lecture 9: object detection deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2018 - Jan. 2019

outline

background two-stage detection object parts and deformation scale and feature pyramids* one-stage detection

background

 $\begin{array}{c} \textbf{object localization} \\ \textbf{classify} + \textbf{regress} \\ \textbf{bounding box} \; (x,y,w,h) \end{array}$

 $\begin{array}{c} \textbf{object localization} \\ \textbf{classify} + \textbf{regress} \\ \textbf{bounding box} \; (x,y,w,h) \end{array}$

semantic segmentation pixel-wise classify

 $\begin{array}{c} \textbf{object localization} \\ \textbf{classify} + \textbf{regress} \\ \textbf{bounding box} \ (x,y,w,h) \end{array}$

object detection per region: classify + regress bounding box (x, y, w, h)

semantic segmentation pixel-wise classify

 $\begin{array}{c} \textbf{object localization} \\ \textbf{classify} + \textbf{regress} \\ \textbf{bounding box} \ (x,y,w,h) \end{array}$

object detection per region: classify + regress bounding box (x, y, w, h)

semantic segmentation pixel-wise classify

instance segmentation per region: pixel-wise classify

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score

- slide template over image at multiple positions
- positions can be overlapping, or even dense (every pixel)
- seek maximum similarity score (e.g. cross-correlation)

two problems

- to detect a given instance (template), a similarity score may be enough; but to detect an object of a given class, we need strong features and a good classifier
- with unknown position, scale and aspect ratio, the search space is 4-dimensional: to search efficiently, we need something better than exhaustive search

real-time face detection

[Viola and Jones 2001]

- millions of simple features exhaustively evaluated on integral image
- learning weak classifiers by AdaBoost
- classifier cascade provides a focus-of-attention mechanism

integral image: construction

- given an image, precompute its sum over the rectangle with vertices the top-left corner and any point x in the image
- the collection of all sums is the integral image: it can be computed by one pass over the original image and takes the same space as the original image

integral image: use

• then, the sum over any rectangle (D) can be evaluated by 3 scalar operations on its vertices (a, b, c, d)

integral image: use

• then, the sum over any rectangle (D) can be evaluated by 3 scalar operations on its vertices (a,b,c,d)

integral image: use

• then, the sum over any rectangle (D) can be evaluated by 3 scalar operations on its vertices (a,b,c,d)

histogram of oriented gradients (HOG)

[Dalal and Triggs 2005]

- dense, SIFT-like descriptors
- SVM classifier
- sliding window detection at all positions and scales

deformable part model (DPM)

[Felzenszwalb et al. 2008]

- appearance represented by HOG
- spatial configuration inspired by "pictorial structures"
- part locations treated as latent variables: latent SVM

input

model

hard example mining (bootstrapping)

- an example is called hard for a model with parameters θ if it contributes non-zero loss (is incorrectly classified or inside the margin); otherwise easy
- repeat:
 - f 1 optimize the model m heta on a subset C (cache) of the training set D
 - 2 if all hard examples of D are included in C, stop
 - 3 shrink: remove any number of easy examples from C
 - 4 grow: add to C any number of new samples from D, including at least a new hard one
- ullet this algorithm terminates and finds the optimal model for D

hard example mining (bootstrapping)

- an example is called hard for a model with parameters θ if it contributes non-zero loss (is incorrectly classified or inside the margin); otherwise easy
- repeat:
 - 1 optimize the model θ on a subset C (cache) of the training set D
 - **2** if all hard examples of D are included in C, stop
 - 3 shrink: remove any number of easy examples from C
 - 4 grow: add to C any number of new samples from D, including at least a new hard one
- ullet this algorithm terminates and finds the optimal model for D

hard example mining (bootstrapping)

- an example is called hard for a model with parameters θ if it contributes non-zero loss (is incorrectly classified or inside the margin); otherwise easy
- repeat:
 - **1** optimize the model θ on a subset C (cache) of the training set D
 - **2** if all hard examples of D are included in C, stop
 - 3 shrink: remove any number of easy examples from C
 - 4 grow: add to C any number of new samples from D, including at least a new hard one
- ullet this algorithm terminates and finds the optimal model for D

implicit shape model (ISM): training

[Leibe et al. 2008]

- local features and descriptors extracted on training images
- appearance codebook built
- spatial occurrence distribution of features learned, relative to ground truth bounding boxes

implicit shape model (ISM): inference

- local features and descriptors extracted on test image
- descriptors assigned to visual words
- generalized Hough transform: probabilistic class-specific votes for the object center
- optionally, back-project hypotheses for top-down segmentation

Leibe, Leonardis and Schiele. IJCV 2008. Robust Object Detection With Interleaved Categorization and Segmentation.

- ullet the filled area A represents the set of all rectangles lying in this area
- this set is split as $A = A_1 \cup A_2$ along the largest side and bounds of the objective function are estimated for both subsets
- optimization is performed by branch-and-bound

- ullet the filled area A represents the set of all rectangles lying in this area
- this set is split as $A=A_1\cup A_2$ along the largest side and bounds of the objective function are estimated for both subsets
- optimization is performed by branch-and-bound

- ullet the filled area A represents the set of all rectangles lying in this area
- this set is split as $A=A_1\cup A_2$ along the largest side and bounds of the objective function are estimated for both subsets
- optimization is performed by branch-and-bound

- ullet the filled area A represents the set of all rectangles lying in this area
- this set is split as $A=A_1\cup A_2$ along the largest side and bounds of the objective function are estimated for both subsets
- optimization is performed by branch-and-bound

- ullet the filled area A represents the set of all rectangles lying in this area
- this set is split as $A=A_1\cup A_2$ along the largest side and bounds of the objective function are estimated for both subsets
- optimization is performed by branch-and-bound

what is an object?

[Alexe et al. 2010]

- seek a generic, class-agnostic objectness measure, quantifying how likely it is for an image region to contain an object
- if the measure is simple and fast to compute, it can yield a number of candidate object proposals or regions of interest (RoI) where to apply a more expensive classifier
- score the blue regions, partially covering the objects, lower than the green ground truth regions
- even lower the red regions containing only stuff or small object parts

what is an object?

[Alexe et al. 2010]

- seek a generic, class-agnostic objectness measure, quantifying how likely it is for an image region to contain an object
- if the measure is simple and fast to compute, it can yield a number of candidate object proposals or regions of interest (RoI) where to apply a more expensive classifier
- score the blue regions, partially covering the objects, lower than the green ground truth regions
- even lower the red regions containing only stuff or small object parts

selective search (SS)

[van de Sande et al. 2011]

input image

ground truth

selective search (SS)

[van de Sande et al. 2011]

input image

ground truth

hierarchical grouping

object proposals

selective search (SS)

- hierarchical segmentation at all scales
- simple geometric and appearance features (e.g. size, texture)
- high recall: $\sim 97\%$ of ground truth objects found with $\sim 1000-2000$ proposals/image at $\sim 2\text{-}5\text{s}/\text{image}$

edge boxes (EB)

[Zitnick and Dollar 2014]

