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beyond classification

object localization
classify + regress
bounding box (x,y,w, h)



beyond classification

shelves

object localization semantic segmentation
classify + regress pixel-wise classify
bounding box (x,y,w, h)



beyond classification

shelves

object localization semantic segmentation
classify + regress pixel-wise classify
bounding box (x,y,w, h)

object detection
per region: classify 4+ regress
bounding box (x,y,w, h)



beyond classification

SIENES

object localization semantic segmentation
classify + regress pixel-wise classify
bounding box (x,y,w, h)

object detection instance segmentation
per region: classify + regress per region: pixel-wise classify
bounding box (z,y,w, h)



template matching, or sliding window

e slide template over image at multiple positions

e positions can be overlapping, or even dense (every pixel)
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e positions can be overlapping, or even dense (every pixel)

e seek maximum similarity score



template matching, or sliding window

e slide template over image at multiple positions
e positions can be overlapping, or even dense (every pixel)

e seek maximum similarity score (e.g. cross-correlation)



two problems

e to detect a given instance (template), a similarity score may be
enough; but to detect an object of a given class, we need strong
features and a good classifier

e with unknown position, scale and aspect ratio, the search space is
4-dimensional: to search efficiently, we need something better than
exhaustive search



real-time face detection
[Viola and Jones 2001]
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o millions of simple features exhaustively evaluated on integral image
e learning weak classifiers by AdaBoost

e classifier cascade provides a focus-of-attention mechanism

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.



integral image: construction

e given an image, precompute its sum over the rectangle with vertices
the top-left corner and any point x in the image

e the collection of all sums is the integral image: it can be computed by
one pass over the original image and takes the same space as the
original image

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.



integral image: use

e then, the sum over any rectangle (D) can be evaluated by 3 scalar
operations on its vertices (a, b, ¢, d)

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.



integral image: use

e then, the sum over any rectangle (D) can be evaluated by 3 scalar

operations on its vertices (a, b, ¢, d)

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.



integral image: use

d

e then, the sum over any rectangle (D) can be evaluated by 3 scalar

operations on its vertices (a, b, ¢, d)

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.



histogram of oriented gradients (HOG)
[Dalal and Triggs 2005]

e dense, SIFT-like descriptors
e SVM classifier

e sliding window detection at all positions and scales

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection.



deformable part model (DPM)

[Felzenszwalb et al. 2008]
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e appearance represented by HOG
e spatial configuration inspired by “pictorial structures”

e part locations treated as latent variables: latent SVM

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.



deformable part model: inference

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.



deformable part model: inference

features

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.



deformable part model: inference

"head"”

“shoulder”

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.



deformable part model: inference

input model

responses

deformation

“shoulder” deformation

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.



deformable part model: inference

input model

responses

combined score

deformation

“shoulder” deformation

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.



hard example mining (bootstrapping)

e an example is called hard for a model with parameters 0 if it
contributes non-zero loss (is incorrectly classified or inside the
margin); otherwise easy

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.
Sung and Poggio. PAMI 1998. Example-Based Learning for View-Based Human Face Detection.



hard example mining (bootstrapping)

e an example is called hard for a model with parameters 0 if it
contributes non-zero loss (is incorrectly classified or inside the
margin); otherwise easy

e repeat:

1 optimize the model @ on a subset C' (cache) of the training set D
2 if all hard examples of D are included in C, stop
3 shrink: remove any number of easy examples from C

4 grow: add to C' any number of new samples from D, including at
least a new hard one

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.
Sung and Poggio. PAMI 1998. Example-Based Learning for View-Based Human Face Detection.



hard example mining (bootstrapping)

e an example is called hard for a model with parameters 0 if it
contributes non-zero loss (is incorrectly classified or inside the
margin); otherwise easy

e repeat:

1 optimize the model @ on a subset C' (cache) of the training set D

2 if all hard examples of D are included in C, stop

3 shrink: remove any number of easy examples from C

4 grow: add to C' any number of new samples from D, including at
least a new hard one

e this algorithm terminates and finds the optimal model for D

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.
Sung and Poggio. PAMI 1998. Example-Based Learning for View-Based Human Face Detection.



implicit shape model (ISM): training
[Leibe et al. 2008]
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Training Images Local Appearance Codebook Spatial Occurrence Distributions
(+Reference Segmentations) Features (Cluster Centers) (non-parametric)

e |local features and descriptors extracted on training images
e appearance codebook built

e spatial occurrence distribution of features learned, relative to ground
truth bounding boxes

Leibe, Leonardis and Schiele. 1JCV 2008. Robust Object Detection With Interleaved Categorization and Segmentation.



implicit shape model (ISM): inference
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Refined Hypotheses Backprojected Backprojection
(optional) Hypotheses of Maxima
o local features and descriptors extracted on test image
e descriptors assigned to visual words
o generalized Hough transform: probabilistic class-specific votes for the
object center
e optionally, back-project hypotheses for top-down segmentation

Leibe, Leonardis and Schiele. [JCV 2008. Robust Object Detection With Interleaved Categorization and Segmentation.



efficient subwindow search (ESS)
[Lampert et al. 2008]

Y

largest (t2,b1,£1,72)

T = [t1,12] all possible A = (T, B, L, R)

smallest (t1, ba, £2,71)

B = [b1,b,] }[

L=[ty, 0] R=[r,rs] =

o the filled area A represents the set of all rectangles lying in this area

Lampert, Blaschko and Hofmann. CVPR 2008. Beyond Sliding Windows: Object Localization By Efficient Subwindow Search.
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efficient subwindow search (ESS)
[Lampert et al. 2008]

Yy
largest (t2,b1,4€1,72)
T = [th t2] all possible Ay = (T, B, L, R)
smallest (t1, ba, £, 71)
B = [b17 b?] }[
L= [Zl, 52] R= [7'17 TQ] r

o the filled area A represents the set of all rectangles lying in this area

e this set is split as A = A; U Ag along the largest side and bounds of
the objective function are estimated for both subsets

e optimization is performed by branch-and-bound

Lampert, Blaschko and Hofmann. CVPR 2008. Beyond Sliding Windows: Object Localization By Efficient Subwindow Search.



what is an object?
[Alexe et al. 2010]

o seek a generic, class-agnostic objectness measure, quantifying how
likely it is for an image region to contain an object

o if the measure is simple and fast to compute, it can yield a number of
candidate object proposals or regions of interest (Rol) where to apply
a more expensive classifier

