lecture 6: differentiation deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2018 - Jan. 2019

logistics

- audio of lectures available: link shared via piazza
- related courses including coding assignments linked on course website

logistics

- audio of lectures available: link shared via piazza
- related courses including coding assignments linked on course website
- oral presentations: selection of papers by Sunday Dec 16; graduate student to attend presentations on Monday Jan 21
skipped during the lectures is to be studied at home; other material
citing recent methods is really optional

logistics

- audio of lectures available: link shared via piazza
- related courses including coding assignments linked on course website
- oral presentations: selection of papers by Sunday Dec 16; graduate student to attend presentations on Monday Jan 21
- material marked as $X X X X^{*}$: some material like examples or details skipped during the lectures is to be studied at home; other material citing recent methods is really optional

outline

gradient descent
gradient computation
automatic differentiation: units
automatic differentiation: functions

gradient descent

gradient descent

- a first-order Taylor approximation of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at \mathbf{x}_{0} is

$$
f_{\mathbf{x}_{0}}^{(1)}(\mathbf{x}):=f\left(\mathbf{x}_{0}\right)+\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} \nabla f\left(\mathbf{x}_{0}\right)
$$

i.e., the gradient points in the direction of the greatest increase rate a second-order approximation needs the Hessian matrix H f

assuming f is locally convex with isotropic $H f\left(\mathbf{x}_{0}\right)=\frac{1}{\epsilon} I$, the gradient of $f_{\mathbf{x}_{0}}^{(2)}$ is

$$
\nabla f_{\mathbf{x}_{0}}^{(2)}(\mathbf{x})=\nabla f\left(\mathbf{x}_{0}\right)+\frac{1}{\epsilon}\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

- so if we were to minimize this approximation instead of f, we would let this gradient vanish and solve for x

gradient descent

- a first-order Taylor approximation of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at \mathbf{x}_{0} is

$$
f_{\mathbf{x}_{0}}^{(1)}(\mathbf{x}):=f\left(\mathbf{x}_{0}\right)+\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} \nabla f\left(\mathbf{x}_{0}\right)
$$

i.e., the gradient points in the direction of the greatest increase rate

- a second-order approximation needs the Hessian matrix $H f$

$$
f_{\mathbf{x}_{0}}^{(2)}(\mathbf{x}):=f_{\mathbf{x}_{0}}^{(1)}(\mathbf{x})+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top}\left(H f\left(\mathbf{x}_{0}\right)\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

- assuming f is locally convex with isotropic $H f\left(\mathrm{x}_{0}\right)=\frac{1}{\epsilon} I$, the gradient of $f_{\mathbf{x}_{0}}^{(2)}$ is

$$
\nabla f_{\mathrm{x}_{0}}^{(2)}(\mathrm{x})=\nabla f\left(\mathrm{x}_{0}\right)+\frac{1}{6}\left(\mathrm{x}-\mathrm{x}_{0}\right)
$$

- so if we were to minimize this approximation instead of f, we would let this gradient vanish and solve for x

$$
\arg \min _{\mathbf{x}} f_{\mathbf{x}_{0}}^{(2)}(\mathbf{x})=\mathbf{x}_{0}-\epsilon \nabla f\left(\mathbf{x}_{0}\right)
$$

gradient descent

- a first-order Taylor approximation of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at \mathbf{x}_{0} is

$$
f_{\mathbf{x}_{0}}^{(1)}(\mathbf{x}):=f\left(\mathbf{x}_{0}\right)+\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} \nabla f\left(\mathbf{x}_{0}\right)
$$

i.e., the gradient points in the direction of the greatest increase rate

- a second-order approximation needs the Hessian matrix $H f$

$$
f_{\mathbf{x}_{0}}^{(2)}(\mathbf{x}):=f_{\mathbf{x}_{0}}^{(1)}(\mathbf{x})+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top}\left(H f\left(\mathbf{x}_{0}\right)\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

- assuming f is locally convex with isotropic $H f\left(\mathbf{x}_{0}\right)=\frac{1}{\epsilon} I$, the gradient of $f_{\mathbf{x}_{0}}^{(2)}$ is

$$
\nabla f_{\mathbf{x}_{0}}^{(2)}(\mathbf{x})=\nabla f\left(\mathbf{x}_{0}\right)+\frac{1}{\epsilon}\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