- fast evaluation of millions of regions of different scales/aspect ratios at different positions
- measures edges that are contained in a region and do not intersect its boundary
- ullet performance similar to SS, but at $\sim 0.25 \mathrm{s/image}$ on average

region 1 remains

region 2 remains

region 3 remains

region 4 is rejected because $J(r_4, r_1) = 0.2750 > 0.25$

region 5 is rejected because $J(r_5, r_1) = 0.5366 > 0.25$

region 6 is rejected because $J(r_6, r_2) = 0.3268 > 0.25$

region 7 is rejected because $J(r_7, r_3) = 0.3011 > 0.25$

region 8 remains

region 9 is rejected because $J(r_9, r_3) = 0.4706 > 0.25$

non-maximum suppression (NMS)

in the end, regions 1, 2, 3, 8 remain

non-maximum suppression on regions

- given regions $r_1, r_2, ...$ of each class independently, ranked by decreasing order of confidence score
- for i=2,3,..., reject region r_i if it has intersection-over-union (IoU) overlap higher then a threshold τ

$$J(r_i, r_j) > \tau$$

with some higher scoring region \boldsymbol{r}_j with j < i that has not been rejected

non-maximum suppression is everywhere

- we have used NMS to reject pixels or 1d-vector elements (rather than regions) according to some neighborhood relation, in
 - corner detection
 - feature point tracking
 - SIFT dominant orientation selection
 - Hough transform

region overlap

- given regions $A,B\subset\mathbb{R}^2$ represented as planar point sets (including interior)
- their intersection over union (IoU) or Jaccard index is

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

the problem of non-maximum suppression

• ground truth positions

the problem of non-maximum suppression

• with a narrow neighborhood, there are two true positives (•) but also two false positives (•): precision is low

the problem of non-maximum suppression

• with a wide neighborhood, there is only one true positive (•), one false positive (•) and one false negative (O): recall is low

non-maximum suppression

- there are several recent attempts to improve NMS, e.g. merging or down-weighting instead of rejecting, replace it by a CNN, or integrate a differentiable version so that the entire pipeline is end-to-end trainable
- here we assume there is always NMS as the last post-processing stage after each detector

detection evaluation

[Russakovsky et al. 2015]

- for each image and for each class independently, rank predicted regions by descending order of confidence and assign each region r to the ground truth region $g^* = \arg\max_g J(r,g)$ of maximum overlap if $J(r,g^*) > \tau$ and mark it as true positive, else false
- each ground truth region can be assigned up to one predicted region
- now for each class independently, rank predicted regions of all images by descending order of confidence and compute average precision (AP) according to true/false labels
- the mean average precision (mAP) is the mean over classes

detection evaluation

[Russakovsky et al. 2015]

- for each image and for each class independently, rank predicted regions by descending order of confidence and assign each region r to the ground truth region $g^* = \arg\max_g J(r,g)$ of maximum overlap if $J(r,g^*) > \tau$ and mark it as true positive, else false
- each ground truth region can be assigned up to one predicted region
- now for each class independently, rank predicted regions of all images by descending order of confidence and compute average precision (AP) according to true/false labels
- the mean average precision (mAP) is the mean over classes

ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

• ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{h}$, recall $r = \frac{t}{n}$

ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{h}$, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{h}$, recall $r = \frac{t}{n}$

ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

ranked list of items with true/false labels

• # total ground truth n, current rank k, # true positives t

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

• precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

ranked list of items with true/false labels

• # total ground truth n, current rank k, # true positives t

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

• precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

ranked list of items with true/false labels

• # total ground truth n, current rank k, # true positives t

Henderson and Ferrari. ACCV 2016. End-to-End Training of Object Class Detectors for Mean Average Precision

• precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p=\frac{t}{k}$, recall $r=\frac{t}{k}$

• ranked list of items with true/false labels

- # total ground truth n, current rank k, # true positives t
- precision $p = \frac{t}{h}$, recall $r = \frac{t}{n}$

• ranked list of items with true/false labels

- average precision = area under curve
- precision $p = \frac{t}{h}$, recall $r = \frac{t}{h}$

ranked list of items with true/false labels

- average precision = area under curve (filled-in curve)
- precision $p = \frac{t}{h}$, recall $r = \frac{t}{h}$

object detection datasets

detection at scale

- PASCAL VOC 2007-12: 20 classes; images 5-11k train/val, 5-11k test (public for 2007)
- ImageNet ILSVRC 2010-17: 200 classes (subset or merged from classification task); images 400-450k train (partially annotated), 20k val, 40k test
- COCO 2015-: 80 classes; images 80k train, 40k val (115k/5k in 2017), 40k test, 120k unlabeled; smaller objects
- Open Images 2018-: 600 classes; images 1.74M train, 41k val, 125k test

Everingham et al. IJCV 2015. The PASCAL Visual Object Classes Challenge: a Retrospective. Russakovsky et al. IJCV 2015. Imagenet Large Scale Visual Recognition Challenge. Lin et al. ECCV 2014. Microsoft COCO: Common Objects in Context. Kuznetsova et al. 2018. The Open Images Dataset V4: Unified image classification, object detection, and visual relationship

◄□▶
□▶
□▶
▼□▶
▼□▶
▼□▶
▼□
●
●
●
●
●

two-stage detection

[Girshick et al. 2014]

- 3-channel RGB input, fixed width W=500 pixels
- ~ 2000 SS region proposals warped into fixed $w \times h = 227 \times 227$
- each proposal yields a k=4096 dimensional feature by CaffeNet
- each feature is classified into c classes by c one-vs. -rest SVMs and localized by bounding box regression

[Girshick et al. 2014]

- 3-channel RGB input, fixed width W=500 pixels
- ~ 2000 SS region proposals warped into fixed $w \times h = 227 \times 227$
- ullet each proposal yields a k=4096 dimensional feature by CaffeNet
- each feature is classified into c classes by c one-vs. -rest SVMs and localized by bounding box regression

[Girshick et al. 2014]

- 3-channel RGB input, fixed width W=500 pixels
- ullet ~ 2000 SS region proposals warped into fixed w imes h = 227 imes 227
- \bullet each proposal yields a k=4096 dimensional feature by CaffeNet
- each feature is classified into c classes by c one-vs. -rest SVMs and localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

[Girshick et al. 2014]

- 3-channel RGB input, fixed width W=500 pixels
- ullet ~ 2000 SS region proposals warped into fixed w imes h = 227 imes 227
- \bullet each proposal yields a k=4096 dimensional feature by CaffeNet
- each feature is classified into c classes by c one-vs. -rest SVMs and localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

[Girshick et al. 2014]

- 3-channel RGB input, fixed width W=500 pixels
- ullet ~ 2000 SS region proposals warped into fixed w imes h = 227 imes 227
- \bullet each proposal yields a k=4096 dimensional feature by CaffeNet
- ullet each feature is classified into c classes by c one-vs. -rest SVMs and localized by bounding box regression

Girshick, Donahue, Darrell and Malik. CVPR 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

pros

- region proposals, SVM classifier and NMS are standard; here one just replaces the features (e.g. HOG) by CNN
- CNN features are 4k-dimensional, compared e.g. to 360k dimensions of previous state of the art
- transfer learning: network pre-trained on 1.2M ImageNet images, then ImageNet-specific 1000-way classification layer replaced by randomly initialized (c+1)-way (c) classes plus background) and fine-tuning