Alexe, Deselaers and Ferrari. CVPR 2010. What is an Object?



what is an object?
[Alexe et al. 2010]

o seek a generic, class-agnostic objectness measure, quantifying how
likely it is for an image region to contain an object

o if the measure is simple and fast to compute, it can yield a number of
candidate object proposals or regions of interest (Rol) where to apply
a more expensive classifier

e score the blue regions, partially covering the objects, lower than the
green ground truth regions

o even lower the red regions containing only stuff or small object parts

Alexe, Deselaers and Ferrari. CVPR 2010. What is an Object?



selective search (SS)
[van de Sande et al. 2011]

input image ground truth

van de Sande, Uijlings, Gevers and Smeulders. ICCV 2011. Segmentation As Selective Search for Object Recognition.



selective search (SS)
[van de Sande et al. 2011]

hierarchical grouping object proposals

van de Sande, Uijlings, Gevers and Smeulders. ICCV 2011. Segmentation As Selective Search for Object Recognition.



selective search (SS)

e hierarchical segmentation at all scales
e simple geometric and appearance features (e.g. size, texture)

e high recall: ~ 97% of ground truth objects found with ~ 1000 — 2000
proposals/image at ~ 2-5s/image

van de Sande, Uijlings, Gevers and Smeulders. ICCV 2011. Segmentation As Selective Search for Object Recognition.



edge boxes (EB)

[Zitnick and Dollar 2014]

% i \/f

fast evaluation of millions of regions of different scales/aspect ratios
at different positions

measures edges that are contained in a region and do not intersect its
boundary

performance similar to SS, but at ~ 0.25s/image on average

Zitnick and Dollar. ECCV 2014. Edge Boxes: Locating Object Proposals From Edges.



non-maximum suppression (NMS)




non-maximum suppression (NMS)

region 1 remains



non-maximum suppression (NMS)

region 2 remains



non-maximum suppression (NMS)

region 3 remains



non-maximum suppression (NMS)

region 4 is rejected because J(r4,71) = 0.2750 > 0.25



non-maximum suppression (NMS)

region 5 is rejected because J(r5,71) = 0.5366 > 0.25



non-maximum suppression (NMS)

region 6 is rejected because J(rg,72) = 0.3268 > 0.25



non-maximum suppression (NMS)

region 7 is rejected because J(r7,73) = 0.3011 > 0.25



non-maximum suppression (NMS)

region 8 remains



non-maximum suppression (NMS)

region 9 is rejected because J(rg,r3) = 0.4706 > 0.25



non-maximum suppression (NMS)

in the end, regions 1, 2, 3, 8 remain



non-maximum suppression on regions

e given regions 11,79, ... of each class independently, ranked by
decreasing order of confidence score

o for i =2,3,..., reject region r; if it has intersection-over-union (loU)
overlap higher then a threshold 7

J(ri,ri) > T

with some higher scoring region r; with j < i that has not been
rejected



non-maximum suppression is everywhere

accumulator local maxima

e we have used NMS to reject pixels or 1d-vector elements (rather than
regions) accoding to some neighborhood relation, in
e corner detection
e feature point tracking
e SIFT dominant orientation selection
e Hough transform



region overlap

B ANB AUB

A

given regions A, B C R? represented as planar point sets (including
interior)
their intersection over union (loU) or Jaccard index is

ANB
(4, B) = :AUB;




the problem of non-maximum suppression

score, s(x)

domain, z

e ground truth positions

Hosang, Benenson and Schiele. 2015. A Convnet for Non-Maximum Suppression.



the problem of non-maximum suppression

score, s(x)

domain, z

e with a narrow neighborhood, there are two true positives (¢) but also

two false positives (¢): precision is low

Hosang, Benenson and Schiele. 2015. A Convnet for Non-Maximum Suppression.



the problem of non-maximum suppression

score, s(x)

domain, z

e with a wide neighborhood, there is only one true positive (¢), one false
positive (¢) and one false negative (0): recall is low

Hosang, Benenson and Schiele. 2015. A Convnet for Non-Maximum Suppression.



non-maximum suppression

e there are several recent attempts to improve NMS, e.g. merging or
down-weighting instead of rejecting, replace it by a CNN, or integrate
a differentiable version so that the entire pipeline is end-to-end
trainable

e here we assume there is always NMS as the last post-processing stage
after each detector



detection evaluation
[Russakovsky et al. 2015]

e for each image and for each class independently, rank predicted
regions by descending order of confidence and assign each region r to
the ground truth region ¢* = argmax, J(r, g) of maximum overlap if
J(r,g*) > 7 and mark it as true positive, else false

e each ground truth region can be assigned up to one predicted region

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg and Fei-Fei. [JCV 2015. Imagenet
Large Scale Visual Recognition Challenge.



detection evaluation
[Russakovsky et al. 2015]

e for each image and for each class independently, rank predicted
regions by descending order of confidence and assign each region r to
the ground truth region ¢* = argmax, J(r, g) of maximum overlap if
J(r,g*) > 7 and mark it as true positive, else false

e each ground truth region can be assigned up to one predicted region

e now for each class independently, rank predicted regions of all images
by descending order of confidence and compute average precision
(AP) according to true/false labels

e the mean average precision (mAP) is the mean over classes

Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg and Fei-Fei. [JCV 2015. Imagenet
Large Scale Visual Recognition Challenge.



average precision (AP)

o ranked list of items with true/false labels
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o # total ground truth n, current rank k, # true positives t

e precision p = % recall r = %

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision
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o # total ground truth n, current rank k, # true positives t
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average precision (AP)

o ranked list of items with true/false labels

1 23456 7 8 9 1011 12
TTFTFFTFTTTFF
t=2
1 k=3 p=+Lt=2=067
n=6 r==51=2=033
0.7 1
0.6 1
0.5+
0!
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o # total ground truth n, current rank k, # true positives t

e precision p = % recall r = %

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels
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average precision (AP)

o ranked list of items with true/false labels
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average precision (AP)

o ranked list of items with true/false labels

1 2345 6 7 8 9 1011 12
TTFTFFTFTTFF
t=3
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Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

1 2 3 45 6 7 8 9101112
TTFTFFTFTTEFF
p t=4
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0.7
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e # total ground truth n, current rank k, # true positives t
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Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

