6 points.

R-FCN with ResNet-101 on: conv4, stride=16 conv5, stride=32 conv5, à trous, stride=16
mAP (%) on VOC 07 test 72.5 74.0 76.6

Visualization. In Figure 3 and 4 we visualize the position-sensitive score maps learned by R-FCN
when k × k = 3 × 3. These specialized maps are expected to be strongly activated at a specific
relative position of an object. For example, the “top-center-sensitive” score map exhibits high scores
roughly near the top-center position of an object. If a candidate box precisely overlaps with a true
object (Figure 3), most of the k2 bins in the RoI are strongly activated, and their voting leads to a high
score. On the contrary, if a candidate box does not correctly overlaps with a true object (Figure 4),
some of the k2 bins in the RoI are not activated, and the voting score is low.

3 Related Work

R-CNN [7] has demonstrated the effectiveness of using region proposals [27, 28] with deep networks.
R-CNN evaluates convolutional networks on cropped and warped regions, and computation is not
shared among regions (Table 1). SPPnet [8], Fast R-CNN [6], and Faster R-CNN [18] are “semi-
convolutional”, in which a convolutional subnetwork performs shared computation on the entire
image and another subnetwork evaluates individual regions.

There have been object detectors that can be thought of as “fully convolutional” models. OverFeat [21]
detects objects by sliding multi-scale windows on the shared convolutional feature maps; similarly, in

5

• RoI is correctly aligned with the object

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

position-sensitive score maps and RoI pooling

image and RoI

position-sensitive score maps

position-sensitive
RoI-pool

vote
yes

Figure 3: Visualization of R-FCN (k × k = 3× 3) for the person category.

no
vote

image and RoI

position-sensitive score maps

position-sensitive
RoI-pool

Figure 4: Visualization when an RoI does not correctly overlap the object.

R-FCN), as is the case in [9] with Faster R-CNN, so the RPN is not affected by the à trous trick. The
following table shows the ablation results of R-FCN (k × k = 7× 7, no hard example mining). The
à trous trick improves mAP by 2.6 points.

R-FCN with ResNet-101 on: conv4, stride=16 conv5, stride=32 conv5, à trous, stride=16
mAP (%) on VOC 07 test 72.5 74.0 76.6

Visualization. In Figure 3 and 4 we visualize the position-sensitive score maps learned by R-FCN
when k × k = 3 × 3. These specialized maps are expected to be strongly activated at a specific
relative position of an object. For example, the “top-center-sensitive” score map exhibits high scores
roughly near the top-center position of an object. If a candidate box precisely overlaps with a true
object (Figure 3), most of the k2 bins in the RoI are strongly activated, and their voting leads to a high
score. On the contrary, if a candidate box does not correctly overlaps with a true object (Figure 4),
some of the k2 bins in the RoI are not activated, and the voting score is low.

3 Related Work

R-CNN [7] has demonstrated the effectiveness of using region proposals [27, 28] with deep networks.
R-CNN evaluates convolutional networks on cropped and warped regions, and computation is not
shared among regions (Table 1). SPPnet [8], Fast R-CNN [6], and Faster R-CNN [18] are “semi-
convolutional”, in which a convolutional subnetwork performs shared computation on the entire
image and another subnetwork evaluates individual regions.

There have been object detectors that can be thought of as “fully convolutional” models. OverFeat [21]
detects objects by sliding multi-scale windows on the shared convolutional feature maps; similarly, in

5

• RoI is not correctly aligned with the object

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)

pros

• fully convolutional: no more FC layers, maximum feature sharing
bewteen all tasks (RPN, classification, regression)

• still, spatial information is preserved by position-sensitive layer,
improving localization accuracy

• faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

cons

• cells of position-sensitive RoI pooling are fixed

• still single-scale

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)

pros

• fully convolutional: no more FC layers, maximum feature sharing
bewteen all tasks (RPN, classification, regression)

• still, spatial information is preserved by position-sensitive layer,
improving localization accuracy

• faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

cons

• cells of position-sensitive RoI pooling are fixed

• still single-scale

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)

pros

• fully convolutional: no more FC layers, maximum feature sharing
bewteen all tasks (RPN, classification, regression)

• still, spatial information is preserved by position-sensitive layer,
improving localization accuracy

• faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

cons

• cells of position-sensitive RoI pooling are fixed

• still single-scale

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)

pros

• fully convolutional: no more FC layers, maximum feature sharing
bewteen all tasks (RPN, classification, regression)

• still, spatial information is preserved by position-sensitive layer,
improving localization accuracy

• faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

cons

• cells of position-sensitive RoI pooling are fixed

• still single-scale

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

region-based fully convolutional network (R-FCN)

pros

• fully convolutional: no more FC layers, maximum feature sharing
bewteen all tasks (RPN, classification, regression)

• still, spatial information is preserved by position-sensitive layer,
improving localization accuracy

• faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

cons

• cells of position-sensitive RoI pooling are fixed

• still single-scale

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.

spatial transformer networks (STN)∗
[Jaderberg et al. 2015]

H

W

3

→
CNN h

w

k

L

Tθ

θ

spatial transformer

h′

w′

k

• input image yields a k dimensional feature map

• a localization network L regresses a geometric transformation θ

• a transformer Tθ applies the transformation to the feature map

• the transformation can involve resampling, cropping, even deformation

• the localization network receives no supervision other than what is
backpropagated from the end task

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.

spatial transformer networks (STN)∗
[Jaderberg et al. 2015]

H

W

3

→
CNN h

w

k

L

Tθ

θ

spatial transformer

h′

w′

k

• input image yields a k dimensional feature map

• a localization network L regresses a geometric transformation θ

• a transformer Tθ applies the transformation to the feature map

• the transformation can involve resampling, cropping, even deformation

• the localization network receives no supervision other than what is
backpropagated from the end task

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.

spatial transformer networks (STN)∗
[Jaderberg et al. 2015]

H

W

3

→
CNN h

w

k

L

Tθ

θ

spatial transformer

h′

w′

k

• input image yields a k dimensional feature map

• a localization network L regresses a geometric transformation θ

• a transformer Tθ applies the transformation to the feature map

• the transformation can involve resampling, cropping, even deformation

• the localization network receives no supervision other than what is
backpropagated from the end task

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.

spatial transformer networks (STN)∗
[Jaderberg et al. 2015]

H

W

3

→
CNN h

w

k

L

Tθ

θ

spatial transformer

h′

w′

k

• input image yields a k dimensional feature map

• a localization network L regresses a geometric transformation θ

• a transformer Tθ applies the transformation to the feature map

• the transformation can involve resampling, cropping, even deformation

• the localization network receives no supervision other than what is
backpropagated from the end task

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.

spatial transformer networks: part learning∗

Model
Cimpoi ’15 [5] 66.7
Zhang ’14 [39] 74.9
Branson ’14 [3] 75.7
Lin ’15 [23] 80.9
Simon ’15 [29] 81.0
CNN (ours) 224px 82.3
2×ST-CNN 224px 83.1
2×ST-CNN 448px 83.9
4×ST-CNN 448px 84.1

Table 3: Left: The accuracy on CUB-200-2011 bird classification dataset. Spatial transformer networks with
two spatial transformers (2×ST-CNN) and four spatial transformers (4×ST-CNN) in parallel achieve higher
accuracy. 448px resolution images can be used with the ST-CNN without an increase in computational cost
due to downsampling to 224px after the transformers. Right: The transformation predicted by the spatial
transformers of 2×ST-CNN (top row) and 4×ST-CNN (bottom row) on the input image. Notably for the
2×ST-CNN, one of the transformers (shown in red) learns to detect heads, while the other (shown in green)
detects the body, and similarly for the 4×ST-CNN.

The results of this experiment are shown in Table 2 (left) – the spatial transformer models obtain
state-of-the-art results, reaching 3.6% error on 64×64 images compared to previous state-of-the-art
of 3.9% error. Interestingly on 128 × 128 images, while other methods degrade in performance,
an ST-CNN achieves 3.9% error while the previous state of the art at 4.5% error is with a recurrent
attention model that uses an ensemble of models with Monte Carlo averaging – in contrast the ST-
CNN models require only a single forward pass of a single model. This accuracy is achieved due to
the fact that the spatial transformers crop and rescale the parts of the feature maps that correspond
to the digit, focussing resolution and network capacity only on these areas (see Table 2 (right) (b)
for some examples). In terms of computation speed, the ST-CNN Multi model is only 6% slower
(forward and backward pass) than the CNN.

4.3 Fine-Grained Classification

In this section, we use a spatial transformer network with multiple transformers in parallel to perform
fine-grained bird classification. We evaluate our models on the CUB-200-2011 birds dataset [37],
containing 6k training images and 5.8k test images, covering 200 species of birds. The birds appear
at a range of scales and orientations, are not tightly cropped, and require detailed texture and shape
analysis to distinguish. In our experiments, we only use image class labels for training.

We consider a strong baseline CNN model – an Inception architecture with batch normalisation [18]
pre-trained on ImageNet [26] and fine-tuned on CUB – which by itself achieves the state-of-the-
art accuracy of 82.3% (previous best result is 81.0% [29]). We then train a spatial transformer
network, ST-CNN, which contains 2 or 4 parallel spatial transformers, parameterised for attention
and acting on the input image. Discriminative image parts, captured by the transformers, are passed
to the part description sub-nets (each of which is also initialised by Inception). The resulting part
representations are concatenated and classified with a single softmax layer. The whole architecture
is trained on image class labels end-to-end with backpropagation (full details in Appendix A).