- slow (13s/image): image warped and forwarded through network for each of the ~ 2000 region proposals
- 4 stages: region extraction, CNN features, SVM classifier, regressor
- positives/negatives defined differently in fine-tuning vs. SVM

pros

- region proposals, SVM classifier and NMS are standard; here one just replaces the features (e.g. HOG) by CNN
- CNN features are 4k-dimensional, compared *e.g.* to 360k dimensions of previous state of the art
- transfer learning: network pre-trained on 1.2M ImageNet images, then ImageNet-specific 1000-way classification layer replaced by randomly initialized (c+1)-way (c classes plus background) and fine-tuning

- slow (13s/image): image warped and forwarded through network for each of the ~ 2000 region proposals
- 4 stages: region extraction, CNN features, SVM classifier, regressor
- positives/negatives defined differently in fine-tuning vs. SVM

pros

- region proposals, SVM classifier and NMS are standard; here one just replaces the features (e.g. HOG) by CNN
- CNN features are 4k-dimensional, compared *e.g.* to 360k dimensions of previous state of the art
- transfer learning: network pre-trained on 1.2M ImageNet images, then ImageNet-specific 1000-way classification layer replaced by randomly initialized (c+1)-way (c classes plus background) and fine-tuning

- slow (13s/image): image warped and forwarded through network for each of the ~ 2000 region proposals
- 4 stages: region extraction, CNN features, SVM classifier, regressor
- positives/negatives defined differently in fine-tuning vs. SVM

pros

- region proposals, SVM classifier and NMS are standard; here one just replaces the features (e.g. HOG) by CNN
- CNN features are 4k-dimensional, compared *e.g.* to 360k dimensions of previous state of the art
- transfer learning: network pre-trained on 1.2M ImageNet images, then ImageNet-specific 1000-way classification layer replaced by randomly initialized (c+1)-way (c classes plus background) and fine-tuning

- slow (13s/image): image warped and forwarded through network for each of the ~ 2000 region proposals
- 4 stages: region extraction, CNN features, SVM classifier, regressor
- positives/negatives defined differently in fine-tuning vs. SVM

pros

- region proposals, SVM classifier and NMS are standard; here one just replaces the features (e.g. HOG) by CNN
- CNN features are 4k-dimensional, compared *e.g.* to 360k dimensions of previous state of the art
- transfer learning: network pre-trained on 1.2M ImageNet images, then ImageNet-specific 1000-way classification layer replaced by randomly initialized (c+1)-way (c classes plus background) and fine-tuning

- slow (13s/image): image warped and forwarded through network for each of the ~ 2000 region proposals
- 4 stages: region extraction, CNN features, SVM classifier, regressor
- positives/negatives defined differently in fine-tuning vs. SVM

regions with CNN features (R-CNN)

pros

- region proposals, SVM classifier and NMS are standard; here one just replaces the features (e.g. HOG) by CNN
- CNN features are 4k-dimensional, compared *e.g.* to 360k dimensions of previous state of the art
- transfer learning: network pre-trained on 1.2M ImageNet images, then ImageNet-specific 1000-way classification layer replaced by randomly initialized (c+1)-way (c classes plus background) and fine-tuning

- slow (13s/image): image warped and forwarded through network for each of the ~ 2000 region proposals
- 4 stages: region extraction, CNN features, SVM classifier, regressor
- positives/negatives defined differently in fine-tuning vs. SVM

bounding box regression

• at training, given proposed and ground truth region $p,g\in\mathbb{R}^4$, define normalized target t for region center (x,y) and size (w,h)

$$t_x = (g_x - p_x)/p_w \qquad t_w = \log(g_w/p_w)$$

$$t_y = (g_y - p_y)/p_h \qquad t_h = \log(g_h/p_h)$$

• for $j \in \{x, y, w, h\}$, learn mapping $y_j = f_j(p)$ according to least squares loss

$$L(y_j, t_j) = (y_j - t_j)^2$$

• at inference, given proposal p, predict region \hat{p} according to

$$\hat{p}_x = p_w f_x(p) + p_x \qquad \qquad \hat{p}_w = p_w \exp(f_w(p))$$

$$\hat{p}_y = p_h f_y(p) + p_y \qquad \qquad \hat{p}_h = p_h \exp(f_h(p))$$

bounding box regression

• at training, given proposed and ground truth region $p,g\in\mathbb{R}^4$, define normalized target t for region center (x,y) and size (w,h)

$$t_x = (g_x - p_x)/p_w \qquad t_w = \log(g_w/p_w)$$

$$t_y = (g_y - p_y)/p_h \qquad t_h = \log(g_h/p_h)$$

• for $j \in \{x, y, w, h\}$, learn mapping $y_j = f_j(p)$ according to least squares loss

$$L(y_j, t_j) = (y_j - t_j)^2$$

ullet at inference, given proposal p, predict region \hat{p} according to

$$\hat{p}_x = p_w f_x(p) + p_x \qquad \qquad \hat{p}_w = p_w \exp(f_w(p))$$

$$\hat{p}_y = p_h f_y(p) + p_y \qquad \qquad \hat{p}_h = p_h \exp(f_h(p))$$

bounding box regression

• at training, given proposed and ground truth region $p,g\in\mathbb{R}^4$, define normalized target t for region center (x,y) and size (w,h)

$$t_x = (g_x - p_x)/p_w \qquad t_w = \log(g_w/p_w)$$

$$t_y = (g_y - p_y)/p_h \qquad t_h = \log(g_h/p_h)$$

• for $j \in \{x, y, w, h\}$, learn mapping $y_j = f_j(p)$ according to least squares loss

$$L(y_j, t_j) = (y_j - t_j)^2$$

• at inference, given proposal p, predict region \hat{p} according to

$$\hat{p}_x = p_w f_x(p) + p_x \qquad \qquad \hat{p}_w = p_w \exp(f_w(p))$$

$$\hat{p}_y = p_h f_y(p) + p_y \qquad \qquad \hat{p}_h = p_h \exp(f_h(p))$$

[He et al. 2014]

- we need to extract features and classify each region
- we can crop or warp them to fixed size, then feed to CNN for both
- or we can extract features of arbitrary size with convolutions, max-pool features to fixed size, then classify

[He et al. 2014]

- we need to extract features and classify each region
- we can crop or warp them to fixed size, then feed to CNN for both
- or we can extract features of arbitrary size with convolutions max-pool features to fixed size, then classify

[He et al. 2014]

- we need to extract features and classify each region
- we can crop or warp them to fixed size, then feed to CNN for both
- or we can extract features of arbitrary size with convolutions, max-pool features to fixed size, then classify

- 3-channel RGB input, arbitrary size

- 3-channel RGB input, arbitrary size
- input yields a single k dimensional feature map

- 3-channel RGB input, arbitrary size
- input yields a single k dimensional feature map
- each region proposal projected onto feature maps
- then max-pooled into a number of fixed sizes $1 \times 1, 2 \times 2, 4 \times 4$ etc. and concatenated into fixed-length representation
- when the pyramid has only one level, we call this Rol pooling

- 3-channel RGB input, arbitrary size
- input yields a single k dimensional feature map
- each region proposal projected onto feature maps
- then max-pooled into a number of fixed sizes $1 \times 1, 2 \times 2, 4 \times 4$ etc. and concatenated into fixed-length representation
- when the pyramid has only one level, we call this Rol pooling

- 3-channel RGB input, arbitrary size
- input yields a single k dimensional feature map
- each region proposal projected onto feature maps
- then max-pooled into a number of fixed sizes $1 \times 1, 2 \times 2, 4 \times 4$ etc. and concatenated into fixed-length representation
- when the pyramid has only one level, we call this Rol pooling