- so if we were to minimize this approximation instead of f, we would let this gradient vanish and solve for \mathbf{x}

$$
\arg \min _{\mathbf{x}} f_{\mathbf{x}_{0}}^{(2)}(\mathbf{x})=\mathbf{x}_{0}-\epsilon \nabla f\left(\mathbf{x}_{0}\right)
$$

gradient descent

- this yields the update rule

$$
\mathbf{x}^{(\tau+1)}=\mathbf{x}^{(\tau)}-\epsilon \nabla f\left(\mathbf{x}^{(\tau)}\right)
$$

i.e., we are moving in the direction of the greatest decrease rate such that locally (depending on ϵ)

$$
\begin{aligned}
f_{\mathbf{x}^{(\tau)}}^{(1)}\left(\mathbf{x}^{(\tau+1)}\right) & =f\left(\mathbf{x}^{(\tau)}\right)+\left(\mathbf{x}^{(\tau+1)}-\mathbf{x}^{(\tau)}\right)^{\top} \nabla f\left(\mathbf{x}^{(\tau)}\right) \\
& =f\left(\mathbf{x}^{(\tau)}\right)-\epsilon \nabla f\left(\mathbf{x}^{(\tau)}\right)^{\top} \nabla f\left(\mathbf{x}^{(\tau)}\right) \\
& \leq f\left(\mathbf{x}^{(\tau)}\right)
\end{aligned}
$$

the step size ϵ is inversely proportional to the curvature we assume for f at the local minimum

gradient descent

- this yields the update rule

$$
\mathbf{x}^{(\tau+1)}=\mathbf{x}^{(\tau)}-\epsilon \nabla f\left(\mathbf{x}^{(\tau)}\right)
$$

i.e., we are moving in the direction of the greatest decrease rate such that locally (depending on ϵ)

$$
\begin{aligned}
f_{\mathbf{x}^{(\tau)}}^{(1)}\left(\mathbf{x}^{(\tau+1)}\right) & =f\left(\mathbf{x}^{(\tau)}\right)+\left(\mathbf{x}^{(\tau+1)}-\mathbf{x}^{(\tau)}\right)^{\top} \nabla f\left(\mathbf{x}^{(\tau)}\right) \\
& =f\left(\mathbf{x}^{(\tau)}\right)-\epsilon \nabla f\left(\mathbf{x}^{(\tau)}\right)^{\top} \nabla f\left(\mathbf{x}^{(\tau)}\right) \\
& \leq f\left(\mathbf{x}^{(\tau)}\right)
\end{aligned}
$$

- the step size ϵ is inversely proportional to the curvature we assume for f at the local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.05$: converges to local minimum

gradient descent in one dimension

- $\epsilon=0.14: 1 / \epsilon$ less than actual curvature, does not converge

gradient descent in one dimension

- $\epsilon=0.14: 1 / \epsilon$ less than actual curvature, does not converge

gradient descent in one dimension

- $\epsilon=0.14: 1 / \epsilon$ less than actual curvature, does not converge

gradient descent in one dimension

- $\epsilon=0.14: 1 / \epsilon$ less than actual curvature, does not converge

gradient descent in one dimension

- $\epsilon=0.14: 1 / \epsilon$ less than actual curvature, does not converge

gradient descent in one dimension

- $\epsilon=0.14: 1 / \epsilon$ less than actual curvature, does not converge

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

gradient descent in two dimensions

$\epsilon=0.05$, iteration 10

gradient descent in two dimensions

$\epsilon=0.05$, iteration 11

gradient descent in two dimensions

$\epsilon=0.05$, iteration 12

gradient descent in two dimensions

$\epsilon=0.05$, iteration 13

gradient descent in two dimensions

$\epsilon=0.05$, iteration 14

gradient descent in two dimensions

$\epsilon=0.05$, iteration 15

gradient descent in two dimensions

$\epsilon=0.05$, iteration 16

gradient descent in two dimensions

$\epsilon=0.05$, iteration 17

gradient descent in two dimensions

$\epsilon=0.05$, iteration 18

gradient descent in two dimensions

$\epsilon=0.05$, iteration 19

gradient descent in two dimensions

$\epsilon=0.05$, iteration 20

problems

- f non-convex: local minima
- $d \times d$ Hessian matrix too expensive (d can be millions): unknown curvature
- high condition number: elongated regions
- plateaus, saddle points: no progress

problems

- f non-convex: local minima
- $d \times d$ Hessian matrix too expensive (d can be millions): unknown curvature
- high condition number: elongated regions
- plateaus, saddle points: no progress
- $\nabla f=\sum_{i=1}^{n} \nabla f_{i}$ itself too expensive (n can also be millions)

sequential estimation

[Robbins and Monro 1951]