The results are shown in Table 3 (left). The ST-CNN achieves an accuracy of 84.1%, outperforming
the baseline by 1.8%. In the visualisations of the transforms predicted by 2×ST-CNN (Table 3
(right)) one can see interesting behaviour has been learnt: one spatial transformer (red) has learnt
to become a head detector, while the other (green) fixates on the central part of the body of a bird.
The resulting output from the spatial transformers for the classification network is a somewhat pose-
normalised representation of a bird. While previous work such as [3] explicitly define parts of the
bird, training separate detectors for these parts with supplied keypoint training data, the ST-CNN is
able to discover and learn part detectors in a data-driven manner without any additional supervision.
In addition, the use of spatial transformers allows us to use 448px resolution input images without
any impact in performance, as the output of the transformed 448px images are downsampled to
224px before being processed.

5 Conclusion
In this paper we introduced a new self-contained module for neural networks – the spatial trans-
former. This module can be dropped into a network and perform explicit spatial transformations

8

• 2 or 4 spatial transformers predict discriminative object parts with no
supervision other than the class label

• the localization network is based on GoogLeNet and is shared across
transformers; features are extracted by one GoogLeNet for each region

• features are concatenated and the image is classified by a single fully
connected layer with softmax

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.

deformable RoI pooling
[Ren et al. 2017]

h

w


offsets

...



H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1


avg

→
pool



...

1
1
c+ 1



RPN

FC

• same features, same RPN, same position-sensitive scores as R-FCN

• cell offsets by FC on RoI-pooled features, deformable RoI pooling

• same average pooling

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable RoI pooling
[Ren et al. 2017]

h

w


offsets

...



H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1


avg

→
pool



...

1
1
c+ 1



RPN

FC

• same features, same RPN, same position-sensitive scores as R-FCN

• cell offsets by FC on RoI-pooled features, deformable RoI pooling

• same average pooling

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable RoI pooling
[Ren et al. 2017]

h

w


offsets

...



H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1



avg

→
pool



...

1
1
c+ 1



RPN

FC

• same features, same RPN, same position-sensitive scores as R-FCN

• cell offsets by FC on RoI-pooled features, deformable RoI pooling

• same average pooling

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable RoI pooling
[Ren et al. 2017]

h

w


offsets

...



H

W

3

→
CNN h

w

k

→
conv h

w

r2(c+ 1)

RoI

→
pool



...

r

r

c+ 1


avg

→
pool



...

1
1
c+ 1



RPN

FC

• same features, same RPN, same position-sensitive scores as R-FCN

• cell offsets by FC on RoI-pooled features, deformable RoI pooling

• same average pooling

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable convolution
[Ren et al. 2017]

• standard convolution on 3× 3 regular sampling grid

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable convolution
[Ren et al. 2017]

• scaled grid (as in automatic scale selection, but dense)

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable convolution
[Ren et al. 2017]

• rotated grid (as in dominant orientation selection, but dense)

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable convolution
[Ren et al. 2017]

• deformed sampling grid where offsets are computed per pixel

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable convolution: receptive field (2 layers)

To integrate deformable ConvNets with the state-of-the-
art CNN architectures, we note that these architectures con-
sist of two stages. First, a deep fully convolutional network
generates feature maps over the whole input image. Sec-
ond, a shallow task specific network generates results from
the feature maps. We elaborate the two steps below.

Deformable Convolution for Feature Extraction We
adopt two state-of-the-art architectures for feature extrac-
tion: ResNet-101 [20] and a modifed version of Inception-
ResNet [46]. Both are pre-trained on ImageNet [7] dataset.

The original Inception-ResNet is designed for image
recognition. It has a feature misalignment issue and is prob-
lematic for dense prediction tasks. It is modified to fix the
alignment problem [18]. The modified version is dubbed as
“Aligned-Inception-ResNet”. Please find its details in the
online arxiv version of this paper.

Both models consist of several convolutional blocks, an
average pooling and a 1000-way fc layer for ImageNet clas-
sification. The average pooling and the fc layers are re-
moved. A randomly initialized 1 × 1 convolution is added
at last to reduce the channel dimension to 1024. As in com-
mon practice [3, 6], the effective stride in the last convo-
lutional block is reduced from 32 pixels to 16 pixels to in-
crease the feature map resolution. Specifically, at the begin-
ning of the last block, stride is changed from 2 to 1 (“conv5”
for both ResNet-101 and Aligned-Inception-ResNet). To
compensate, the dilation of all the convolution filters in this
block (with kernel size > 1) is changed from 1 to 2.

Optionally, deformable convolution is applied to the last
few convolutional layers (with kernel size > 1). We exper-
imented with different numbers of such layers and found 3
as a good trade-off for different tasks, as reported in Table 1.

Segmentation and Detection Networks A task specific
network is built upon the output feature maps from the fea-
ture extraction network mentioned above.

In the below, C denotes the number of object classes.
DeepLab [4] is a state-of-the-art method for semantic

segmentation. It adds a 1 × 1 convolutional layer over the
feature maps to generates (C + 1) maps that represent the
per-pixel classification scores. A following softmax layer
then outputs the per-pixel probabilities.

Category-Aware RPN is almost the same as the region
proposal network in [42], except that the 2-class (object or
not) convolutional classifier is replaced by a (C + 1)-class
convolutional classifier.

Faster R-CNN [42] is the state-of-the-art detector. In our
implementation, the RPN branch is added on the top of the
conv4 block, following [42]. In the previous practice [20,
22], the RoI pooling layer is inserted between the conv4
and the conv5 blocks in ResNet-101, leaving 10 layers for
each RoI. This design achieves good accuracy but has high
per-RoI computation. Instead, we adopt a simplified design

(a) standard convolution (b) deformable convolution

Figure 5: Illustration of the fixed receptive field in stan-
dard convolution (a) and the adaptive receptive field in de-
formable convolution (b), using two layers. Top: two acti-
vation units on the top feature map, on two objects of dif-
ferent scales and shapes. The activation is from a 3 × 3
filter. Middle: the sampling locations of the 3 × 3 filter on
the preceding feature map. Another two activation units are
highlighted. Bottom: the sampling locations of two levels
of 3 × 3 filters on the preceding feature map. The high-
lighted locations correspond to the highlighted units above.

as in [34]. The RoI pooling layer is added at last1. On top
of the pooled RoI features, two fc layers of dimension 1024
are added, followed by the bounding box regression and the
classification branches. Although such simplification (from
10 layer conv5 block to 2 fc layers) would slightly decrease
the accuracy, it still makes a strong enough baseline and is
not a concern in this work.

Optionally, the RoI pooling layer can be changed to de-
formable RoI pooling.

R-FCN [6] is another state-of-the-art detector. It has neg-
ligible per-RoI computation cost. We follow the original
implementation. Optionally, its RoI pooling layer can be
changed to deformable position-sensitive RoI pooling.

3. Understanding Deformable ConvNets
This work is built on the idea of augmenting the spatial

sampling locations in convolution and RoI pooling with ad-
ditional offsets and learning the offsets from target tasks.

When the deformable convolution are stacked, the effect
of composited deformation is profound. This is exemplified
in Figure 5. The receptive field and the sampling locations
in the standard convolution are fixed all over the top feature
map (left). They are adaptively adjusted according to the
objects’ scale and shape in deformable convolution (right).
More examples are shown in Figure 6. Table 2 provides
quantitative evidence of such adaptive deformation.

The effect of deformable RoI pooling is similar, as illus-
trated in Figure 7. The regularity of the grid structure in

1The last 1× 1 layer is changed to outputs 256-D features.

767

To integrate deformable ConvNets with the state-of-the-
art CNN architectures, we note that these architectures con-
sist of two stages. First, a deep fully convolutional network
generates feature maps over the whole input image. Sec-
ond, a shallow task specific network generates results from
the feature maps. We elaborate the two steps below.

Deformable Convolution for Feature Extraction We
adopt two state-of-the-art architectures for feature extrac-
tion: ResNet-101 [20] and a modifed version of Inception-
ResNet [46]. Both are pre-trained on ImageNet [7] dataset.

The original Inception-ResNet is designed for image
recognition. It has a feature misalignment issue and is prob-
lematic for dense prediction tasks. It is modified to fix the
alignment problem [18]. The modified version is dubbed as
“Aligned-Inception-ResNet”. Please find its details in the
online arxiv version of this paper.

Both models consist of several convolutional blocks, an
average pooling and a 1000-way fc layer for ImageNet clas-
sification. The average pooling and the fc layers are re-
moved. A randomly initialized 1 × 1 convolution is added
at last to reduce the channel dimension to 1024. As in com-
mon practice [3, 6], the effective stride in the last convo-
lutional block is reduced from 32 pixels to 16 pixels to in-
crease the feature map resolution. Specifically, at the begin-
ning of the last block, stride is changed from 2 to 1 (“conv5”
for both ResNet-101 and Aligned-Inception-ResNet). To
compensate, the dilation of all the convolution filters in this
block (with kernel size > 1) is changed from 1 to 2.

Optionally, deformable convolution is applied to the last
few convolutional layers (with kernel size > 1). We exper-
imented with different numbers of such layers and found 3
as a good trade-off for different tasks, as reported in Table 1.

Segmentation and Detection Networks A task specific
network is built upon the output feature maps from the fea-
ture extraction network mentioned above.

In the below, C denotes the number of object classes.
DeepLab [4] is a state-of-the-art method for semantic

segmentation. It adds a 1 × 1 convolutional layer over the
feature maps to generates (C + 1) maps that represent the
per-pixel classification scores. A following softmax layer
then outputs the per-pixel probabilities.

Category-Aware RPN is almost the same as the region
proposal network in [42], except that the 2-class (object or
not) convolutional classifier is replaced by a (C + 1)-class
convolutional classifier.