- 3-channel RGB input, arbitrary size
- ullet input yields a single k=4096 dimensional feature map by VGG-16
- ~ 2000 region proposals, projected onto feature maps and Rol-pooled into fixed size $w' \times h' \times k = 7 \times 7 \times k$
- several fully-connected layers follow, for each pooled map
- each pooled map is classified into c+1 classes (c+ background) by single softmax and localized by bounding box regression

- 3-channel RGB input, arbitrary size
- input yields a single k=4096 dimensional feature map by VGG-16
- ~ 2000 region proposals, projected onto feature maps and Rol-pooled into fixed size $w' \times h' \times k = 7 \times 7 \times k$
- several fully-connected layers follow, for each pooled map
- ullet each pooled map is classified into c+1 classes (c+ background) by single softmax and localized by bounding box regression

- 3-channel RGB input, arbitrary size
- input yields a single k=4096 dimensional feature map by VGG-16
- ~ 2000 region proposals, projected onto feature maps and Rol-pooled into fixed size $w' \times h' \times k = 7 \times 7 \times k$
- several fully-connected layers follow, for each pooled map
- each pooled map is classified into c+1 classes (c+ background) by single softmax and localized by bounding box regression

- 3-channel RGB input, arbitrary size
- input yields a single k=4096 dimensional feature map by VGG-16
- ~ 2000 region proposals, projected onto feature maps and Rol-pooled into fixed size $w' \times h' \times k = 7 \times 7 \times k$
- several fully-connected layers follow, for each pooled map
- ullet each pooled map is classified into c+1 classes (c+ background) by single softmax and localized by bounding box regression

- 3-channel RGB input, arbitrary size
- input yields a single k=4096 dimensional feature map by VGG-16
- ~ 2000 region proposals, projected onto feature maps and Rol-pooled into fixed size $w' \times h' \times k = 7 \times 7 \times k$
- several fully-connected layers follow, for each pooled map
- each pooled map is classified into c+1 classes (c+ background) by single softmax and localized by bounding box regression

- 3-channel RGB input, arbitrary size
- input yields a single k=4096 dimensional feature map by VGG-16
- ~ 2000 region proposals, projected onto feature maps and Rol-pooled into fixed size $w' \times h' \times k = 7 \times 7 \times k$
- several fully-connected layers follow, for each pooled map
- ullet each pooled map is classified into c+1 classes (c+ background) by single softmax and localized by bounding box regression

pros

- fast $(0.32s/\text{image}; 9 \times \text{training}, 213 \times \text{test speedup } \textit{vs.}$ R-CNN): image forwarded through network only once, only few layers are region-specific
- 2 stages: only region proposals are separate; features, classifier and regressor are trained end-to-end with multi-task loss
- better performance

- region proposals are still needed for performance, but are now the bottleneck (~ 2s/image)
- single-scale

pros

- fast $(0.32\text{s}/\text{image}; 9\times\text{training}, 213\times\text{test speedup } \textit{vs.}$ R-CNN): image forwarded through network only once, only few layers are region-specific
- 2 stages: only region proposals are separate; features, classifier and regressor are trained end-to-end with multi-task loss
- better performance

- region proposals are still needed for performance, but are now the bottleneck ($\sim 2 \text{s/image}$)
- single-scale

pros

- fast $(0.32\text{s}/\text{image}; 9\times\text{training}, 213\times\text{test speedup } \textit{vs.}$ R-CNN): image forwarded through network only once, only few layers are region-specific
- 2 stages: only region proposals are separate; features, classifier and regressor are trained end-to-end with multi-task loss
- better performance

- region proposals are still needed for performance, but are now the bottleneck ($\sim 2 \text{s/image}$)
- single-scale

pros

- fast $(0.32\text{s}/\text{image}; 9\times\text{training}, 213\times\text{test speedup } \textit{vs.}$ R-CNN): image forwarded through network only once, only few layers are region-specific
- 2 stages: only region proposals are separate; features, classifier and regressor are trained end-to-end with multi-task loss
- better performance

- region proposals are still needed for performance, but are now the bottleneck ($\sim 2 {\rm s/image})$
- single-scale

pros

- fast $(0.32\text{s}/\text{image}; 9\times\text{training}, 213\times\text{test speedup } \textit{vs.}$ R-CNN): image forwarded through network only once, only few layers are region-specific
- 2 stages: only region proposals are separate; features, classifier and regressor are trained end-to-end with multi-task loss
- better performance

- region proposals are still needed for performance, but are now the bottleneck ($\sim 2 \text{s/image}$)
- single-scale

regression loss

• given region p and target t, learn mapping y=f(p) according to smooth ℓ_1 or Huber loss, which prevents exploding gradients

$$\begin{split} L(y,t) &= \sum_{j \in \{x,y,h,w\}} \ell_1^s(y_j - t_j) \\ \ell_1^s(x) &= \left\{ \begin{array}{ll} \frac{x^2}{2}, & \text{if } |x| < 1 \\ |x| - \frac{1}{2}, & \text{otherwise} \end{array} \right. \end{split}$$

learning object proposals: MultiBox detector*

[Erhan et al. 2014]

- a fixed number (e.g. 100 or 200) of class-agnostic object proposals are learned by regression on image representation
- this is faster than e.g. selective search
- however, proposal generation is not convolutional, but rather based on a fully connected layer
- the next step would be to integrate object proposals and classifier, making the pipeline end-to-end trainable

- same input, same VGG-16 feature maps as Fast R-CNN
- proposals detected directly on feature maps by RPN and max-pooled
- same classifier, same bounding box regression, but now also for RPN

- same input, same VGG-16 feature maps as Fast R-CNN
- proposals detected directly on feature maps by RPN and max-pooled
- same classifier, same bounding box regression, but now also for RPN

- same input, same VGG-16 feature maps as Fast R-CNN
- proposals detected directly on feature maps by RPN and max-pooled

- same input, same VGG-16 feature maps as Fast R-CNN
- proposals detected directly on feature maps by RPN and max-pooled
- same classifier, same bounding box regression, but now also for RPN

- same input, same feature maps, dimension reduced to 512
- a = 9 anchors at each position, for 3 scales and 3 aspect ratios
- 2a classification (object/non-object) scores and 4a bounding box coordinates relative to anchor at each position
- softmax on scores, regression loss on coordinates
- region proposals by non-maxima suppression

- same input, same feature maps, dimension reduced to 512
- a = 9 anchors at each position, for 3 scales and 3 aspect ratios
- 2a classification (object/non-object) scores and 4a bounding box coordinates relative to anchor at each position
- softmax on scores, regression loss on coordinates
- region proposals by non-maxima suppression

- same input, same feature maps, dimension reduced to 512
- a = 9 anchors at each position, for 3 scales and 3 aspect ratios
- 2a classification (object/non-object) scores and 4a bounding box coordinates relative to anchor at each position

Ren, He, Girshick and Sun. NIPS 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

- softmax on scores, regression loss on coordinates
- region proposals by non-maxima suppression

- same input, same feature maps, dimension reduced to 512
- a = 9 anchors at each position, for 3 scales and 3 aspect ratios
- 2a classification (object/non-object) scores and 4a bounding box coordinates relative to anchor at each position