1 2 3 4 5 6 7 8 9 10 11 12
TTFTFFTFTTEFF
P t=4
11 L=4-=050
4
t=2—067
0.7 1
0.6 T
0.5 +
Ol ! !
0.5 1 r

e # total ground truth n, current rank k, # true positives t
¢

.o ot o
e precision p= ¢, recall r =
Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

1 2 3 4 5 6 7 8 9 10 11 12
TTFTFFTFTTEFF
p t=25
14 1 =2=0.56
5
L=2=083
0.7 1
0.6 T
0.51»
Ol ! !
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e # total ground truth n, current rank k, # true positives t

e precision p = % recall r = %

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

0.7 1
0.6 1

0.5+

0

12 3 45 6 7 8

9 10 11 12
TTFTFFTFTTFF
t=26
k=10 p=f=1=0.60

e # total ground truth n, current rank k, # true positives t
e precision p = % recall r =

0:5 1 T
t

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

12 3 45 6 7 8

9 10 11 12
TTFTFFTFTTTFF
p t=6
11 k=11 p=f=1; =0.55

0.7 1
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0! #
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e # total ground truth n, current rank k, # true positives t
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Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

12 3 45 6 7 8
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TTFTFFTFTTFF
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Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

1 23456 7 8 9101112
TTFTFFTFTTFETF
p
1.
0.7 1
0.6 1
0.5+
0

0.5 1 T

e average precision = area under curve

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



average precision (AP)

o ranked list of items with true/false labels

1 23456 7 8 9101112
TTFTFFTFTTFETF
p
1<
0.7 1
0.6 1
0.5+
0

0.5 1 7
e average precision = area under curve (filled-in curve)

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision



object detection datasets

e PASCAL VOC 2007-12: 20 classes; images 5-11k train/val, 5-11k
test (public for 2007)

e ImageNet ILSVRC 2010-17: 200 classes (subset or merged from
classification task); images 400-450k train (partially annotated), 20k
val, 40k test

e COCO 2015-: 80 classes; images 80k train, 40k val (115k/5k in
2017), 40k test, 120k unlabeled; smaller objects

e Open Images 2018-: 600 classes; images 1.74M train, 41k val, 125k
test

Everingham et al. 1JCV 2015. The PASCAL Visual Object Classes Challenge: a Retrospective.

Russakovsky et al. 1JCV 2015. Imagenet Large Scale Visual Recognition Challenge.

Lin et al. ECCV 2014. Microsoft COCO: Common Objects in Context.

Kuznetsova et al. 2018. The Open Images Dataset V4: Unified image classification, object detection, and visual relationship
detection at scale.



two-stage detection



regions with CNN features (R-CNN)

[Girshick et al. 2014]

e 3-channel RGB input, fixed width W = 500 pixels

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.



regions with CNN features (R-CNN)

[Girshick et al. 2014]

e 3-channel RGB input, fixed width W = 500 pixels
e ~ 2000 SS region proposals

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.



regions with CNN features (R-CNN)

[Girshick et al. 2014]

e 3-channel RGB input, fixed width W = 500 pixels
e ~ 2000 SS region proposals warped into fixed w x h = 227 x 227

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.



regions with CNN features (R-CNN)

[Girshick et al. 2014]
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o 41—
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e 3-channel RGB input, fixed width W = 500 pixels
e ~ 2000 SS region proposals warped into fixed w x h = 227 x 227
e each proposal yields a k = 4096 dimensional feature by CaffeNet

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
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[Girshick et al. 2014]
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e 3-channel RGB input, fixed width W = 500 pixels
e ~ 2000 SS region proposals warped into fixed w x h = 227 x 227
e each proposal yields a k = 4096 dimensional feature by CaffeNet

o each feature is classified into ¢ classes by ¢ one-vs. -rest SVMs and
localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.
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regions with CNN features (R-CNN)

pros

e region proposals, SVM classifier and NMS are standard; here one just
replaces the features (e.g. HOG) by CNN

e CNN features are 4k-dimensional, compared e.g. to 360k dimensions
of previous state of the art

e transfer learning: network pre-trained on 1.2M ImageNet images, then
ImageNet-specific 1000-way classification layer replaced by randomly
initialized (¢ + 1)-way (c classes plus background) and fine-tuning

cons

e slow (13s/image): image warped and forwarded through network for
each of the ~ 2000 region proposals

e 4 stages: region extraction, CNN features, SVM classifier, regressor

e positives/negatives defined differently in fine-tuning vs. SVM

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.



bounding box regression

e at training, given proposed and ground truth region p, g € R?*, define
normalized target ¢ for region center (x,y) and size (w, h)
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e at training, given proposed and ground truth region p, g € R?*, define
normalized target ¢ for region center (x,y) and size (w, h)

ty = (9 — Pz)/Pw ty = 10g(gw/Pw)
ty = (9y — py) /P tp = log(gn/pn)

e for j € {z,y,w, h}, learn mapping y; = f;(p) according to least
squares loss

L(yj, ty) = (yj — t;)?
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bounding box regression

e at training, given proposed and ground truth region p, g € R?, define
normalized target ¢ for region center (x,y) and size (w, h)

= (.gw - p:v)/pw lw = log(gw/pw)

2
ty = (9y — py)/pPn tn, = log(gn/pn)

o for j € {z,y,w, h}, learn mapping y; = f;j(p) according to least
squares loss

2
L(yj: t) = (y; — t5)
e at inference, given proposal p, predict region p according to

Dy = pwfx(p) + Dz Dw = Pw eXp(fw (p))
Py = Prfy(p) + Dy Pn = pnexp(fa(p))

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation.



spatial pyramid pooling (SPP)

[He et al. 2014]

e we need to extract features and classify each region

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
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spatial pyramid pooling (SPP)
[He et al. 2014]

crop warp

| image |—>| crop/warp |—>| conv layers |—>| fc layers |—>| output |
| image |—>| conv layers |—>| SPP |—>| fc layers |—>| output |

e we need to extract features and classify each region

e we can crop or warp them to fixed size, then feed to CNN for both

e or we can extract features of arbitrary size with convolutions,
max-pool features to fixed size, then classify