Faster R-CNN [42] is the state-of-the-art detector. In our
implementation, the RPN branch is added on the top of the
conv4 block, following [42]. In the previous practice [20,
22], the RoI pooling layer is inserted between the conv4
and the conv5 blocks in ResNet-101, leaving 10 layers for
each RoI. This design achieves good accuracy but has high
per-RoI computation. Instead, we adopt a simplified design

(a) standard convolution (b) deformable convolution

Figure 5: Illustration of the fixed receptive field in stan-
dard convolution (a) and the adaptive receptive field in de-
formable convolution (b), using two layers. Top: two acti-
vation units on the top feature map, on two objects of dif-
ferent scales and shapes. The activation is from a 3 × 3
filter. Middle: the sampling locations of the 3 × 3 filter on
the preceding feature map. Another two activation units are
highlighted. Bottom: the sampling locations of two levels
of 3 × 3 filters on the preceding feature map. The high-
lighted locations correspond to the highlighted units above.

as in [34]. The RoI pooling layer is added at last1. On top
of the pooled RoI features, two fc layers of dimension 1024
are added, followed by the bounding box regression and the
classification branches. Although such simplification (from
10 layer conv5 block to 2 fc layers) would slightly decrease
the accuracy, it still makes a strong enough baseline and is
not a concern in this work.

Optionally, the RoI pooling layer can be changed to de-
formable RoI pooling.

R-FCN [6] is another state-of-the-art detector. It has neg-
ligible per-RoI computation cost. We follow the original
implementation. Optionally, its RoI pooling layer can be
changed to deformable position-sensitive RoI pooling.

3. Understanding Deformable ConvNets
This work is built on the idea of augmenting the spatial

sampling locations in convolution and RoI pooling with ad-
ditional offsets and learning the offsets from target tasks.

When the deformable convolution are stacked, the effect
of composited deformation is profound. This is exemplified
in Figure 5. The receptive field and the sampling locations
in the standard convolution are fixed all over the top feature
map (left). They are adaptively adjusted according to the
objects’ scale and shape in deformable convolution (right).
More examples are shown in Figure 6. Table 2 provides
quantitative evidence of such adaptive deformation.

The effect of deformable RoI pooling is similar, as illus-
trated in Figure 7. The regularity of the grid structure in

1The last 1× 1 layer is changed to outputs 256-D features.

767

• standard convolution: receptive field grows with depth but only
linearly, remains rectangular and is translation invariant

• deformable convolution: receptive field grows arbitrarily with depth,
adapts per location and takes arbitrary shape

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable convolution: receptive field (2 layers)

To integrate deformable ConvNets with the state-of-the-
art CNN architectures, we note that these architectures con-
sist of two stages. First, a deep fully convolutional network
generates feature maps over the whole input image. Sec-
ond, a shallow task specific network generates results from
the feature maps. We elaborate the two steps below.

Deformable Convolution for Feature Extraction We
adopt two state-of-the-art architectures for feature extrac-
tion: ResNet-101 [20] and a modifed version of Inception-
ResNet [46]. Both are pre-trained on ImageNet [7] dataset.

The original Inception-ResNet is designed for image
recognition. It has a feature misalignment issue and is prob-
lematic for dense prediction tasks. It is modified to fix the
alignment problem [18]. The modified version is dubbed as
“Aligned-Inception-ResNet”. Please find its details in the
online arxiv version of this paper.

Both models consist of several convolutional blocks, an
average pooling and a 1000-way fc layer for ImageNet clas-
sification. The average pooling and the fc layers are re-
moved. A randomly initialized 1 × 1 convolution is added
at last to reduce the channel dimension to 1024. As in com-
mon practice [3, 6], the effective stride in the last convo-
lutional block is reduced from 32 pixels to 16 pixels to in-
crease the feature map resolution. Specifically, at the begin-
ning of the last block, stride is changed from 2 to 1 (“conv5”
for both ResNet-101 and Aligned-Inception-ResNet). To
compensate, the dilation of all the convolution filters in this
block (with kernel size > 1) is changed from 1 to 2.

Optionally, deformable convolution is applied to the last
few convolutional layers (with kernel size > 1). We exper-
imented with different numbers of such layers and found 3
as a good trade-off for different tasks, as reported in Table 1.

Segmentation and Detection Networks A task specific
network is built upon the output feature maps from the fea-
ture extraction network mentioned above.

In the below, C denotes the number of object classes.
DeepLab [4] is a state-of-the-art method for semantic

segmentation. It adds a 1 × 1 convolutional layer over the
feature maps to generates (C + 1) maps that represent the
per-pixel classification scores. A following softmax layer
then outputs the per-pixel probabilities.

Category-Aware RPN is almost the same as the region
proposal network in [42], except that the 2-class (object or
not) convolutional classifier is replaced by a (C + 1)-class
convolutional classifier.

Faster R-CNN [42] is the state-of-the-art detector. In our
implementation, the RPN branch is added on the top of the
conv4 block, following [42]. In the previous practice [20,
22], the RoI pooling layer is inserted between the conv4
and the conv5 blocks in ResNet-101, leaving 10 layers for
each RoI. This design achieves good accuracy but has high
per-RoI computation. Instead, we adopt a simplified design

(a) standard convolution (b) deformable convolution

Figure 5: Illustration of the fixed receptive field in stan-
dard convolution (a) and the adaptive receptive field in de-
formable convolution (b), using two layers. Top: two acti-
vation units on the top feature map, on two objects of dif-
ferent scales and shapes. The activation is from a 3 × 3
filter. Middle: the sampling locations of the 3 × 3 filter on
the preceding feature map. Another two activation units are
highlighted. Bottom: the sampling locations of two levels
of 3 × 3 filters on the preceding feature map. The high-
lighted locations correspond to the highlighted units above.

as in [34]. The RoI pooling layer is added at last1. On top
of the pooled RoI features, two fc layers of dimension 1024
are added, followed by the bounding box regression and the
classification branches. Although such simplification (from
10 layer conv5 block to 2 fc layers) would slightly decrease
the accuracy, it still makes a strong enough baseline and is
not a concern in this work.

Optionally, the RoI pooling layer can be changed to de-
formable RoI pooling.

R-FCN [6] is another state-of-the-art detector. It has neg-
ligible per-RoI computation cost. We follow the original
implementation. Optionally, its RoI pooling layer can be
changed to deformable position-sensitive RoI pooling.

3. Understanding Deformable ConvNets
This work is built on the idea of augmenting the spatial

sampling locations in convolution and RoI pooling with ad-
ditional offsets and learning the offsets from target tasks.

When the deformable convolution are stacked, the effect
of composited deformation is profound. This is exemplified
in Figure 5. The receptive field and the sampling locations
in the standard convolution are fixed all over the top feature
map (left). They are adaptively adjusted according to the
objects’ scale and shape in deformable convolution (right).
More examples are shown in Figure 6. Table 2 provides
quantitative evidence of such adaptive deformation.

The effect of deformable RoI pooling is similar, as illus-
trated in Figure 7. The regularity of the grid structure in

1The last 1× 1 layer is changed to outputs 256-D features.

767

To integrate deformable ConvNets with the state-of-the-
art CNN architectures, we note that these architectures con-
sist of two stages. First, a deep fully convolutional network
generates feature maps over the whole input image. Sec-
ond, a shallow task specific network generates results from
the feature maps. We elaborate the two steps below.

Deformable Convolution for Feature Extraction We
adopt two state-of-the-art architectures for feature extrac-
tion: ResNet-101 [20] and a modifed version of Inception-
ResNet [46]. Both are pre-trained on ImageNet [7] dataset.

The original Inception-ResNet is designed for image
recognition. It has a feature misalignment issue and is prob-
lematic for dense prediction tasks. It is modified to fix the
alignment problem [18]. The modified version is dubbed as
“Aligned-Inception-ResNet”. Please find its details in the
online arxiv version of this paper.

Both models consist of several convolutional blocks, an
average pooling and a 1000-way fc layer for ImageNet clas-
sification. The average pooling and the fc layers are re-
moved. A randomly initialized 1 × 1 convolution is added
at last to reduce the channel dimension to 1024. As in com-
mon practice [3, 6], the effective stride in the last convo-
lutional block is reduced from 32 pixels to 16 pixels to in-
crease the feature map resolution. Specifically, at the begin-
ning of the last block, stride is changed from 2 to 1 (“conv5”
for both ResNet-101 and Aligned-Inception-ResNet). To
compensate, the dilation of all the convolution filters in this
block (with kernel size > 1) is changed from 1 to 2.

Optionally, deformable convolution is applied to the last
few convolutional layers (with kernel size > 1). We exper-
imented with different numbers of such layers and found 3
as a good trade-off for different tasks, as reported in Table 1.

Segmentation and Detection Networks A task specific
network is built upon the output feature maps from the fea-
ture extraction network mentioned above.

In the below, C denotes the number of object classes.
DeepLab [4] is a state-of-the-art method for semantic

segmentation. It adds a 1 × 1 convolutional layer over the
feature maps to generates (C + 1) maps that represent the
per-pixel classification scores. A following softmax layer
then outputs the per-pixel probabilities.

Category-Aware RPN is almost the same as the region
proposal network in [42], except that the 2-class (object or
not) convolutional classifier is replaced by a (C + 1)-class
convolutional classifier.

Faster R-CNN [42] is the state-of-the-art detector. In our
implementation, the RPN branch is added on the top of the
conv4 block, following [42]. In the previous practice [20,
22], the RoI pooling layer is inserted between the conv4
and the conv5 blocks in ResNet-101, leaving 10 layers for
each RoI. This design achieves good accuracy but has high
per-RoI computation. Instead, we adopt a simplified design

(a) standard convolution (b) deformable convolution

Figure 5: Illustration of the fixed receptive field in stan-
dard convolution (a) and the adaptive receptive field in de-
formable convolution (b), using two layers. Top: two acti-
vation units on the top feature map, on two objects of dif-
ferent scales and shapes. The activation is from a 3 × 3
filter. Middle: the sampling locations of the 3 × 3 filter on
the preceding feature map. Another two activation units are
highlighted. Bottom: the sampling locations of two levels
of 3 × 3 filters on the preceding feature map. The high-
lighted locations correspond to the highlighted units above.

as in [34]. The RoI pooling layer is added at last1. On top
of the pooled RoI features, two fc layers of dimension 1024
are added, followed by the bounding box regression and the
classification branches. Although such simplification (from
10 layer conv5 block to 2 fc layers) would slightly decrease
the accuracy, it still makes a strong enough baseline and is
not a concern in this work.