- same input, same feature maps, dimension reduced to 512
- a = 9 anchors at each position, for 3 scales and 3 aspect ratios
- 2a classification (object/non-object) scores and 4a bounding box coordinates relative to anchor at each position
- softmax on scores, regression loss on coordinates
- region proposals by non-maxima suppression

- same input, same feature maps, dimension reduced to 512
- a = 9 anchors at each position, for 3 scales and 3 aspect ratios
- 2a classification (object/non-object) scores and 4a bounding box coordinates relative to anchor at each position
- softmax on scores, regression loss on coordinates
- region proposals by non-maxima suppression

pros

- faster (0.2s/image including proposals; $10 \times$ test speedup vs. fast R-CNN): only few layers are used for RPN and region-specific classification and regression

pros

- faster (0.2s/image including proposals; 10× test speedup vs. fast R-CNN): only few layers are used for RPN and region-specific classification and regression
- trained end-to-end including features, region proposals, classifier and regressor
- more accurate: region proposals are learned, RPN is convolutional

- still, several fully-connected layers needed for region-specific tasks
- still single-scale

pros

- faster (0.2s/image including proposals; 10× test speedup vs. fast R-CNN): only few layers are used for RPN and region-specific classification and regression
- trained end-to-end including features, region proposals, classifier and regressor
- more accurate: region proposals are learned, RPN is convolutional

- still, several fully-connected layers needed for region-specific tasks
- still single-scale

pros

- faster (0.2s/image including proposals; 10× test speedup vs. fast R-CNN): only few layers are used for RPN and region-specific classification and regression
- trained end-to-end including features, region proposals, classifier and regressor
- more accurate: region proposals are learned, RPN is convolutional

- still, several fully-connected layers needed for region-specific tasks
- still single-scale

pros

- faster (0.2s/image including proposals; 10× test speedup vs. fast R-CNN): only few layers are used for RPN and region-specific classification and regression
- trained end-to-end including features, region proposals, classifier and regressor
- more accurate: region proposals are learned, RPN is convolutional

- still, several fully-connected layers needed for region-specific tasks
- still single-scale

online hard example mining (OHEM)*

[Shrivastava et al. 2016]

- models with separate SVM classifier (R-CNN, SPP) use Rol-centric mini-batches, sampled from all training images
- to enable end-to-end fine-tuning of all layers, image-centric mini-batches are used with very few images (1-2) but thousands of candidate regions
- most regions are negative: this class imbalance can overwhelm the classifier
- it is standard to use a fixed positive to negative ratio (e.g. 1:1 or 1:4
- OHEM, instead, evaluates all candidate regions and samples the hardest ones, without any fixed ratio

online hard example mining (OHEM)*

[Shrivastava et al. 2016]

- models with separate SVM classifier (R-CNN, SPP) use Rol-centric mini-batches, sampled from all training images
- to enable end-to-end fine-tuning of all layers, image-centric mini-batches are used with very few images (1-2) but thousands of candidate regions
- most regions are negative: this class imbalance can overwhelm the classifier
- it is standard to use a fixed positive to negative ratio (e.g. 1:1 or 1:4)

online hard example mining (OHEM)*

[Shrivastava et al. 2016]

- models with separate SVM classifier (R-CNN, SPP) use Rol-centric mini-batches, sampled from all training images
- to enable end-to-end fine-tuning of all layers, image-centric mini-batches are used with very few images (1-2) but thousands of candidate regions
- most regions are negative: this class imbalance can overwhelm the classifier
- it is standard to use a fixed positive to negative ratio (e.g. 1:1 or 1:4)
- OHEM, instead, evaluates all candidate regions and samples the hardest ones, without any fixed ratio

object parts and deformation

- 2048-d feature maps by ResNet-101, reduced to k = 1024, same RPN
- $r \times r = 7 \times 7$ position-sensitive score maps per class, Rol pooling
- similarly, $4r^2$ position-sensitive coordinates for regression
- no FC, just average pooling

- 2048-d feature maps by ResNet-101, reduced to k=1024, same RPN
- $r \times r = 7 \times 7$ position-sensitive score maps per class, Rol pooling
- similarly, $4r^2$ position-sensitive coordinates for regression
- no FC, just average pooling

- 2048-d feature maps by ResNet-101, reduced to k=1024, same RPN
- $r \times r = 7 \times 7$ position-sensitive score maps per class, RoI pooling
- similarly, $4r^2$ position-sensitive coordinates for regression
- no FC, just average pooling

- 2048-d feature maps by ResNet-101, reduced to k=1024, same RPN
- $r \times r = 7 \times 7$ position-sensitive score maps per class, Rol pooling
- similarly, $4r^2$ position-sensitive coordinates for regression
- no FC, just average pooling

- 2048-d feature maps by ResNet-101, reduced to k=1024, same RPN
- $r \times r = 7 \times 7$ position-sensitive score maps per class, Rol pooling
- similarly, $4r^2$ position-sensitive coordinates for regression
- no FC, just average pooling

position-sensitive score maps and Rol pooling

position-sensitive score maps

• Rol is correctly aligned with the object

position-sensitive score maps and Rol pooling

position-sensitive score maps

• Rol is not correctly aligned with the object

pros

- fully convolutional: no more FC layers, maximum feature sharing bewteen all tasks (RPN, classification, regression)
- still, spatial information is preserved by position-sensitive layer, improving localization accuracy
- faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

- cells of position-sensitive Rol pooling are fixed
- still single-scale

pros

- fully convolutional: no more FC layers, maximum feature sharing bewteen all tasks (RPN, classification, regression)
- still, spatial information is preserved by position-sensitive layer, improving localization accuracy
- faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

- cells of position-sensitive Rol pooling are fixed
- still single-scale

pros

- fully convolutional: no more FC layers, maximum feature sharing bewteen all tasks (RPN, classification, regression)
- still, spatial information is preserved by position-sensitive layer, improving localization accuracy
- faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

- cells of position-sensitive Rol pooling are fixed
- still single-scale

pros

- fully convolutional: no more FC layers, maximum feature sharing bewteen all tasks (RPN, classification, regression)
- still, spatial information is preserved by position-sensitive layer, improving localization accuracy
- faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

- cells of position-sensitive Rol pooling are fixed
- still single-scale

pros

- fully convolutional: no more FC layers, maximum feature sharing bewteen all tasks (RPN, classification, regression)
- still, spatial information is preserved by position-sensitive layer, improving localization accuracy
- faster (0.17s/image vs. 0.42 for faster R-CNN on ResNet-101)

- cells of position-sensitive Rol pooling are fixed
- still single-scale

- input image yields a k dimensional feature map
- ullet a localization network L regresses a geometric transformation heta
- ullet a transformer $T_{ heta}$ applies the transformation to the feature map
- the transformation can involve resampling, cropping, even deformation
- the localization network receives no supervision other than what is backpropagated from the end task

- input image yields a k dimensional feature map
- ullet a localization network L regresses a geometric transformation heta
- ullet a transformer $T_ heta$ applies the transformation to the feature map
- the transformation can involve resampling, cropping, even deformation
- the localization network receives no supervision other than what is backpropagated from the end task

- input image yields a k dimensional feature map
- ullet a localization network L regresses a geometric transformation heta
- ullet a transformer $T_{ heta}$ applies the transformation to the feature map
- the transformation can involve resampling, cropping, even deformation
- the localization network receives no supervision other than what is backpropagated from the end task