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
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e 3-channel RGB input, arbitrary size
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3-channel RGB input, arbitrary size

input yields a single k dimensional feature map

e each region proposal projected onto feature maps

then max-pooled into a number of fixed sizes 1 x 1,2 x 2,4 x 4 etc.
and concatenated into fixed-length representation
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spatial pyramid pooling (SPP)
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3-channel RGB input, arbitrary size

input yields a single k dimensional feature map

e each region proposal projected onto feature maps

then max-pooled into a number of fixed sizes 1 x 1,2 x 2,4 x 4 etc.
and concatenated into fixed-length representation

e when the pyramid has only one level, we call this Rol pooling

He, Zhang, Ren and Sun. ECCV 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
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[Girshick 2015]
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fast R-CNN (FRCN)

[Girshick 2015]

e 3-channel RGB input, arbitrary size
e input yields a single k = 4096 dimensional feature map by VGG-16

e ~ 2000 region proposals, projected onto feature maps

Girshick. ICCV 2015. Fast R-CNN.
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[Girshick 2015]
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fast R-CNN (FRCN)

[Girshick 2015]
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3-channel RGB input, arbitrary size

input yields a single kK = 4096 dimensional feature map by VGG-16

~ 2000 region proposals, projected onto feature maps and Rol-pooled
into fixed size w' X A/ x k=7TxT7Txk

several fully-connected layers follow, for each pooled map

Girshick. ICCV 2015. Fast R-CNN.



fast R-CNN (FRCN)

[Girshick 2015]
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e 3-channel RGB input, arbitrary size
e input yields a single k = 4096 dimensional feature map by VGG-16

e ~ 2000 region proposals, projected onto feature maps and Rol-pooled
into fixed size w' X A/ x k=7TxT7Txk

e several fully-connected layers follow, for each pooled map

e each pooled map is classified into ¢ + 1 classes (¢ 4+ background) by
single softmax and localized by bounding box regression

Girshick. ICCV 2015. Fast R-CNN.
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o fast (0.32s/image; 9x training, 213X test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
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fast R-CNN (FRCN)

pros

o fast (0.32s/image; 9x training, 213X test speedup vs. R-CNN):
image forwarded through network only once, only few layers are
region-specific

e 2 stages: only region proposals are separate; features, classifier and
regressor are trained end-to-end with multi-task loss

e better performance

cons

e region proposals are still needed for performance, but are now the
bottleneck (~ 2s/image)

e single-scale

Girshick. ICCV 2015. Fast R-CNN.



regression loss

e given region p and target ¢, learn mapping y = f(p) according to
smooth /1 or Huber loss, which prevents exploding gradients

Ly.t)= Y Ly —t))

Je{w7y’h’w}
I2 H
z fle| <1
V& — 2 !
i() { |z| — 5, otherwise

Huber. AS 1964. Robust Estimation of a Location Parameter.



learning object proposals: MultiBox detector”
[Erhan et al. 2014]

e a fixed number (e.g. 100 or 200) of class-agnostic object proposals
are learned by regression on image representation

e this is faster than e.g. selective search

o however, proposal generation is not convolutional, but rather based on
a fully connected layer

o the next step would be to integrate object proposals and classifier,
making the pipeline end-to-end trainable

Erhan, Szegedy, Toshev and Anguelov. CVPR 2014. Scalable Object Detection Using Deep Neural Networks.



faster R-CNN

[Ren et al. 2015]

e same input, same VGG-16 feature maps as Fast R-CNN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



faster R-CNN

[Ren et al. 2015]
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e same input, same VGG-16 feature maps as Fast R-CNN
o proposals detected directly on feature maps by RPN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



faster R-CNN

[Ren et al. 2015]
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e same input, same VGG-16 feature maps as Fast R-CNN

o proposals detected directly on feature maps by RPN and max-pooled

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



faster R-CNN

[Ren et al. 2015]
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e same input, same VGG-16 feature maps as Fast R-CNN

o proposals detected directly on feature maps by RPN and max-pooled

e same classifier, same bounding box regression, but now also for RPN

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



region proposal network (RPN)
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4096

e same input, same feature maps

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
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e same input, same feature maps, dimension reduced to 512
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region proposal network (RPN)

3 x3

conv

4096 512

e same input, same feature maps, dimension reduced to 512

e a =9 anchors at each position, for 3 scales and 3 aspect ratios
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region proposal network (RPN)
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e same input, same feature maps, dimension reduced to 512
e a =9 anchors at each position, for 3 scales and 3 aspect ratios

e 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



region proposal network (RPN)
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3x3 1x1
— —
CNN h h
conv conv
4096 512 2a 4a

softmax J, J, bbox

e same input, same feature maps, dimension reduced to 512
e a =9 anchors at each position, for 3 scales and 3 aspect ratios

e 2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

e softmax on scores, regression loss on coordinates

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



region proposal network (RPN)

w w w w
3 X3 1x1 -
CNN p - h - h NMS
conv conv
4096 512 2a 4a

softmax J, J, bbox

e same input, same feature maps, dimension reduced to 512

a =9 anchors at each position, for 3 scales and 3 aspect ratios

2a classification (object/non-object) scores and 4a bounding box
coordinates relative to anchor at each position

softmax on scores, regression loss on coordinates

region proposals by non-maxima suppression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



faster R-CNN

pros

o faster (0.2s/image including proposals; 10x test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
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e trained end-to-end including features, region proposals, classifier and
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e still, several fully-connected layers needed for region-specific tasks
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faster R-CNN

pros

o faster (0.2s/image including proposals; 10x test speedup vs. fast
R-CNN): only few layers are used for RPN and region-specific
classification and regression

e trained end-to-end including features, region proposals, classifier and
regressor

e more accurate: region proposals are learned, RPN is convolutional

cons

e still, several fully-connected layers needed for region-specific tasks
e still single-scale

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.



online hard example mining (OHEM)*

[Shrivastava et al. 2016]

¢ models with separate SVM classifier (R-CNN, SPP) use Rol-centric
mini-batches, sampled from all training images

e to enable end-to-end fine-tuning of all layers, image-centric
mini-batches are used with very few images (1-2) but thousands of

candidate regions

Shrivastava, Gupta and Girshick. CVPR 2016. Training Region-Based Object Detectors with Online Hard Example Mining.
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online hard example mining (OHEM)*

[Shrivastava et al. 2016]

* models with separate SVM classifier (R-CNN, SPP) use Rol-centric
mini-batches, sampled from all training images

e to enable end-to-end fine-tuning of all layers, image-centric
mini-batches are used with very few images (1-2) but thousands of
candidate regions

e most regions are negative: this class imbalance can overwhelm the
classifier

e it is standard to use a fixed positive to negative ratio (e.g. 1:1 or 1:4)

e OHEM, instead, evaluates all candidate regions and samples the
hardest ones, without any fixed ratio