Optionally, the RoI pooling layer can be changed to de-
formable RoI pooling.

R-FCN [6] is another state-of-the-art detector. It has neg-
ligible per-RoI computation cost. We follow the original
implementation. Optionally, its RoI pooling layer can be
changed to deformable position-sensitive RoI pooling.

3. Understanding Deformable ConvNets
This work is built on the idea of augmenting the spatial

sampling locations in convolution and RoI pooling with ad-
ditional offsets and learning the offsets from target tasks.

When the deformable convolution are stacked, the effect
of composited deformation is profound. This is exemplified
in Figure 5. The receptive field and the sampling locations
in the standard convolution are fixed all over the top feature
map (left). They are adaptively adjusted according to the
objects’ scale and shape in deformable convolution (right).
More examples are shown in Figure 6. Table 2 provides
quantitative evidence of such adaptive deformation.

The effect of deformable RoI pooling is similar, as illus-
trated in Figure 7. The regularity of the grid structure in

1The last 1× 1 layer is changed to outputs 256-D features.

767

• standard convolution: receptive field grows with depth but only
linearly, remains rectangular and is translation invariant

• deformable convolution: receptive field grows arbitrarily with depth,
adapts per location and takes arbitrary shape

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable convolution: receptive field (2 layers)

Figure 6: Each image triplet shows the sampling locations (93 = 729 red points in each image) in three levels of 3 × 3
deformable filters (see Figure 5 as a reference) for three activation units (green points) on the background (left), a small
object (middle), and a large object (right), respectively.

cat

chair

car

pottedplant

person

motorbike

person

bicycle

horse

dog

dog bird

Figure 7: Illustration of offset parts in deformable (positive sensitive) RoI pooling in R-FCN [6] and 3 × 3 bins (red) for an
input RoI (yellow). Note how the parts are offset to cover the non-rigid objects.

standard RoI pooling no longer holds. Instead, parts deviate
from the RoI bins and move onto the nearby object fore-
ground regions. The localization capability is enhanced, es-
pecially for non-rigid objects.

3.1. In Context of Related Works

Our work is related to previous works in different as-
pects. We discuss the relations and differences in details.

Spatial Transform Networks (STN) [23] It is the first
work to learn spatial transformation from data in a deep
learning framework. It warps the feature map via a global
parametric transformation such as affine transformation.
Such warping is expensive and learning the transformation
parameters is known difficult. STN has shown successes in
small scale image classification problems. The inverse STN
method [33] replaces the expensive feature warping by effi-
cient transformation parameter propagation.

The offset learning in deformable convolution can be
considered as an extremely light-weight spatial transformer
in STN [23]. However, deformable convolution does
not adopt a global parametric transformation and feature
warping. Instead, it samples the feature map in a local
and dense manner. To generate new feature maps, it has
a weighted summation step, which is absent in STN.

Deformable convolution is easy to integrate into any

CNN architectures. Its training is easy. It is shown effec-
tive for complex vision tasks that require dense (e.g., se-
mantic segmentation) or semi-dense (e.g., object detection)
predictions. These tasks are difficult (if not infeasible) for
STN [23, 33].

Active Convolution [24] This work is contemporary. It
also augments the sampling locations in the convolution
with offsets and learns the offsets via back-propagation end-
to-end. It is shown effective on image classification tasks.

Two crucial differences from deformable convolution
make this work less general and adaptive. First, it shares
the offsets all over the different spatial locations. Second,
the offsets are static model parameters that are learnt per
task or per training. In contrast, the offsets in deformable
convolution are dynamic model outputs that vary per im-
age location. They model the dense spatial transformations
in the images and are effective for (semi-)dense prediction
tasks such as object detection and semantic segmentation.

Effective Receptive Field [39] It finds that not all pixels
in a receptive field contribute equally to an output response.
The pixels near the center have much larger impact. The
effective receptive field only occupies a small fraction of
the theoretical receptive field and has a Gaussian distribu-
tion. Although the theoretical receptive field size increases
linearly with the number of convolutional layers, a surpris-

768

• red: 93 = 729 sampling locations in 3 levels of 3× 3 deformable filters
for three units (green)

• receptive field adapts to object size and shape

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

deformable RoI pooling

Figure 6: Each image triplet shows the sampling locations (93 = 729 red points in each image) in three levels of 3 × 3
deformable filters (see Figure 5 as a reference) for three activation units (green points) on the background (left), a small
object (middle), and a large object (right), respectively.

cat

chair

car

pottedplant

person

motorbike

person

bicycle

horse

dog

dog bird

Figure 7: Illustration of offset parts in deformable (positive sensitive) RoI pooling in R-FCN [6] and 3 × 3 bins (red) for an
input RoI (yellow). Note how the parts are offset to cover the non-rigid objects.

standard RoI pooling no longer holds. Instead, parts deviate
from the RoI bins and move onto the nearby object fore-
ground regions. The localization capability is enhanced, es-
pecially for non-rigid objects.

3.1. In Context of Related Works

Our work is related to previous works in different as-
pects. We discuss the relations and differences in details.

Spatial Transform Networks (STN) [23] It is the first
work to learn spatial transformation from data in a deep
learning framework. It warps the feature map via a global
parametric transformation such as affine transformation.
Such warping is expensive and learning the transformation
parameters is known difficult. STN has shown successes in
small scale image classification problems. The inverse STN
method [33] replaces the expensive feature warping by effi-
cient transformation parameter propagation.

The offset learning in deformable convolution can be
considered as an extremely light-weight spatial transformer
in STN [23]. However, deformable convolution does
not adopt a global parametric transformation and feature
warping. Instead, it samples the feature map in a local
and dense manner. To generate new feature maps, it has
a weighted summation step, which is absent in STN.

Deformable convolution is easy to integrate into any

CNN architectures. Its training is easy. It is shown effec-
tive for complex vision tasks that require dense (e.g., se-
mantic segmentation) or semi-dense (e.g., object detection)
predictions. These tasks are difficult (if not infeasible) for
STN [23, 33].

Active Convolution [24] This work is contemporary. It
also augments the sampling locations in the convolution
with offsets and learns the offsets via back-propagation end-
to-end. It is shown effective on image classification tasks.

Two crucial differences from deformable convolution
make this work less general and adaptive. First, it shares
the offsets all over the different spatial locations. Second,
the offsets are static model parameters that are learnt per
task or per training. In contrast, the offsets in deformable
convolution are dynamic model outputs that vary per im-
age location. They model the dense spatial transformations
in the images and are effective for (semi-)dense prediction
tasks such as object detection and semantic segmentation.

Effective Receptive Field [39] It finds that not all pixels
in a receptive field contribute equally to an output response.
The pixels near the center have much larger impact. The
effective receptive field only occupies a small fraction of
the theoretical receptive field and has a Gaussian distribu-
tion. Although the theoretical receptive field size increases
linearly with the number of convolutional layers, a surpris-

768

• deformed 3× 3 cells (red) for an input RoI (yellow)

• cells adapt to part locations of non-rigid objects

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.

..

scale and feature pyramids∗

fully convolutional networks (FCN)∗
[Long et al. 2015]

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long∗ Evan Shelhamer∗ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [20],
the VGG net [31], and GoogLeNet [32]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [3] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [20, 31, 32], but also making progress on lo-
cal tasks with structured output. These include advances in
bounding box object detection [29, 10, 17], part and key-
point prediction [39, 24], and local correspondence [24, 8].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[27, 2, 7, 28, 15, 13, 9], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

∗Authors contributed equally

��

��� ��� �	�
�
�	�

� �

�

��������	
����
��

�������	
��������

�
�
�
�

��
��
���

��

��

���
��
��
��

��
���
��

���
���

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [27, 2, 7, 28, 9], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [7, 15], proposals [15, 13],
or post-hoc refinement by random fields or local classifiers
[7, 15]. Our model transfers recent success in classifica-
tion [20, 31, 32] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[7, 28, 27].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear

3431978-1-4673-6964-0/15/$31.00 ©2015 IEEE

• feature maps capture high-level semantics but are of low resolution

• here, they are upsampled to original pixel resolution

• given pixel-wise class label supervision, the network learns pixel-wise
prediction for semantic segmentation

• there are no fully-connected layers, hence “fully convolutional”

Long, Shelhamer and Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.

learning to upsample∗
[Noh et al. 2015]

Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multi-
layer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from
the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and
rectification operations.

We employ VGG 16-layer net [22] for convolutional part
with its last classification layer removed. Our convolution
network has 13 convolutional layers altogether, rectifica-
tion and pooling operations are sometimes performed be-
tween convolutions, and 2 fully connected layers are aug-
mented at the end to impose class-specific projection. Our
deconvolution network is a mirrored version of the convo-
lution network, and has multiple series of unpooing, decon-
volution, and rectification layers. Contrary to convolution
network that reduces the size of activations through feed-
forwarding, deconvolution network enlarges the activations
through the combination of unpooling and deconvolution
operations. More details of the proposed deconvolution net-
work is described in the following subsections.

3.2. Deconvolution Network for Segmentation

We now discuss two main operations, unpooling and de-
convolution, in our deconvolution network in details.

3.2.1 Unpooling

Pooling in convolution network is designed to filter noisy
activations in a lower layer by abstracting activations in a
receptive field with a single representative value. Although
it helps classification by retaining only robust activations in
upper layers, spatial information within a receptive field is
lost during pooling, which may be critical for precise local-
ization that is required for semantic segmentation.