- input image yields a k dimensional feature map
- ullet a localization network L regresses a geometric transformation heta
- ullet a transformer $T_{ heta}$ applies the transformation to the feature map
- the transformation can involve resampling, cropping, even deformation
- the localization network receives no supervision other than what is backpropagated from the end task

spatial transformer networks: part learning*

- 2 or 4 spatial transformers predict discriminative object parts with no supervision other than the class label
- the localization network is based on GoogLeNet and is shared across transformers; features are extracted by one GoogLeNet for each region
- features are concatenated and the image is classified by a single fully connected layer with softmax

- same features, same RPN, same position-sensitive scores as R-FCN
- cell offsets by FC on Rol-pooled features, deformable Rol pooling
- same average pooling

- same features, same RPN, same position-sensitive scores as R-FCN
- cell offsets by FC on Rol-pooled features, deformable Rol pooling
- same average pooling

- same features, same RPN, same position-sensitive scores as R-FCN
- cell offsets by FC on Rol-pooled features, deformable Rol pooling
- same average pooling

- same features, same RPN, same position-sensitive scores as R-FCN
- cell offsets by FC on Rol-pooled features, deformable Rol pooling
- same average pooling

[Ren et al. 2017]

ullet standard convolution on 3×3 regular sampling grid

[Ren et al. 2017]

scaled grid (as in automatic scale selection, but dense)

[Ren et al. 2017]

rotated grid (as in dominant orientation selection, but dense)

[Ren et al. 2017]

· deformed sampling grid where offsets are computed per pixel

deformable convolution: receptive field (2 layers)

- standard convolution: receptive field grows with depth but only linearly, remains rectangular and is translation invariant
- deformable convolution: receptive field grows arbitrarily with depth, adapts per location and takes arbitrary shape

deformable convolution: receptive field (2 layers)

- standard convolution: receptive field grows with depth but only linearly, remains rectangular and is translation invariant
- deformable convolution: receptive field grows arbitrarily with depth, adapts per location and takes arbitrary shape

deformable convolution: receptive field (2 layers)

- red: $9^3 = 729$ sampling locations in 3 levels of 3×3 deformable filters for three units (green)
- receptive field adapts to object size and shape

deformable Rol pooling

- deformed 3×3 cells (red) for an input Rol (yellow)
- cells adapt to part locations of non-rigid objects

scale and feature pyramids*

fully convolutional networks (FCN)*

[Long et al. 2015]

- feature maps capture high-level semantics but are of low resolution
- here, they are upsampled to original pixel resolution
- given pixel-wise class label supervision, the network learns pixel-wise prediction for semantic segmentation
- there are no fully-connected layers, hence "fully convolutional"

[Noh et al. 2015]

- the upsampling process is improved by learning to invert the max-pooling and convolution operations with unpooling and deconvolution
- instance-wise segmentations are obtained by applying the network to individual object proposals, as in detection

- 28×28 unpool
- resolution is decreased from 224×224 down to 7×7 by five 2×2 pooling layers and finally to 1×1 by fully connected layer
- it is then increased back to 7×7 , 14×14 and finally up to 224×224 by five unpooling and deconvolution layers)
- the most appropriate feature map is chosen in each layer for visualization

- resolution is decreased from 224×224 down to 7×7 by five 2×2 pooling layers and finally to 1×1 by fully connected layer
- it is then increased back to $7\times7,\ 14\times14$ and finally up to 224×224 by five unpooling and deconvolution layers)
- the most appropriate feature map is chosen in each layer for visualization

 $56 \times 56 \; \mathrm{deconv}$

 112×112 unpool

- resolution is decreased from 224×224 down to 7×7 by five 2×2 pooling layers and finally to 1×1 by fully connected layer
- it is then increased back to 7×7 , 14×14 and finally up to 224×224 by five unpooling and deconvolution layers)
- the most appropriate feature map is chosen in each layer for visualization

 $112 \times 112 \; \mathrm{deconv}$

 224×224 unpool

- resolution is decreased from 224×224 down to 7×7 by five 2×2 pooling layers and finally to 1×1 by fully connected layer
- it is then increased back to 7×7 , 14×14 and finally up to 224×224 by five unpooling and deconvolution layers)
- the most appropriate feature map is chosen in each layer for visualization

 $224 \times 224 \ \mathrm{deconv}$

- resolution is decreased from 224×224 down to 7×7 by five 2×2 pooling layers and finally to 1×1 by fully connected layer
- it is then increased back to $7\times7,\ 14\times14$ and finally up to 224×224 by five unpooling and deconvolution layers)
- the most appropriate feature map is chosen in each layer for visualization

upsampling for detection

- we may not need pixel-wise prediction for detection, but we still higher resolution than e.g. 14×14 or 7×7 to detect and localize small objects accurately
- in fact, as we upsample, we will combine detections from multiple layers corresponding to multiple scales

network "stages" or "blocks"

VGG-16 ResNet-101

		volume			volume
[input(224,3)	$224\times224\times3$		input(224, 3)	$224\times224\times3$
$2\times$	$\mathrm{conv}(3,64,p1)$	$224\times224\times64$		$\operatorname{conv}(7,64,p3,s2)$	$112\times112\times64$
	pool(2)	$112\times112\times64$		pool(3, 2, p1)	$56\times 56\times 64$
$2\times$	$\mathrm{conv}(3,128,p1)$	$112\times112\times128$			
	pool(2)	$56\times 56\times 128$	$3\times$	res(3, (64, 256))	$56 \times 56 \times 256$
$3\times$	$\mathrm{conv}(3,256,p1)$	$56\times 56\times 256$	r	es(3, (128, 512), s2)	$28 \times 28 \times 512$
	pool(2)	$28\times28\times256$	$3\times$	res(3, (128, 512))	$28 \times 28 \times 512$
$3\times$	$\operatorname{conv}(3,512,p1)$	$28\times28\times512$	re	s(3, (256, 1024), s2	$14 \times 14 \times 1024$
	pool(2)	$14\times14\times512$	22×	res(3, (256, 1024))	$14 \times 14 \times 1024$
$3\times$	$\operatorname{conv}(3,512,p1)$	$14\times14\times512$	re	s(3, (512, 2048), s2	$7 \times 7 \times 2048$
	pool(2)	$7\times7\times512$	$2 \times$	res(3, (512, 2048))	$7 \times 7 \times 2048$
$2\times$	fc(4096)	4,096		avg(7)	2048
	fc(1000)	1,000		fc(1000)	1000
	softmax	1,000		softmax	1000

network "stages" or "blocks"