Shrivastava, Gupta and Girshick. CVPR 2016. Training Region-Based Object Detectors with Online Hard Example Mining.



object parts and deformation



region-based fully convolutional network (R-FCN)
[Ren et al. 2016]
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3
e 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.



region-based fully convolutional network (R-FCN)
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e 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

o r X1 =7TXT7 position-sensitive score maps per class, Rol pooling

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.



region-based fully convolutional network (R-FCN)
[Ren et al. 2016]
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e 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN
o r X1 =7TXT7 position-sensitive score maps per class, Rol pooling

e similarly, 472 position-sensitive coordinates for regression

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.



region-based fully convolutional network (R-FCN)
[Ren et al. 2016]
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o r X1 =7TXT7 position-sensitive score maps per class, Rol pooling

2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN

similarly, 472 position-sensitive coordinates for regression

no FC, just average pooling

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.



position-sensitive score maps and Rol pooling

image and Rol position-sensitive

Rol-pool

, g
position-sensitive score maps

e Rol is correctly aligned with the object

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.
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position-sensitive score maps and Rol pooling

H N~
—
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position-sensitive score maps

e Rol is not correctly aligned with the object

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.



region-based fully convolutional network (R-FCN)

pros

e fully convolutional: no more FC layers, maximum feature sharing
bewteen all tasks (RPN, classification, regression)

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.
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e fully convolutional: no more FC layers, maximum feature sharing
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o cells of position-sensitive Rol pooling are fixed
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region-based fully convolutional network (R-FCN)

pros

e fully convolutional: no more FC layers, maximum feature sharing
bewteen all tasks (RPN, classification, regression)

o still, spatial information is preserved by position-sensitive layer,
improving localization accuracy

e faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)
cons

o cells of position-sensitive Rol pooling are fixed
o still single-scale

Dai, Li, He and Sun. 2016. R-FCN: Object Detection via Region-Based Fully Convolutional Networks.



spatial transformer networks (STN)*
[Jaderberg et al. 2015]

e input image yields a k£ dimensional feature map

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.
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spatial transformer networks (STN)*
[Jaderberg et al. 2015]

spatial transformer

e input image yields a k dimensional feature map

a localization network L regresses a geometric transformation 6

a transformer Ty applies the transformation to the feature map

the transformation can involve resampling, cropping, even deformation

the localization network receives no supervision other than what is
backpropagated from the end task

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.



spatial transformer networks: part learning*

e 2 or 4 spatial transformers predict discriminative object parts with no
supervision other than the class label

e the localization network is based on GoogleNet and is shared across
transformers; features are extracted by one GooglLeNet for each region

o features are concatenated and the image is classified by a single fully
connected layer with softmax

Jaderberg, Simonyan, Zisserman and Kavukcuoglu. NIPS 2015. Spatial Transformer Networks.



deformable Rol pooling
[Ren et al. 2017]

k r2(c+1)

o same features, same RPN, same position-sensitive scores as R-FCN

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable Rol pooling
[Ren et al. 2017]
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e same features, same RPN, same position-sensitive scores as R-FCN

o cell offsets by FC on Rol-pooled features

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable Rol pooling
[Ren et al. 2017]
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e same features, same RPN, same position-sensitive scores as R-FCN

o cell offsets by FC on Rol-pooled features, deformable Rol pooling

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable Rol pooling

[Ren et al. 2017]
g

h
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avg

pool 1
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e same features, same RPN, same position-sensitive scores as R-FCN

o cell offsets by FC on Rol-pooled features, deformable Rol pooling

e same average pooling

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable convolution
[Ren et al. 2017]

e standard convolution on 3 x 3 regular sampling grid

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable convolution
[Ren et al. 2017]

e

o«

e scaled grid (as in automatic scale selection, but dense)

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable convolution
[Ren et al. 2017]
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e rotated grid (as in dominant orientation selection, but dense)

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable convolution
[Ren et al. 2017]

o deformed sampling grid where offsets are computed per pixel

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable convolution: receptive field (2 layers)

e standard convolution: receptive field grows with depth but only
linearly, remains rectangular and is translation invariant

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable convolution: receptive field (2 layers)
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e standard convolution: receptive field grows with depth but only
linearly, remains rectangular and is translation invariant

e deformable convolution: receptive field grows arbitrarily with depth,
adapts per location and takes arbitrary shape

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable convolution: receptive field (2 layers)

e red: 93 = 729 sampling locations in 3 levels of 3 x 3 deformable filters
for three units (green)

o receptive field adapts to object size and shape

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



deformable Rol pooling

o deformed 3 x 3 cells (red) for an input Rol (yellow)

o cells adapt to part locations of non-rigid objects

Dai, Qi, Xiong, Li, Zhang, Hu and Wei. ICCV 2017. Deformable Convolutional Networks.



scale and feature pyramids™



fully convolutional networks (FCN)*
[Long et al. 2015]

forward /inference

<«

backward/learning

e feature maps capture high-level semantics but are of low resolution
e here, they are upsampled to original pixel resolution

e given pixel-wise class label supervision, the network learns pixel-wise
prediction for semantic segmentation

e there are no fully-connected layers, hence “fully convolutional”

Long, Shelhamer and Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.



learning to upsample”
[Noh et al. 2015]
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e the upsampling process is improved by learning to invert the
max-pooling and convolution operations with unpooling and
deconvolution

e instance-wise segmentations are obtained by applying the network to
individual object proposals, as in detection

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.



learning to upsample

14 x 14 deconv 28 x 28 unpool

e resolution is decreased from 224 x 224 down to 7 x 7 by five 2 x 2
pooling layers and finally to 1 x 1 by fully connected layer

e it is then increased back to 7 x 7, 14 x 14 and finally up to 224 x 224
by five unpooling and deconvolution layers)

e the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.



learning to upsample

28 x 28 deconv 56 x 56 unpool

e resolution is decreased from 224 x 224 down to 7 x 7 by five 2 x 2
pooling layers and finally to 1 x 1 by fully connected layer

e it is then increased back to 7 x 7, 14 x 14 and finally up to 224 x 224
by five unpooling and deconvolution layers)

e the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.