To resolve such issue, we employ unpooling layers in de-
convolution network, which perform the reverse operation
of pooling and reconstruct the original size of activations as
illustrated in Figure 3. To implement the unpooling opera-
tion, we follow the similar approach proposed in [24, 25]. It
records the locations of maximum activations selected dur-
ing pooling operation in switch variables, which are em-
ployed to place each activation back to its original pooled
location. This unpooling strategy is particularly useful to
reconstruct the structure of input object as described in [24].

Figure 3. Illustration of deconvolution and unpooling operations.

3.2.2 Deconvolution

The output of an unpooling layer is an enlarged, yet sparse
activation map. The deconvolution layers densify the sparse
activations obtained by unpooling through convolution-like
operations with multiple learned filters. However, contrary
to convolutional layers, which connect multiple input ac-
tivations within a filter window to a single activation, de-
convolutional layers associate a single input activation with
multiple outputs, as illustrated in Figure 3. The output of
the deconvolutional layer is an enlarged and dense activa-
tion map. We crop the boundary of the enlarged activation
map to keep the size of the output map identical to the one
from the preceding unpooling layer.

The learned filters in deconvolutional layers correspond
to bases to reconstruct shape of an input object. Therefore,
similar to the convolution network, a hierarchical structure
of deconvolutional layers are used to capture different level
of shape details. The filters in lower layers tend to cap-
ture overall shape of an object while the class-specific fine-
details are encoded in the filters in higher layers. In this
way, the network directly takes class-specific shape infor-

• the upsampling process is improved by learning to invert the
max-pooling and convolution operations with unpooling and
deconvolution

• instance-wise segmentations are obtained by applying the network to
individual object proposals, as in detection

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.

learning to upsample

14× 14 deconv

28× 28 deconv56× 56 deconv112× 112 deconv224× 224 deconv

28× 28 unpool

56× 56 unpool112× 112 unpool224× 224 unpool

• resolution is decreased from 224× 224 down to 7× 7 by five 2× 2
pooling layers and finally to 1× 1 by fully connected layer

• it is then increased back to 7× 7, 14× 14 and finally up to 224× 224
by five unpooling and deconvolution layers)

• the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.

learning to upsample

14× 14 deconv

28× 28 deconv

56× 56 deconv112× 112 deconv224× 224 deconv 28× 28 unpool

56× 56 unpool

112× 112 unpool224× 224 unpool

• resolution is decreased from 224× 224 down to 7× 7 by five 2× 2
pooling layers and finally to 1× 1 by fully connected layer

• it is then increased back to 7× 7, 14× 14 and finally up to 224× 224
by five unpooling and deconvolution layers)

• the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.

learning to upsample

14× 14 deconv28× 28 deconv

56× 56 deconv

112× 112 deconv224× 224 deconv 28× 28 unpool56× 56 unpool

112× 112 unpool

224× 224 unpool

• resolution is decreased from 224× 224 down to 7× 7 by five 2× 2
pooling layers and finally to 1× 1 by fully connected layer

• it is then increased back to 7× 7, 14× 14 and finally up to 224× 224
by five unpooling and deconvolution layers)

• the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.

learning to upsample

14× 14 deconv28× 28 deconv56× 56 deconv

112× 112 deconv

224× 224 deconv 28× 28 unpool56× 56 unpool112× 112 unpool

224× 224 unpool

• resolution is decreased from 224× 224 down to 7× 7 by five 2× 2
pooling layers and finally to 1× 1 by fully connected layer

• it is then increased back to 7× 7, 14× 14 and finally up to 224× 224
by five unpooling and deconvolution layers)

• the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.

learning to upsample

14× 14 deconv28× 28 deconv56× 56 deconv112× 112 deconv

224× 224 deconv

28× 28 unpool56× 56 unpool112× 112 unpool224× 224 unpool

• resolution is decreased from 224× 224 down to 7× 7 by five 2× 2
pooling layers and finally to 1× 1 by fully connected layer

• it is then increased back to 7× 7, 14× 14 and finally up to 224× 224
by five unpooling and deconvolution layers)

• the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.

upsampling for detection

• we may not need pixel-wise prediction for detection, but we still higher
resolution than e.g. 14× 14 or 7× 7 to detect and localize small
objects accurately

• in fact, as we upsample, we will combine detections from multiple
layers corresponding to multiple scales

network “stages” or “blocks”
VGG-16

volume

input(224, 3) 224× 224× 3

2× conv(3, 64, p1) 224× 224× 64

pool(2) 112× 112× 64

2× conv(3, 128, p1) 112× 112× 128

pool(2) 56× 56× 128

3× conv(3, 256, p1) 56× 56× 256

pool(2) 28× 28× 256

3× conv(3, 512, p1) 28× 28× 512

pool(2) 14× 14× 512

3× conv(3, 512, p1) 14× 14× 512

pool(2) 7× 7× 512

2× fc(4096) 4, 096

fc(1000) 1, 000

softmax 1, 000

C1

C2

C3

C4

C5

ResNet-101
volume

input(224, 3) 224× 224× 3

conv(7, 64, p3, s2) 112× 112× 64

pool(3, 2, p1) 56× 56× 64

3× res(3, (64, 256)) 56× 56× 256

res(3, (128, 512), s2) 28× 28× 512

3× res(3, (128, 512)) 28× 28× 512

res(3, (256, 1024), s2) 14× 14× 1024

22× res(3, (256, 1024)) 14× 14× 1024

res(3, (512, 2048), s2) 7× 7× 2048

2× res(3, (512, 2048)) 7× 7× 2048

avg(7) 2048

fc(1000) 1000

softmax 1000

network “stages” or “blocks”
VGG-16

volume

input(224, 3) 224× 224× 3

2× conv(3, 64, p1) 224× 224× 64

pool(2) 112× 112× 64

2× conv(3, 128, p1) 112× 112× 128

pool(2) 56× 56× 128

3× conv(3, 256, p1) 56× 56× 256

pool(2) 28× 28× 256

3× conv(3, 512, p1) 28× 28× 512

pool(2) 14× 14× 512

3× conv(3, 512, p1) 14× 14× 512

pool(2) 7× 7× 512

2× fc(4096) 4, 096

fc(1000) 1, 000

softmax 1, 000

C1

C2

C3

C4

C5

ResNet-101
volume

input(224, 3) 224× 224× 3

conv(7, 64, p3, s2) 112× 112× 64

pool(3, 2, p1) 56× 56× 64

3× res(3, (64, 256)) 56× 56× 256

res(3, (128, 512), s2) 28× 28× 512

3× res(3, (128, 512)) 28× 28× 512

res(3, (256, 1024), s2) 14× 14× 1024

22× res(3, (256, 1024)) 14× 14× 1024

res(3, (512, 2048), s2) 7× 7× 2048

2× res(3, (512, 2048)) 7× 7× 2048

avg(7) 2048

fc(1000) 1000

softmax 1000

pyramid networks

input

C1

C2

C3

C4

C5

P5

P4

P3

P2

P1





predict

• bottom-up path: higher-level features, downsampling

• top-down path: still high-level, upsampling

• lateral connections

• predictions from multiple scales

pyramid networks

input

C1

C2

C3

C4

C5

P5

P4

P3

P2

P1





predict

• bottom-up path: higher-level features, downsampling

• top-down path: still high-level, upsampling

• lateral connections

• predictions from multiple scales

pyramid networks

input

C1

C2

C3

C4

C5

P5

P4

P3

P2

P1





predict

• bottom-up path: higher-level features, downsampling

• top-down path: still high-level, upsampling

• lateral connections

• predictions from multiple scales

pyramid networks

input

C1

C2

C3

C4

C5

P5

P4

P3

P2

P1





predict

• bottom-up path: higher-level features, downsampling

• top-down path: still high-level, upsampling

• lateral connections

• predictions from multiple scales

top-down modulation (TDM)∗
[Shrivastava et al. 2016]

T2 T3,2 T4,3

C1 C4 C5C3

T5,4

L4L3L2

ROI Classifier

ROI Proposal

Object Detector

C2I

Ci Bottom-up Blocks

Ti,j Top-down Modules

Li Lateral Modules

Forward Pass

Backprop

300 x 500 x k1
600x1000x3 150 x 250 x k2

75x125 xk3 75x125 xk4

37x63xk5

75x125xa475x125 xa3

150 x 250 x a2

Described in Figure 3

Bottom-up Path

Top-down Path

L
ateral P

ath

out

Figure 2. The illustration shows an example of Top-Down Modulation (TDM) Network, which is integrated with the bottom-up network
with lateral connections. Ci are bottom-up, feedforward feature blocks, Li are the lateral modules which transform low level features for
the top-down contextual pathway. Finally, Tj,i, which represent flow of top-down information from index j to i. Individual components
are explained in Figure 3 and 4.

tions is complementary to these works and can be readily
combined with them. Contextual features have also been
used for ConvNets based object detectors; e.g., using other
objects [20] and other regions [18] as context. We believe
the proposed top-down path can naturally transmit these
contextual features.

3. Top-Down Modulation (TDM)

Our goal is to incorporate top-down modulation into cur-
rent object detection frameworks. The key idea is to se-
lect/attend to fine details from lower level feature-maps
based on top-down features themselves. We tackle this chal-
lenge by proposing a simple top-down modulation (TDM)
network as shown in Figure 2.

The TDM network gets input from the last layer of
bottom-up feed-forward network. For example, in the case
of VGG16, the input to the first layer of the TDM network
is the output of conv5_3 layer of VGG16. Every layer of
TDM network also gets inputs via lateral connections from
the original bottom-up network. Thus, the TDM network
learns to transmit high-level semantic features that guide the
learning and selection of relevant lower layer features. The
final output of the proposed network captures both pertinent
finer details and high-level information.