VGG-16

ResNet-101

	10010	•	residet 101	
		volume	volume	
	input(224,3)	$224\times224\times3$	input(224, 3) $224 \times 224 \times 3$	
C_1	$2 \times \boxed{\operatorname{conv}(3, 64, p1)}$	$224\times224\times64$	conv(7, 64, p3, s2)	
	pool(2)	$112\times112\times64$	$\boxed{ \text{pool}(3,2,p1) 56 \times 56 \times 64 }$	
C_2	$2 \times \boxed{\operatorname{conv}(3, 128, p1)}$	$112 \times 112 \times 128$		
	pool(2)	$56\times 56\times 128$	$3 \times res(3, (64, 256))$ $56 \times 56 \times 256$	
C_3	$3 \times \boxed{\operatorname{conv}(3, 256, p1)}$	$56\times56\times256$	$res(3, (128, 512), s2)$ $28 \times 28 \times 512$	
	pool(2)	$28\times28\times256$	$3 \times \boxed{ \operatorname{res}(3, (128, 512)) } 28 \times 28 \times 512$	
C_4	$3 \times \boxed{\operatorname{conv}(3, 512, p1)}$	$28\times28\times512$	$res(3, (256, 1024), s2)$ $14 \times 14 \times 1024$	
	pool(2)	$14\times14\times512$	$22 \times res(3, (256, 1024))$ $14 \times 14 \times 1024$	
C_5	$3 \times \boxed{\operatorname{conv}(3, 512, p1)}$	$14\times14\times512$	$res(3, (512, 2048), s2)$ $7 \times 7 \times 2048$	
	pool(2)	$7\times7\times512$	$2 \times \boxed{ \text{res}(3, (512, 2048)) } 7 \times 7 \times 2048$	
	$2 \times fc(4096)$	4,096	avg(7) 2048	
	fc(1000)	1,000	fc(1000) 1000	
	softmax	1,000	softmax 1000	

- bottom-up path: higher-level features, downsampling
- top-down path: still high-level, upsampling
- lateral connections
- predictions from multiple scales

- bottom-up path: higher-level features, downsampling
- top-down path: still high-level, upsampling
- lateral connections
- predictions from multiple scales

- bottom-up path: higher-level features, downsampling
- top-down path: still high-level, upsampling
- lateral connections
- predictions from multiple scales

- bottom-up path: higher-level features, downsampling
- top-down path: still high-level, upsampling
- lateral connections
- predictions from multiple scales

top-down modulation (TDM)*

[Shrivastava et al. 2016]

- the top-down network handles the integration of features and attempts to influence lower-level features
- detection (or any final task) now depends on high-resolution, high-level features
- applied to VGG-16 and ResNet-101 with faster R-CNN
- however, only the final top-down module collects features

[Lin et al. 2017]

- features computed at each scale independently: slow

[Lin et al. 2017]

featurized image pyramid

single feature map

- features computed at each scale independently: slow
- single scale for faster detection
- reuse pyramidal feature hierarchy as if computed at different scales
- still fast, but more accurate

[Lin et al. 2017]

pyramidal feature hierarchy

features computed at each scale independently: slow

predict

- single scale for faster detection
- reuse pyramidal feature hierarchy as if computed at different scales
- still fast, but more accurate

[Lin et al. 2017]

pyramidal feature hierarchy feature pyramid network

- features computed at each scale independently: slow
- single scale for faster detection
- reuse pyramidal feature hierarchy as if computed at different scales
- still fast, but more accurate

- all top-down layers have 256 features
- top-down network initialized at P_5 by 1×1 convolution on C_5
- 1 × 1 convolution on lateral connection reduces width
- 3 × 3 convolution on merged path reduces aliasing
- applied to ResNet-101 with fast/faster R-CNN
- regions are detected at all levels of top-down pyramid
- classifiers/regressors are shared across all levels

- all top-down layers have 256 features
- top-down network initialized at P_5 by 1×1 convolution on C_5
- 1 × 1 convolution on lateral connection reduces width
- 3 × 3 convolution on merged path reduces aliasing
- applied to ResNet-101 with fast/faster R-CNN
- regions are detected at all levels of top-down pyramid
- classifiers/regressors are shared across all levels

one-stage detection

OverFeat*

[Sermanet et al. 2014]

- won the ILSVRC2013 localization competition
- applied a classifier with fully connected layers densely as convolution, allowing region classification without cropping and warping
- increased output resolution with dilated convolution
- merged predictions instead of non-maxima suppression

fully connected as convolutional

- a convolutional network with a fully connected classifier produces only one spatial output
- when applied densely over a bigger input image, it produces a spatial 2×2 output map
- since all layers are applied convolutionally, only the yellow region needs to be recomputed

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.

fully connected as convolutional

- a convolutional network with a fully connected classifier produces only one spatial output
- when applied densely over a bigger input image, it produces a spatial 2×2 output map
- since all layers are applied convolutionally, only the yellow region needs to be recomputed

Sermanet, Eigen, Zhang, Mathieu, Fergus and LeCun. ICLR 2014. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.

[Redmon et al. 2016]

• input image

groung truth bounding boxes and their centers

• image partitioned into 7×7 grid and center coordinates assigned to cells

• network learns to predict up to one object per cell, including class label l, center coordinates x,y and bounding box size w,h

- 3-channel input W=H=448, 24-layer NiN-like network
- fully connected layer, increasing to 4096 features
- c = 20 class scores and 4 bounding box coordinates at each position
- in a single stage, network performs regression from the image to a $7\times7\times24$ tensor encoding detected classes and positions
- regression (ℓ_2) loss on both class scores and coordinates
- "objectness" score makes it look like two-stage

- 3-channel input W=H=448, 24-layer NiN-like network
- fully connected layer, increasing to 4096 features
- c = 20 class scores and 4 bounding box coordinates at each position
- in a single stage, network performs regression from the image to a $7 \times 7 \times 24$ tensor encoding detected classes and positions
- regression (ℓ_2) loss on both class scores and coordinates
- "objectness" score makes it look like two-stage

- 3-channel input W=H=448, 24-layer NiN-like network
- fully connected layer, increasing to 4096 features
- ullet c=20 class scores and 4 bounding box coordinates at each position
- in a single stage, network performs regression from the image to a $7 \times 7 \times 24$ tensor encoding detected classes and positions
- regression (ℓ_2) loss on both class scores and coordinates
- "objectness" score makes it look like two-stage

- 3-channel input W=H=448, 24-layer NiN-like network
- fully connected layer, increasing to 4096 features
- ullet c=20 class scores and 4 bounding box coordinates at each position
- in a single stage, network performs regression from the image to a $7\times7\times24$ tensor encoding detected classes and positions
- regression (ℓ_2) loss on both class scores and coordinates
- "objectness" score makes it look like two-stage

"you only look once" (YOLO)

- 3-channel input W=H=448, 24-layer NiN-like network
- fully connected layer, increasing to 4096 features
- ullet c=20 class scores and 4 bounding box coordinates at each position
- in a single stage, network performs regression from the image to a $7\times7\times24$ tensor encoding detected classes and positions
- regression (ℓ_2) loss on both class scores and coordinates
- "objectness" score makes it look like two-stage

"you only look once" (YOLO)

pros

- extremely fast: $45 \mathrm{fps}$; $93 \times$ to $500 \times$ test speedup vs . R-CNN on AlexNet, with similar performance
- end-to-end trainable, fully convolutional, one-stage detection

cons

- only up to one prediction per cell (fixed in later versions)
- trouble localizing small objects
- low-performance compared to two-stage detectors on strong networks

"you only look once" (YOLO)

pros

- extremely fast: 45 fps; $93 \times$ to $500 \times$ test speedup vs. R-CNN on AlexNet, with similar performance
- end-to-end trainable, fully convolutional, one-stage detection

cons

- only up to one prediction per cell (fixed in later versions)
- trouble localizing small objects
- low-performance compared to two-stage detectors on strong networks

[Liu et al. 2016]

• input image

[Liu et al. 2016]