learning to upsample

56 x 56 deconv 112 x 112 unpool

e resolution is decreased from 224 x 224 down to 7 x 7 by five 2 x 2
pooling layers and finally to 1 x 1 by fully connected layer

e it is then increased back to 7 x 7, 14 x 14 and finally up to 224 x 224
by five unpooling and deconvolution layers)

e the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.



learning to upsample

112 x 112 deconv 224 x 224 unpool

e resolution is decreased from 224 x 224 down to 7 x 7 by five 2 x 2
pooling layers and finally to 1 x 1 by fully connected layer

e it is then increased back to 7 x 7, 14 x 14 and finally up to 224 x 224
by five unpooling and deconvolution layers)

e the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.



learning to upsample

224 x 224 deconv

e resolution is decreased from 224 x 224 down to 7 x 7 by five 2 x 2
pooling layers and finally to 1 x 1 by fully connected layer

e it is then increased back to 7 x 7, 14 x 14 and finally up to 224 x 224
by five unpooling and deconvolution layers)

o the most appropriate feature map is chosen in each layer for
visualization

Noh, Hong, and Han. ICCV 2015. Learning Deconvolution Network for Semantic Segmentation.



upsampling for detection

e we may not need pixel-wise prediction for detection, but we still higher

resolution than e.g. 14 x 14 or 7 x 7 to detect and localize small
objects accurately

e in fact, as we upsample, we will combine detections from multiple
layers corresponding to multiple scales



2%

2x

3%

3%

3%

2x

network “stages” or “blocks”

VGG-16

volume

input (224, 3) 224 x 224 x 3

conv(3,64,p1) | 224 x 224 x 64
pool(2) 112 x 112 x 64
conv(3,128, pl) 112 x 112 x 128
pool(2) 56 x 56 x 128
conv(3,256,pl) 56 x 56 x 256
pool(2) 28 x 28 x 256
conv(3,512,p1) | 28 x 28 x 512
pool(2) 14 x 14 x 512
conv (3,512, pl) 14 x 14 x 512
pool(2) 7% 7% 512
£c(1000) 1,000

ResNet-101
volume
24 243

conv (7,64, p3, s2) 112 x 112 x 64
pool(3,2,pl) 56 x 56 x 64
3x[ res(3, (64, 256)) 56 % 56 x 256

res(3, (128,512), 52) | 28 x 28 x 512

3x|  res(3,(128,512)) 28 x 28 x 512
1es(3, (256, 1024), 52) | 14 x 14 x 1024

22x [ res(3, (256, 1024)) | 14 x 14 x 1024

7 x 7 x 2048
2x[ res(3,(512,2048)) | 7 x 7 x 2048
avg(7) 2048
£¢(1000) 1000



Ch

Cs

CS

Cy

Cs

network “stages” or “blocks”

VGG-16

volume

input (224, 3) 224 x 224 x 3

2x| conv(3,64,p1) | 224 x 224 x 64

pool(2) 112 x 112 x 64
2x| conv(3,128,p1) | 112 x 112 x 128
pool(2) 56 x 56 x 128
3x| conv(3,256, pl) 56 x 56 x 256
pool(2) 28 x 28 x 256
3x| conv(3,512,p1) | 28 x 28 x 512
pool(2) 14 x 14 x 512
3x| conv(3,512, pl) 14 x 14 x 512
pool(2) 7% 7% 512

2x [ £c(4096) 4,096
fc(lOOO) 1,000

ResNet-101
volume
input (224, 3) 224 x 224 x 3
conv (7,64, p3, s2) 112 x 112 x 64
pool(3,2,pl) 56 x 56 x 64
3x[ res(3, (64, 256)) 56 x 56 x 256

3x

res(3, (128, 512), s2)

res(3, (128,512))

28 x 28 x 512

28 x 28 x 512

res(3, (256, 1024), s2)

14 x 14 x 1024

29[ res(3, (256,1024)) | 14 x 14 x 1024
res(3, (512,2048),52) | 7 x 7 x 2048
2x[ res(3, (512,2048)) | 7 x 7 x 2048
avg(7) 2048
£c(1000) 1000




pyramid networks
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e bottom-up path: higher-level features, downsampling



pyramid networks

Cy
Cs
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e bottom-up path: higher-level features, downsampling

e top-down path: still high-level, upsampling



pyramid networks

C1
Cy
Cy
Cs
(5
Py

e bottom-up path: higher-level features, downsampling

e top-down path: still high-level, upsampling

e |ateral connections



pyramid networks

| input |

predict

bottom-up path: higher-level features, downsampling
top-down path: still high-level, upsampling
lateral connections

predictions from multiple scales



top-down modulation (TDM)*

[Shrivastava et al. 2016]

Bottom-up Path

“«--- €«---- “---- * - - - 3763k
C, - > C, = — C,
e 150 x 250 k,
600x1000x3 300x500xk; | )v‘ -
! L,
Object Detector ! 2 |
C; | Bottom-up Blocks 1 iy

T,; Top-down Modules RO Proposal |q H =
<« T," < = Ty,
fier

L; Lateral Modules ROI CI

[ 50x250xay|| ===} el
—> Forward Pass [ L0250 i
- = Backprop ! Described in Figure 3!

Top-down Path

the top-down network handles the integration of features and
attempts to influence lower-level features

detection (or any final task) now depends on high-resolution,
high-level features

applied to VGG-16 and ResNet-101 with faster R-CNN

¢ however, only the final top-down module collects features

Shrivastava, Sukthankar, Malik and Gupta 2016. Beyond Skip Connections: Top-Down Modulation for Object Detection.



feature pyramid networks (FPN)
[Lin et al. 2017]

featurized image pyramid

o features computed at each scale independently: slow

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.



feature pyramid networks (FPN)
[Lin et al. 2017]

b b=
/ !

featurized image pyramid single feature map

o features computed at each scale independently: slow

o single scale for faster detection

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.



feature pyramid networks (FPN)
[Lin et al. 2017]
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featurized image pyramid single feature map

-
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4 )

pyramidal feature hierarchy

o features computed at each scale independently: slow
o single scale for faster detection

o reuse pyramidal feature hierarchy as if computed at different scales

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.



feature pyramid networks (FPN)
[Lin et al. 2017]
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featurized image pyramid single feature map

-
-
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pyramidal feature hierarchy  feature pyramid network

features computed at each scale independently: slow

single scale for faster detection

o reuse pyramidal feature hierarchy as if computed at different scales

still fast, but more accurate

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.