3.1. Proposed Architecture

An overview of the proposed framework is illustrated in
Figure 2. The standard bottom-up network is represented by
blocks of layers, where each block Ci has multiple opera-
tions. The TDM network hinges on two key components:
a lateral module L, and a top-down module T (see Fig-
ure 3). Each lateral module Li takes in a bottom-up feature
xC
i (output of Ci) and produces the corresponding lateral

feature xL
i . These lateral features xL

i and top-down fea-
tures xT

j are combined, and optionally upsampled, by the

Tj,i module to produce the top-down features xT
i . These

modules, Ti and Li, control the capacity of the modulation
network by changing their output feature dimensions.

The feature from the last top-down module Tout
i is used

for the task of object detection. For example, in Figure 2,
instead of xC

5 , we use Tout
2 as input to ROI proposal and

ROI classifier networks of the Faster R-CNN [41] detection
system. During training, gradient updates from the object
detector backpropagate via top-down and lateral modules to
the Ci blocks. The lateral modules L• learn how to trans-
form low-level features and the top-down modules T• learn
what semantic or context information to preserve in the top-
down feature transmission as well as the selection of rele-
vant low-level lateral features. Ultimately, the bottom-up
features are modulated to adapt for this new representation.

Ci
H xWx ki

xi
C

H xWx li

xi
L

Li

Tj,i H xWx tj

xj
T

2H x 2Wx ti

xi
T

Figure 3. The basic building blocks of Top-Down Modulation Net-
work (detailed Section 3.1). Individual components are explained
in Figure 4.

Architecture details. The top-down and lateral modules
described above are essentially small ConvNets, which can
vary from a single or a hierarchy of convolutional layers to
more involved Residual [24] or Inception [46] blocks. In
this paper, we limit our study by using modules with a sin-
gle convolutional layer with non-linearities to analyze the
impact of top-down modulation.

• the top-down network handles the integration of features and
attempts to influence lower-level features

• detection (or any final task) now depends on high-resolution,
high-level features

• applied to VGG-16 and ResNet-101 with faster R-CNN

• however, only the final top-down module collects features

Shrivastava, Sukthankar, Malik and Gupta 2016. Beyond Skip Connections: Top-Down Modulation for Object Detection.

feature pyramid networks (FPN)
[Lin et al. 2017]

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

featurized image pyramid

single feature map

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

pyramidal feature hierarchy feature pyramid network

• features computed at each scale independently: slow

• single scale for faster detection

• reuse pyramidal feature hierarchy as if computed at different scales

• still fast, but more accurate

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.

feature pyramid networks (FPN)
[Lin et al. 2017]

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

featurized image pyramid single feature map

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

pyramidal feature hierarchy feature pyramid network

• features computed at each scale independently: slow

• single scale for faster detection

• reuse pyramidal feature hierarchy as if computed at different scales

• still fast, but more accurate

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.

feature pyramid networks (FPN)
[Lin et al. 2017]

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

featurized image pyramid single feature map

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

pyramidal feature hierarchy

feature pyramid network

• features computed at each scale independently: slow

• single scale for faster detection

• reuse pyramidal feature hierarchy as if computed at different scales

• still fast, but more accurate

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.

feature pyramid networks (FPN)
[Lin et al. 2017]

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

featurized image pyramid single feature map

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 5 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 24]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have

(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow to compute. (b) Recent detection systems have opted
to use only single scale features for faster detection. (c) An alter-
native is to reuse the pyramidal feature hierarchy computed by a
ConvNet as if it were a featurized image pyramid. (d) Our pro-
posed Feature Pyramid Network (FPN) is fast like (b) and (c), but
more accurate. In this figure, feature maps are indicate by blue
outlines and and thicker outlines denote higher level features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [18, 19]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[14, 11, 28] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [31] and COCO [20] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [15, 33]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep

1

ar
X

iv
:1

61
2.

03
14

4v
1

 [
cs

.C
V

]
 9

 D
ec

 2
01

6

pyramidal feature hierarchy feature pyramid network

• features computed at each scale independently: slow

• single scale for faster detection

• reuse pyramidal feature hierarchy as if computed at different scales

• still fast, but more accurate

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.

feature pyramid networks (FPN)

C`

P`+1

up(2)

conv(1, 256) +

conv(3, 256)

P`

• all top-down layers have 256
features

• top-down network initialized at P5

by 1× 1 convolution on C5

• 1× 1 convolution on lateral
connection reduces width

• 3× 3 convolution on merged path
reduces aliasing

• applied to ResNet-101 with
fast/faster R-CNN

• regions are detected at all levels of
top-down pyramid

• classifiers/regressors are shared
across all levels

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.

feature pyramid networks (FPN)

C`

P`+1

up(2)

conv(1, 256) +

conv(3, 256)

P`

• all top-down layers have 256
features

• top-down network initialized at P5

by 1× 1 convolution on C5

• 1× 1 convolution on lateral
connection reduces width

• 3× 3 convolution on merged path
reduces aliasing

• applied to ResNet-101 with
fast/faster R-CNN

• regions are detected at all levels of
top-down pyramid

• classifiers/regressors are shared
across all levels

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.

..

one-stage detection

OverFeat∗
[Sermanet et al. 2014]

• won the ILSVRC2013 localization competition

• applied a classifier with fully connected layers densely as convolution,
allowing region classification without cropping and warping

• increased output resolution with dilated convolution

• merged predictions instead of non-maxima suppression

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks.

fully connected as convolutional

14× 14
5× 5

conv
10× 10

2× 2

pool
5× 5

5× 5

fc
1× 1

1× 1

fc
1× 1

1× 1

fc
1× 1

   {input features classifier output

• a convolutional network with a fully connected classifier produces only
one spatial output

• when applied densely over a bigger input image, it produces a spatial
2× 2 output map

• since all layers are applied convolutionally, only the yellow region needs
to be recomputed

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks.

fully connected as convolutional

16× 16
5× 5

conv
12× 12

2× 2

pool
6× 6

5× 5

conv
2× 2

1× 1

conv
2× 2

1× 1

conv
2× 2

   {input features classifier output

• a convolutional network with a fully connected classifier produces only
one spatial output

• when applied densely over a bigger input image, it produces a spatial
2× 2 output map

• since all layers are applied convolutionally, only the yellow region needs
to be recomputed

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks.

“you only look once” (YOLO)
[Redmon et al. 2016]

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

(x, y)

(x, y)

(x, y)

l = 12
x,y,w,h

l = 2
x,y,w,h

l = 7
x,y,w,h

• input image

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

(x, y)

(x, y)

(x, y)

l = 12
x,y,w,h

l = 2
x,y,w,h

l = 7
x,y,w,h

• groung truth bounding boxes and their centers

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

(x, y)

(x, y)

(x, y)

l = 12
x,y,w,h

l = 2
x,y,w,h

l = 7
x,y,w,h

• image partitioned into 7× 7 grid and center coordinates assigned to
cells

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

(x, y)

(x, y)

(x, y)

l = 12
x,y,w,h

l = 2
x,y,w,h

l = 7
x,y,w,h

• network learns to predict up to one object per cell, including class
label l, center coordinates x, y and bounding box size w, h

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

H

W

3

→
CNN 7

7

1024

→
FC

1
1

4096

→
FC 7

7

20 4

↓ ↓class bbox

• 3-channel input W = H = 448, 24-layer NiN-like network

• fully connected layer, increasing to 4096 features

• c = 20 class scores and 4 bounding box coordinates at each position

• in a single stage, network performs regression from the image to a
7× 7× 24 tensor encoding detected classes and positions

• regression (`2) loss on both class scores and coordinates

• “objectness” score makes it look like two-stage

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

H

W

3

→
CNN 7

7

1024

→
FC

1
1

4096

→
FC 7

7

20 4

↓ ↓class bbox

• 3-channel input W = H = 448, 24-layer NiN-like network

• fully connected layer, increasing to 4096 features

• c = 20 class scores and 4 bounding box coordinates at each position

• in a single stage, network performs regression from the image to a
7× 7× 24 tensor encoding detected classes and positions

• regression (`2) loss on both class scores and coordinates

• “objectness” score makes it look like two-stage

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

H

W

3

→
CNN 7

7

1024

→
FC

1
1

4096

→
FC 7

7

20 4

↓ ↓class bbox

• 3-channel input W = H = 448, 24-layer NiN-like network

• fully connected layer, increasing to 4096 features

• c = 20 class scores and 4 bounding box coordinates at each position

• in a single stage, network performs regression from the image to a
7× 7× 24 tensor encoding detected classes and positions

• regression (`2) loss on both class scores and coordinates

• “objectness” score makes it look like two-stage

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

H

W

3

→
CNN 7

7

1024

→
FC

1
1

4096

→
FC 7

7

20 4

↓ ↓class bbox

• 3-channel input W = H = 448, 24-layer NiN-like network

• fully connected layer, increasing to 4096 features

• c = 20 class scores and 4 bounding box coordinates at each position

• in a single stage, network performs regression from the image to a
7× 7× 24 tensor encoding detected classes and positions

• regression (`2) loss on both class scores and coordinates

• “objectness” score makes it look like two-stage

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

H

W

3

→
CNN 7

7

1024

→
FC

1
1

4096

→
FC 7

7

20 4

↓ ↓class bbox

• 3-channel input W = H = 448, 24-layer NiN-like network

• fully connected layer, increasing to 4096 features

• c = 20 class scores and 4 bounding box coordinates at each position

• in a single stage, network performs regression from the image to a
7× 7× 24 tensor encoding detected classes and positions

• regression (`2) loss on both class scores and coordinates

• “objectness” score makes it look like two-stage

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

pros

• extremely fast: 45fps; 93× to 500× test speedup vs. R-CNN on
AlexNet, with similar performance