• groung truth bounding boxes

[Liu et al. 2016]

• image partitioned into 8×8 grid

[Liu et al. 2016]

 set of anchors defined at each position, labeled as positive based on overlap with ground truth

[Liu et al. 2016]

• same process at different scales, e.g. 4×4 grid

[Liu et al. 2016]

• anchor size is relative to feature map scale

- 3-channel input W=H=300, VGG-16 conv4-3 features
- multiple scales by convolutional layers with stride 2
- c=20 classification scores and 4 bounding box coordinates relative to each of a=6 anchors at each position from each of 6 last layers: 7308 predictions per class
- softmax on scores, regression loss on coordinates

- 3-channel input W=H=300, VGG-16 conv4-3 features
- multiple scales by convolutional layers with stride 2
- c=20 classification scores and 4 bounding box coordinates relative to each of a=6 anchors at each position from each of 6 last layers: 7308 predictions per class
- softmax on scores, regression loss on coordinates

- 3-channel input W=H=300, VGG-16 conv4-3 features
- multiple scales by convolutional layers with stride 2
- c=20 classification scores and 4 bounding box coordinates relative to each of a=6 anchors at each position from each of 6 last layers: 7308 predictions per class
- softmax on scores, regression loss on coordinates

- 3-channel input W=H=300, VGG-16 conv4-3 features
- multiple scales by convolutional layers with stride 2
- c=20 classification scores and 4 bounding box coordinates relative to each of a=6 anchors at each position from each of 6 last layers: 7308 predictions per class
- softmax on scores, regression loss on coordinates

pros

- best trade-off: 23 (SSD500) or 58fps (SSD300) with performance closer (or superior) to faster R-CNN rather than YOLO
- many scales at no extra cost: many more detections compared to YOLO, no need for Rol pooling
- bounding box regression is convolutional like RPN, but simpler pipeline like YOLO and more aspect ratios with same number of anchors

cons

pyramid starts at low resolution: difficulty with small objects

pros

- best trade-off: 23 (SSD500) or 58fps (SSD300) with performance closer (or superior) to faster R-CNN rather than YOLO
- many scales at no extra cost: many more detections compared to YOLO, no need for Rol pooling
- bounding box regression is convolutional like RPN, but simpler pipeline like YOLO and more aspect ratios with same number of anchors

cons

pyramid starts at low resolution: difficulty with small objects

deconvolutional single shot detector (DSSD)*

[Fu et al. 2017]

- builds on SSD on ResNet-101, introducing large-scale context
- similar to FPN, but one-stage:
 - deconvolution (→) upsamples: high-resolution, high-level features
 - prediction () (classifier + regressor) at all top-down layers
- improves accuracy, especially on small objects
- only slightly slower than SSD

speed-accuracy trade-offs

[Huang et al. 2016]

Huang, Rathod, Sun, Zhu, Korattikara, Fathi, Fischer, Wojna, Song, Guardarrama and Murphy 2016. Speed-Accuracy Trade-Offs for Modern Convolutional Object Detectors.

RetinaNet

[Lin et al. 2017]

- base network: ResNet-101
- feature pyramid network
- multi-scale dense detection

RetinaNet

[Lin et al. 2017]

- base network: ResNet-101
- feature pyramid network
- multi-scale dense detection

RetinaNet

[Lin et al. 2017]

- base network: ResNet-101
- feature pyramid network
- multi-scale dense detection

- c classification scores for each of a=9 anchors at each position (3 scales, 3 aspect ratios)
- 4 bounding box coordinates relative to each anchor at each position
- focal loss on class scores, regression loss on coordinates
- no parameters shared between classification and regression branches
- parameters of detection subnets shared across all pyramid levels

- c classification scores for each of a=9 anchors at each position (3 scales, 3 aspect ratios)
- 4 bounding box coordinates relative to each anchor at each position
- focal loss on class scores, regression loss on coordinates
- no parameters shared between classification and regression branches
- parameters of detection subnets shared across all pyramid levels

- c classification scores for each of a=9 anchors at each position (3 scales, 3 aspect ratios)
- 4 bounding box coordinates relative to each anchor at each position
- focal loss on class scores, regression loss on coordinates
- no parameters shared between classification and regression branches
- parameters of detection subnets shared across all pyramid levels

- c classification scores for each of a=9 anchors at each position (3 scales, 3 aspect ratios)
- 4 bounding box coordinates relative to each anchor at each position
- focal loss on class scores, regression loss on coordinates
- no parameters shared between classification and regression branches
- parameters of detection subnets shared across all pyramid levels

what is wrong with dense detection?

- in a two-stage detector, the classifier is applied to a sparse set of candidate object locations, which are found by binary classification (object/non-object)
- in a one-stage detector, the classifier is applied to a dense set of locations (e.g. a regular grid), which introduces extreme class imbalance between foreground-background
- there is a vast number of easy negatives that can overwhelm the detector
- as an alternative to OHEM, design the loss function such that it does not penalize well-classified examples

what is wrong with dense detection?

- in a two-stage detector, the classifier is applied to a sparse set of candidate object locations, which are found by binary classification (object/non-object)
- in a one-stage detector, the classifier is applied to a dense set of locations (e.g. a regular grid), which introduces extreme class imbalance between foreground-background
- there is a vast number of easy negatives that can overwhelm the detector
- as an alternative to OHEM, design the loss function such that it does not penalize well-classified examples

focal loss

• reduces the relative loss for well-classified examples (p > 0.5), putting more focus on hard, misclassified examples

remember the perceptron loss? the margin?

- the probability of the correct class is $p=\sigma(x)=\frac{1}{1+e^{-x}}$, where x=sa, $s\in\{-1,1\}$ is the "sign" target variable, and a the activation
- easy example means p > 0.5, or x > 0
- perceptron loss is zero for such examples; logistic and hinge are not

remember the perceptron loss? the margin?

- the probability of the correct class is $p=\sigma(x)=\frac{1}{1+e^{-x}}$, where x=sa, $s\in\{-1,1\}$ is the "sign" target variable, and a the activation
- easy example means p > 0.5, or x > 0
- perceptron loss is zero for such examples; logistic and hinge are not

RetinaNet: performance

- RetinaNet on ResNet-50-FPN and ResNet-101-FPN performance on COCO at five scales (400-800 pixels)
- outperforms all one-stage and two-stage detectors

one-stage vs. two-stage

- two-stage fights class imbalance; alternatively, use batch sampling, hard negative mining, or a better loss function
- two-stage defines regions at different scales; alternatively, use multiple scales from a feature pyramid
- two-stage resamples regions at different aspect ratios, or with deformable parts; this has not been explored with feature pyramids or one-stage detectors yet

attention networks*

- of course, there can be more stages!
- AttentionNet iterates bounding box regression and classification

summary

- background: detectors (Viola & Jones, DPM, ISM, ESS), object proposals, NMS, evaluation
- two-stage detection: R-CNN, SPP, fast/faster R-CNN, RPN
- parts: R-FCN, spatial transformers, deformable convolution
- upsampling*: FCN, feature pyramids, TDM, FPN
- one-stage detection: OverFeat*, YOLO, SSD*, DSSD*, RetinaNet*, focal loss
- with feature pyramids, multi-scale representation and appropriate loss, the gap between one- and two-stage detection is closing
- attentional cascade classifiers are developed in parallel