feature pyramid networks (FPN)

e all top-down layers have 256
features

e top-down network initialized at Pj
by 1 x 1 convolution on Cs

e 1 x 1 convolution on lateral
connection reduces width

e 3 x 3 convolution on merged path
reduces aliasing

conv(1,256)
conv (3, 256)
Py

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.



feature pyramid networks (FPN)

e all top-down layers have 256
features

e top-down network initialized at Pj
by 1 x 1 convolution on Cs

e 1 x 1 convolution on lateral
connection reduces width

e 3 x 3 convolution on merged path
reduces aliasing

e applied to ResNet-101 with

fast/faster R-CNN

o regions are detected at all levels of

By top-down pyramid

conv(1,256)

e classifiers/regressors are shared
across all levels

Lin, Dollar, Girshick, He, Hariharan and Belongie. CVPR 2017. Feature Pyramid Networks for Object Detection.



one-stage detection



OverFeat*
[Sermanet et al. 2014]

e won the ILSVRC2013 localization competition

e applied a classifier with fully connected layers densely as convolution,
allowing region classification without cropping and warping

e increased output resolution with dilated convolution

e merged predictions instead of non-maxima suppression

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks.



fully connected as convolutional

input features classifier output
—
2x2 5X5 1x1 1x1
10 x 10 —|>5><5f—>1><1f—>1 1f—>1><1
00| c

¢ a convolutional network with a fully connected classifier produces only
one spatial output

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks.



fully connected as convolutional

input features classifier output

e a convolutional network with a fully connected classifier produces only
one spatial output

e when applied densely over a bigger input image, it produces a spatial
2 X 2 output map

e since all layers are applied convolutionally, only the yellow region needs
to be recomputed

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks.



“you only look once” (YOLO)

[Redmon et al. 2016]

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

»
.9

e input image

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

e groung truth bounding boxes and their centers

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

o(,y)

e image partitioned into 7 x 7 grid and center coordinates assigned to
cells

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

=7
z,y,w,h

1=2
zy.wh

=12
z,y,w,h

e network learns to predict up to one object per cell, including class
label I, center coordinates z,y and bounding box size w, h

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

1024

o 3-channel input W = H = 448, 24-layer NiN-like network

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

1
- 17
7 FC 4096
1024

o 3-channel input W = H = 448, 24-layer NiN-like network

o fully connected layer, increasing to 4096 features

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

7
1
i
7 FC 4096 FC 7
1024 20 4

o 3-channel input W = H = 448, 24-layer NiN-like network
o fully connected layer, increasing to 4096 features

e ¢ = 20 class scores and 4 bounding box coordinates at each position

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

[
1 I
— —
) —
7 FC 4096 Fc 7 aE
1024 20 4

3-channel input W = H = 448, 24-layer NiN-like network

fully connected layer, increasing to 4096 features

e ¢ = 20 class scores and 4 bounding box coordinates at each position

in a single stage, network performs regression from the image to a
7 X 7 x 24 tensor encoding detected classes and positions

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

7 """"
1 I
I ) S s
7 FC 4096 Fc 7 HE
1024 20 4

class \L l bbox

e 3-channel input W = H = 448, 24-layer NiN-like network
e fully connected layer, increasing to 4096 features
e ¢ =20 class scores and 4 bounding box coordinates at each position

e in a single stage, network performs regression from the image to a
7 X 7 x 24 tensor encoding detected classes and positions

* regression (¢2) loss on both class scores and coordinates

“objectness” score makes it look like two-stage

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

pros

o extremely fast: 45fps; 93x to 500x test speedup vs. R-CNN on
AlexNet, with similar performance

e end-to-end trainable, fully convolutional, one-stage detection

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



“you only look once” (YOLO)

pros

e extremely fast: 45fps; 93x to 500x test speedup vs. R-CNN on
AlexNet, with similar performance

e end-to-end trainable, fully convolutional, one-stage detection
cons

e only up to one prediction per cell (fixed in later versions)

e trouble localizing small objects

e low-performance compared to two-stage detectors on strong networks

Redmon, Divvala, Girshick and Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



single shot detector (SSD)

[Liu et al. 2016]

e input image

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

[Liu et al. 2016]

e groung truth bounding boxes

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

[Liu et al. 2016]

e image partitioned into 8 x 8 grid

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

[Liu et al. 2016]

[ ]

[ ]

o set of anchors defined at each position, labeled as positive based on
overlap with ground truth

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

[Liu et al. 2016]

e same process at different scales, e.g. 4 x 4 grid

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

[Liu et al. 2016]

e anchor size is relative to feature map scale

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

w,
38
N
H CNN 38
512
3

e 3-channel input W = H = 300, VGG-16 conv4-3 features

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

w,
38
19
10
N 5
" CNN 38 19 3
10
5 3 1
13
512 256 256
3

1024 512 256

e 3-channel input W = H = 300, VGG-16 conv4-3 features

o multiple scales by convolutional layers with stride 2

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

w 3 X 3 conv
’ CNN 38@ @ m m
1@ —
3

1024 256 20a 4a

e 3-channel input W = H = 300, VGG-16 conv4-3 features
e multiple scales by convolutional layers with stride 2

e ¢ = 20 classification scores and 4 bounding box coordinates relative to
each of a = 6 anchors at each position from each of 6 last layers:
7308 predictions per class

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

w,
38 3 X 3 conv
19
10
_ 5
3
H CNN 38 19
10
5 3 1
17 ’
512 512 256 256
3

1024 256 20a 4a
softmax | 4 bbox

e 3-channel input W = H = 300, VGG-16 conv4-3 features
e multiple scales by convolutional layers with stride 2

e ¢ = 20 classification scores and 4 bounding box coordinates relative to
each of a = 6 anchors at each position from each of 6 last layers:
7308 predictions per class

e softmax on scores, regression loss on coordinates

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

pros

o best trade-off: 23 (SSD500) or 58fps (SSD300) with performance
closer (or superior) to faster R-CNN rather than YOLO

e many scales at no extra cost: many more detections compared to
YOLO, no need for Rol pooling

e bounding box regression is convolutional like RPN, but simpler pipeline
like YOLO and more aspect ratios with same number of anchors