• end-to-end trainable, fully convolutional, one-stage detection

cons

• only up to one prediction per cell (fixed in later versions)

• trouble localizing small objects

• low-performance compared to two-stage detectors on strong networks

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

“you only look once” (YOLO)

pros

• extremely fast: 45fps; 93× to 500× test speedup vs. R-CNN on
AlexNet, with similar performance

• end-to-end trainable, fully convolutional, one-stage detection

cons

• only up to one prediction per cell (fixed in later versions)

• trouble localizing small objects

• low-performance compared to two-stage detectors on strong networks

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.

single shot detector (SSD)
[Liu et al. 2016]

• input image

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)
[Liu et al. 2016]

• groung truth bounding boxes

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)
[Liu et al. 2016]

• image partitioned into 8× 8 grid

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)
[Liu et al. 2016]

• set of anchors defined at each position, labeled as positive based on
overlap with ground truth

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)
[Liu et al. 2016]

• same process at different scales, e.g. 4× 4 grid

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)
[Liu et al. 2016]

• anchor size is relative to feature map scale

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)

H

W

3

→
CNN 38

38

512

19

19

1024

10

10

512

5

5

256

3

3

256

1
1

256 20a 4a

↓ ↓softmax bbox

3× 3 conv

• 3-channel input W = H = 300, VGG-16 conv4-3 features

• multiple scales by convolutional layers with stride 2

• c = 20 classification scores and 4 bounding box coordinates relative to
each of a = 6 anchors at each position from each of 6 last layers:
7308 predictions per class

• softmax on scores, regression loss on coordinates

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)

H

W

3

→
CNN 38

38

512

19

19

1024

10

10

512

5

5

256

3

3

256

1
1

256

20a 4a

↓ ↓softmax bbox

3× 3 conv

• 3-channel input W = H = 300, VGG-16 conv4-3 features

• multiple scales by convolutional layers with stride 2

• c = 20 classification scores and 4 bounding box coordinates relative to
each of a = 6 anchors at each position from each of 6 last layers:
7308 predictions per class

• softmax on scores, regression loss on coordinates

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)

H

W

3

→
CNN 38

38

512

19

19

1024

10

10

512

5

5

256

3

3

256

1
1

256 20a 4a

↓ ↓softmax bbox

3× 3 conv

• 3-channel input W = H = 300, VGG-16 conv4-3 features

• multiple scales by convolutional layers with stride 2

• c = 20 classification scores and 4 bounding box coordinates relative to
each of a = 6 anchors at each position from each of 6 last layers:
7308 predictions per class

• softmax on scores, regression loss on coordinates

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)

H

W

3

→
CNN 38

38

512

19

19

1024

10

10

512

5

5

256

3

3

256

1
1

256 20a 4a

↓ ↓softmax bbox

3× 3 conv

• 3-channel input W = H = 300, VGG-16 conv4-3 features

• multiple scales by convolutional layers with stride 2

• c = 20 classification scores and 4 bounding box coordinates relative to
each of a = 6 anchors at each position from each of 6 last layers:
7308 predictions per class

• softmax on scores, regression loss on coordinates

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)

pros

• best trade-off: 23 (SSD500) or 58fps (SSD300) with performance
closer (or superior) to faster R-CNN rather than YOLO

• many scales at no extra cost: many more detections compared to
YOLO, no need for RoI pooling

• bounding box regression is convolutional like RPN, but simpler pipeline
like YOLO and more aspect ratios with same number of anchors

cons

• pyramid starts at low resolution: difficulty with small objects

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

single shot detector (SSD)

pros

• best trade-off: 23 (SSD500) or 58fps (SSD300) with performance
closer (or superior) to faster R-CNN rather than YOLO

• many scales at no extra cost: many more detections compared to
YOLO, no need for RoI pooling

• bounding box regression is convolutional like RPN, but simpler pipeline
like YOLO and more aspect ratios with same number of anchors

cons

• pyramid starts at low resolution: difficulty with small objects

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.

deconvolutional single shot detector (DSSD)∗
[Fu et al. 2017]

O
rig

in
al
	P
re
di
c-
on

	la
ye
r	

conv1	

pool1	
conv2_x	

conv3_x	
conv4_x	 conv5_x	

DSSD	Layers	

SSD	Layers	

conv1	

pool1	
conv2_x	

conv3_x	
conv4_x	 conv5_x	

	Predic.on	Module	 	Deconvolu.on			Module	

Figure 1: Networks of SSD and DSSD on residual network. The blue modules are the layers added in SSD framework,
and we call them SSD Layers. In the bottom figure, the red layers are DSSD layers.

prediction process. Previous versions of SSD were based on
the VGG [26] network, but many researchers have achieved
better accuracy for tasks using Residual-101 [14]. Look-
ing to concurrent research outside of detection, there has
been a work on integrating context using so called “encoder-
decoder” networks where a bottleneck layer in the middle
of a network is used to encode information about an input
image and then progressively larger layers decode this into
a map over the whole image. The resulting wide, narrow,
wide structure of the network is often referred to as an hour-
glass. These approaches have been especially useful in re-
cent works on semantic segmentation [21], and human pose
estimation [20].

Unfortunately neither of these modifications, using the
much deeper Residual-101, or adding deconvolution layers
to the end of SSD feature layers, work “out of the box”.
Instead it is necessary to carefully construct combination
modules for integrating deconvolution, and output modules
to insulate the Residual-101 layers during training and al-
low effective learning.

The code will be open sourced with models upon publi-
cation.

2. Related Work

The majority of object detection methods, including
SPPnet [13], Fast R-CNN [11], Faster R-CNN [24], R-
FCN [3] and YOLO [23], use the top-most layer of a Con-
vNet to learn to detect objects at different scales. Although
powerful, it imposes a great burden for a single layer to
model all possible object scales and shapes.

There are variety of ways to improve detection accuracy
by exploiting multiple layers within a ConvNet. The first
set of approaches combine feature maps from different lay-
ers of a ConvNet and use the combined feature map to do
prediction. ION [1] uses L2 normalization [19] to com-
bine multiple layers from VGGNet and pool features for
object proposals from the combined layer. HyperNet [16]
also follows a similar method and uses the combined layer
to learn object proposals and to pool features. Because the

• builds on SSD on ResNet-101, introducing large-scale context

• similar to FPN, but one-stage:

• deconvolution () upsamples: high-resolution, high-level features
• prediction () (classifier + regressor) at all top-down layers

• improves accuracy, especially on small objects

• only slightly slower than SSD

Fu, Liu, Ranga, Tyagi and Berg 2017. DSSD: Deconvolutional Single Shot Detector.

speed-accuracy trade-offs
[Huang et al. 2016]

SSD	w/MobileNet,	Lo	Res	

R-FCN	w/
ResNet,	Hi	Res,	
100	Proposals	

Faster	R-CNN	w/ResNet,	Hi	
Res,	50	Proposals	

Faster	R-CNN	w/Incep.on	
Resnet,	Hi	Res,	300	
Proposals,	Stride	8	

SSD	w/Incep.on	V2,	Lo	Res	

Figure 2: Accuracy vs time, with marker shapes indicating meta-architecture and colors indicating feature extractor. Each (meta-architecture, feature
extractor) pair can correspond to multiple points on this plot due to changing input sizes, stride, etc.

Model summary minival mAP test-dev mAP
(Fastest) SSD w/MobileNet (Low Resolution) 19.3 18.8

(Fastest) SSD w/Inception V2 (Low Resolution) 22 21.6
(Sweet Spot) Faster R-CNN w/Resnet 101, 100 Proposals 32 31.9

(Sweet Spot) R-FCN w/Resnet 101, 300 Proposals 30.4 30.3
(Most Accurate) Faster R-CNN w/Inception Resnet V2, 300 Proposals 35.7 35.6

Table 3: Test-dev performance of the “critical” points along our optimality frontier.

147 model configurations; models for a small subset of ex-
perimental configurations (namely some of the high resolu-
tion SSD models) have yet to converge, so we have for now
omitted them from analysis.

4.1. Analyses

4.1.1 Accuracy vs time

Figure 2 is a scatterplot visualizing the mAP of each of our
model configurations, with colors representing feature ex-
tractors, and marker shapes representing meta-architecture.
Running time per image ranges from tens of milliseconds
to almost 1 second. Generally we observe that R-FCN
and SSD models are faster on average while Faster R-CNN
tends to lead to slower but more accurate models, requir-
ing at least 100 ms per image. However, as we discuss be-
low, Faster R-CNN models can be just as fast if we limit
the number of regions proposed. We have also overlaid
an imaginary “optimality frontier” representing points at

which better accuracy can only be attained within this fam-
ily of detectors by sacrificing speed. In the following, we
highlight some of the key points along the optimality fron-
tier as the best detectors to use and discuss the effect of the
various model configuration options in isolation.

4.1.2 Critical points on the optimality frontier.

(Fastest: SSD w/MobileNet): On the fastest end of this op-
timality frontier, we see that SSD models with Inception
v2 and Mobilenet feature extractors are most accurate of
the fastest models. Note that if we ignore postprocessing
costs, Mobilenet seems to be roughly twice as fast as In-
ception v2 while being slightly worse in accuracy. (Sweet
Spot: R-FCN w/Resnet or Faster R-CNN w/Resnet and
only 50 proposals): There is an “elbow” in the middle of
the optimality frontier occupied by R-FCN models using
Residual Network feature extractors which seem to strike
the best balance between speed and accuracy among our

8

Huang, Rathod, Sun, Zhu, Korattikara, Fathi, Fischer, Wojna, Song, Guardarrama and Murphy 2016. Speed-Accuracy Trade-Offs
for Modern Convolutional Object Detectors.

RetinaNet
[Lin et al. 2017]

input

C1

C2

C3

C4

C5

P5 det(c, a)

P4 det(c, a)

P3 det(c, a)

P2 det(c, a)

• base network: ResNet-101

• feature pyramid network

• multi-scale dense detection

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

RetinaNet
[Lin et al. 2017]

input

C1

C2

C3

C4

C5

P5

det(c, a)

P4

det(c, a)

P3

det(c, a)

P2

det(c, a)

• base network: ResNet-101

• feature pyramid network

• multi-scale dense detection

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

RetinaNet
[Lin et al. 2017]

input

C1

C2

C3

C4

C5

P5 det(c, a)

P4 det(c, a)

P3 det(c, a)

P2 det(c, a)

• base network: ResNet-101

• feature pyramid network

• multi-scale dense detection

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

RetinaNet: dense detection

4× conv(3, 256)

conv(3, 256) 4×

conv(3, ca)

conv(3, 4a)

focal bbox

input

det(c, a)

• c classification scores for each of a = 9 anchors at each position (3
scales, 3 aspect ratios)

• 4 bounding box coordinates relative to each anchor at each position

• focal loss on class scores, regression loss on coordinates

• no parameters shared between classification and regression branches

• parameters of detection subnets shared across all pyramid levels

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

RetinaNet: dense detection

4× conv(3, 256) conv(3, 256) 4×
conv(3, ca) conv(3, 4a)

focal bbox

input

det(c, a)

• c classification scores for each of a = 9 anchors at each position (3
scales, 3 aspect ratios)

• 4 bounding box coordinates relative to each anchor at each position

• focal loss on class scores, regression loss on coordinates

• no parameters shared between classification and regression branches

• parameters of detection subnets shared across all pyramid levels

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

RetinaNet: dense detection

4× conv(3, 256) conv(3, 256) 4×
conv(3, ca) conv(3, 4a)

focal bbox

input

det(c, a)

• c classification scores for each of a = 9 anchors at each position (3
scales, 3 aspect ratios)

• 4 bounding box coordinates relative to each anchor at each position

• focal loss on class scores, regression loss on coordinates

• no parameters shared between classification and regression branches

• parameters of detection subnets shared across all pyramid levels

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

RetinaNet: dense detection

4× conv(3, 256) conv(3, 256) 4×
conv(3, ca) conv(3, 4a)

focal bbox

input

det(c, a)

• c classification scores for each of a = 9 anchors at each position (3
scales, 3 aspect ratios)

• 4 bounding box coordinates relative to each anchor at each position

• focal loss on class scores, regression loss on coordinates

• no parameters shared between classification and regression branches

• parameters of detection subnets shared across all pyramid levels

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

what is wrong with dense detection?

• in a two-stage detector, the classifier is applied to a sparse set of
candidate object locations, which are found by binary classification
(object/non-object)

• in a one-stage detector, the classifier is applied to a dense set of
locations (e.g. a regular grid), which introduces extreme class
imbalance between foreground-background

• there is a vast number of easy negatives that can overwhelm the
detector

• as an alternative to OHEM, design the loss function such that it does
not penalize well-classified examples

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

what is wrong with dense detection?

• in a two-stage detector, the classifier is applied to a sparse set of
candidate object locations, which are found by binary classification
(object/non-object)

• in a one-stage detector, the classifier is applied to a dense set of
locations (e.g. a regular grid), which introduces extreme class
imbalance between foreground-background

• there is a vast number of easy negatives that can overwhelm the
detector

• as an alternative to OHEM, design the loss function such that it does
not penalize well-classified examples

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

focal loss

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

FL(p; γ) = −(1− p)γ log(p)
CE(p) = − log(p) = FL(p; 0)

 easy examples

probability of correct class, p

fo
ca

l
lo

ss
,

F
L
(p
;γ

)

γ = 0

γ = 0.5

γ = 1

γ = 2

γ = 5

• reduces the relative loss for well-classified examples (p > 0.5), putting
more focus on hard, misclassified examples

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

remember the perceptron loss? the margin?

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

−6 −4 −2 0 2 4 6
0

2

4

6

x

`(
x
)

logistic − ln(p)

focal (γ = 5) −(1− p)γ log(p)

• the probability of the correct class is p = σ(x) = 1
1+e−x , where

x = sa, s ∈ {−1, 1} is the “sign” target variable, and a the activation

• easy example means p > 0.5, or x > 0

• perceptron loss is zero for such examples; logistic and hinge are not

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

remember the perceptron loss? the margin?

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

−6 −4 −2 0 2 4 6
0

2

4

6

x

`(
x
)

logistic − ln(p)

focal (γ = 5) −(1− p)γ log(p)
perceptron [−x]+
hinge [1− x]+

• the probability of the correct class is p = σ(x) = 1
1+e−x , where

x = sa, s ∈ {−1, 1} is the “sign” target variable, and a the activation

• easy example means p > 0.5, or x > 0

• perceptron loss is zero for such examples; logistic and hinge are not

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

RetinaNet: performance

Focal Loss for Dense Object Detection

Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollár

Facebook AI Research (FAIR)

0 0.2 0.4 0.6 0.8 1

probability of ground truth class

0

1

2

3

4

5

lo
s
s

 = 0
 = 0.5

 = 1
 = 2

 = 5

well-classi�ed
examples

well-classi�ed
examples

CE(pt) = − log(pt)

FL(pt) = −(1− pt)
γ log(pt)

Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 − pt)

γ to the standard cross entropy criterion.
Setting γ > 0 reduces the relative loss for well-classified examples
(pt > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based
on a two-stage approach popularized by R-CNN, where a
classifier is applied to a sparse set of candidate object lo-
cations. In contrast, one-stage detectors that are applied
over a regular, dense sampling of possible object locations
have the potential to be faster and simpler, but have trailed
the accuracy of two-stage detectors thus far. In this paper,
we investigate why this is the case. We discover that the ex-
treme foreground-background class imbalance encountered
during training of dense detectors is the central cause. We
propose to address this class imbalance by reshaping the
standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. Our novel Focal
Loss focuses training on a sparse set of hard examples and
prevents the vast number of easy negatives from overwhelm-
ing the detector during training. To evaluate the effective-
ness of our loss, we design and train a simple dense detector
we call RetinaNet. Our results show that when trained with
the focal loss, RetinaNet is able to match the speed of pre-
vious one-stage detectors while surpassing the accuracy of
all existing state-of-the-art two-stage detectors.

50 100 150 200 250

inference time (ms)

28

30

32

34

36

38

C
O

C
O

 A
P

B C

D

E

F

G

RetinaNet-50

RetinaNet-101

AP time
[A] YOLOv2† [26] 21.6 25
[B] SSD321 [21] 28.0 61
[C] DSSD321 [9] 28.0 85
[D] R-FCN‡ [3] 29.9 85
[E] SSD513 [21] 31.2 125
[F] DSSD513 [9] 33.2 156
[G] FPN FRCN [19] 36.2 172
RetinaNet-50-500 32.5 73
RetinaNet-101-500 34.4 90
RetinaNet-101-800 37.8 198
†Not plotted ‡Extrapolated time

Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RetinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [27] system from [19]. We
show variants of RetinaNet with ResNet-50-FPN (blue circles) and
ResNet-101-FPN (orange diamonds) at five scales (400-800 pix-
els). Ignoring the low-accuracy regime (AP<25), RetinaNet forms
an upper envelope of all current detectors, and a variant trained for
longer (not shown) achieves 39.1 AP. Details are given in §5.

1. Introduction

Current state-of-the-art object detectors are based on
a two-stage, proposal-driven mechanism. As popularized
in the R-CNN framework [11], the first stage generates a
sparse set of candidate object locations and the second stage
classifies each candidate location as one of the foreground
classes or as background using a convolutional neural net-
work. Through a sequence of advances [10, 27, 19, 13], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [20].

Despite the success of two-stage detectors, a natural
question to ask is: could a simple one-stage detector achieve
similar accuracy? One stage detectors are applied over a
regular, dense sampling of object locations, scales, and as-
pect ratios. Recent work on one-stage detectors, such as
YOLO [25, 26] and SSD [21, 9], demonstrates promising
results, yielding faster detectors with accuracy within 10-
40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-
stage object detector that, for the first time, matches the

1

ar
X

iv
:1

70
8.

02
00

2v
1

 [
cs

.C
V

]
 7

 A
ug

 2
01

7

• RetinaNet on ResNet-50-FPN and ResNet-101-FPN performance on
COCO at five scales (400-800 pixels)

• outperforms all one-stage and two-stage detectors

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

one-stage vs. two-stage

• two-stage fights class imbalance; alternatively, use batch sampling,
hard negative mining, or a better loss function

• two-stage defines regions at different scales; alternatively, use multiple
scales from a feature pyramid

• two-stage resamples regions at different aspect ratios, or with
deformable parts; this has not been explored with feature pyramids or
one-stage detectors yet

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.

attention networks∗

• of course, there can be more stages!

• AttentionNet iterates bounding box regression and classification

Yoo, Park, Lee, Paek and Kweon. ICCV 2015. AttentionNet: Aggregating Weak Directions for Accurate Object Detection.

summary

• background: detectors (Viola & Jones, DPM, ISM, ESS), object
proposals, NMS, evaluation

• two-stage detection: R-CNN, SPP, fast/faster R-CNN, RPN

• parts: R-FCN, spatial transformers, deformable convolution

• upsampling∗: FCN, feature pyramids, TDM, FPN

• one-stage detection: OverFeat∗, YOLO, SSD∗, DSSD∗, RetinaNet∗,
focal loss

• with feature pyramids, multi-scale representation and appropriate loss,
the gap between one- and two-stage detection is closing

• attentional cascade classifiers are developed in parallel

	background
	two-stage detection
	object parts and deformation
	scale and feature pyramids*
	one-stage detection