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



single shot detector (SSD)

pros

o best trade-off: 23 (SSD500) or 58fps (SSD300) with performance
closer (or superior) to faster R-CNN rather than YOLO

e many scales at no extra cost: many more detections compared to
YOLO, no need for Rol pooling

e bounding box regression is convolutional like RPN, but simpler pipeline
like YOLO and more aspect ratios with same number of anchors

cons

e pyramid starts at low resolution: difficulty with small objects

Liu, Anguelov, Erhan, Szegedy, Reed, Fu and Berg. ECCV 2016. SSD: Single Shot Multibox Detector.



deconvolutional single shot detector (DSSD)*
[Fu et al. 2017]
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DSSD Layers

builds on SSD on ResNet-101, introducing large-scale context

similar to FPN, but one-stage:

 deconvolution (%) upsamples: high-resolution, high-level features
o prediction (=) (classifier + regressor) at all top-down layers

e improves accuracy, especially on small objects

only slightly slower than SSD

Fu, Liu, Ranga, Tyagi and Berg 2017. DSSD: Deconvolutional Single Shot Detector.



speed-accuracy trade-offs
[Huang et al. 2016]

40
Faster R-CNN w/ResNet, Hi Meta Architecture
Res, 50 Proposals 5} Faster RCNN = R-FCN ’ SSD
-—— - —— = —— g -
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o Feature Extractor
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@ Inception V2
$SD w/Inception V2, Lo Res @ Inception V3
15 $SD w/MobileNet, Lo Res @ MobileNet
@ Resnet 101
® VGG
10
0 200 400 600 800 1000

GPU Time

Huang, Rathod, Sun, Zhu, Korattikara, Fathi, Fischer, Wojna, Song, Guardarrama and Murphy 2016. Speed-Accuracy Trade-Offs
for Modern Convolutional Object Detectors.



RetinaNet
[Lin et al. 2017]

[ wput ]
e
Cy

e base network: ResNet-101

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



RetinaNet
[Lin et al. 2017]

e base network: ResNet-101

o feature pyramid network

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



RetinaNet
[Lin et al. 2017]

e base network: ResNet-101
o feature pyramid network

e multi-scale dense detection

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



RetinaNet: dense detection

4x | conv(3,256) det(c, a)

conv(3, ca)

!

¢ c classification scores for each of a =9 anchors at each position (3
scales, 3 aspect ratios)

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



RetinaNet: dense detection

4x | conv(3,256)

conv(3, 256)

conv(3, ca)

conv(3,4a)

!

!

4% det(c,a)

¢ c classification scores for each of a =9 anchors at each position (3

scales, 3 aspect ratios)

e 4 bounding box coordinates relative to each anchor at each position
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RetinaNet: dense detection

4x | conv(3,256) conv(3,256) | 4x det(c, a)
conv(3, ca) conv(3,4a)

! !

focal bbox

¢ c classification scores for each of a =9 anchors at each position (3
scales, 3 aspect ratios)

e 4 bounding box coordinates relative to each anchor at each position

o focal loss on class scores, regression loss on coordinates

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



RetinaNet: dense detection

4x | conv(3,256)

conv(3, 256)

conv(3, ca)

conv(3,4a)

!

focal

!

bbox

4% det(c,a)

¢ classification scores for each of @ = 9 anchors at each position (3
scales, 3 aspect ratios)

4 bounding box coordinates relative to each anchor at each position

focal loss on class scores, regression loss on coordinates

e no parameters shared between classification and regression branches

parameters of detection subnets shared across all pyramid levels

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



what is wrong with dense detection?

e in a two-stage detector, the classifier is applied to a sparse set of
candidate object locations, which are found by binary classification
(object/non-object)

e in a one-stage detector, the classifier is applied to a dense set of
locations (e.g. a regular grid), which introduces extreme class
imbalance between foreground-background

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



what is wrong with dense detection?

e in a two-stage detector, the classifier is applied to a sparse set of
candidate object locations, which are found by binary classification
(object/non-object)

e in a one-stage detector, the classifier is applied to a dense set of
locations (e.g. a regular grid), which introduces extreme class
imbalance between foreground-background

e there is a vast number of easy negatives that can overwhelm the
detector

e as an alternative to OHEM, design the loss function such that it does
not penalize well-classified examples

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



focal loss
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e reduces the relative loss for well-classified examples (p > 0.5), putting
more focus on hard, misclassified examples

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



remember the perceptron loss? the margin?

| I;gistic —In(p) |
focal (v =5) —(1 —p)”log(p)

where

1
1+e—T?

o the probability of the correct class is p = o(x) =
xr =sa, s € {—1,1} is the "sign" target variable, and a the activation

e easy example means p > 0.5, or x > 0
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remember the perceptron loss? the margin?

logistic —In(p)

p focal (v =5) —(1 —p)” log(p) ||
perceptron  [—x]t
— hinge 1 -z

o the probability of the correct class is p = o(x) = H% where
xr =sa, s € {—1,1} is the "sign" target variable, and a the activation

e easy example means p > 0.5, or x > 0

e perceptron loss is zero for such examples; logistic and hinge are not

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



RetinaNet: performance
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o RetinaNet on ResNet-50-FPN and ResNet-101-FPN performance on
COCO at five scales (400-800 pixels)

e outperforms all one-stage and two-stage detectors

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



one-stage vs. two-stage

e two-stage fights class imbalance; alternatively, use batch sampling,
hard negative mining, or a better loss function

e two-stage defines regions at different scales; alternatively, use multiple
scales from a feature pyramid

e two-stage resamples regions at different aspect ratios, or with
deformable parts; this has not been explored with feature pyramids or
one-stage detectors yet

Lin, Goyal, Girshick, He and Dollar. ICCV 2017. Focal Loss for Dense Object Detection.



attention networks*

o of course, there can be more stages!

o AttentionNet iterates bounding box regression and classification

Yoo, Park, Lee, Paek and Kweon. ICCV 2015. AttentionNet: Aggregating Weak Directions for Accurate Object Detection.



summary

background: detectors (Viola & Jones, DPM, ISM, ESS), object
proposals, NMS, evaluation

two-stage detection: R-CNN, SPP, fast/faster R-CNN, RPN

parts: R-FCN, spatial transformers, deformable convolution
upsampling™: FCN, feature pyramids, TDM, FPN

one-stage detection: OverFeat®, YOLO, SSD*, DSSD*, RetinaNet*,
focal loss

with feature pyramids, multi-scale representation and appropriate loss,
the gap between one- and two-stage detection is closing

attentional cascade classifiers are developed in parallel
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