- suppose f^{*} is the expectation of random variable z conditional on x and f is its empirical estimate on n samples

$$
f^{*}(x):=\mathbb{E}[z \mid x]
$$

we would like to estimate a root x^{*} of f where $f\left(x^{*}\right)=0$

sequential estimation

[Robbins and Monro 1951]

- suppose f^{*} is the expectation of random variable z conditional on x, and f is its empirical estimate on n samples

$$
f^{*}(x):=\mathbb{E}[z \mid x] \quad f(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

- we would like to estimate a root x^{*} of f where $f\left(x^{*}\right)=0$

sequential estimation

[Robbins and Monro 1951]

- suppose f^{*} is the expectation of random variable z conditional on x, and f is its empirical estimate on n samples

$$
f^{*}(x):=\mathbb{E}[z \mid x] \quad f(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

- we would like to estimate a root x^{*} of f where $f\left(x^{*}\right)=0$

sequential estimation

[Robbins and Monro 1951]

- then we can estimate x^{*} sequentially

$$
x^{(\tau+1)}=x^{(\tau)}-\epsilon_{\tau} z\left(x^{(\tau)}\right)=x^{(\tau)}-\epsilon_{\tau} f_{i}\left(x^{(\tau)}\right)
$$

where $z\left(x^{(\tau)}\right)$ is an observation of z when $x=x^{(\tau)}$ and i is a random index in $\{1, \ldots, n\}$

sufficient conditions for convergence

- successive corrections decrease in magnitude

$$
\lim _{\tau \rightarrow \infty} \epsilon_{\tau}=0
$$

- the algorithm does not converge short of the root

$$
\sum_{\tau=1}^{\infty} \epsilon_{\tau}=\infty
$$

- the accumulated "noise" has finite variance

$$
\sum_{\tau=1}^{\infty} \epsilon_{\tau}^{2}<\infty
$$

online gradient descent

- now, replace x by the parameters $\boldsymbol{\theta}$ of our model, and f by ∇E, the gradient of our empirical risk
- the update rule becomes

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon_{\tau} \nabla E_{i}\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

- and, under the same conditions, it converges to a root of

$$
\nabla E(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n} \nabla E_{i}(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n} \nabla L\left(f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right), t_{i}\right)
$$

that is, to a local minimum of E

- mini-batch gradient descent is similar but with less "stochastic noise'

online gradient descent

- now, replace x by the parameters θ of our model, and f by ∇E, the gradient of our empirical risk
- the update rule becomes

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon_{\tau} \nabla E_{i}\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

- and, under the same conditions, it converges to a root of

$$
\nabla E(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n} \nabla E_{i}(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n} \nabla L\left(f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right), t_{i}\right)
$$

that is, to a local minimum of E

- mini-batch gradient descent is similar but with less "stochastic noise"

gradient computation

numerical approximation

numerical approximation

numerical approximation

numerical approximation

$$
\frac{d f}{d x}(x) \approx \frac{f(x+\delta)-f(x-\delta)}{2 \delta}
$$

numerical approximation

- given $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$, its gradient is the vector function

$$
\nabla f:=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{p}}\right)
$$

- each partial derivative $\frac{\partial f}{\partial x_{i}}$ can be approximated at x by the symmetric difference formula

for small $\delta>0$, where \mathbf{e}_{i} is the i standard basis vector of \mathbb{R}^{m}
- in practice, the smallest δ should be used that does not cause numerical issues, e.g. $\delta \in\left[10^{-10}, 10^{-5}\right]$ for double-precision arithmetic

numerical approximation

- given $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$, its gradient is the vector function

$$
\nabla f:=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{p}}\right)
$$

- each partial derivative $\frac{\partial f}{\partial x_{i}}$ can be approximated at \mathbf{x} by the symmetric difference formula

$$
\Delta_{i} f(\mathbf{x} ; \delta):=\frac{f\left(\mathbf{x}+\delta \mathbf{e}_{i}\right)-f\left(\mathbf{x}-\delta \mathbf{e}_{i}\right)}{2 \delta}
$$

for small $\delta>0$, where \mathbf{e}_{i} is the i standard basis vector of \mathbb{R}^{m}

- in practice, the smallest δ should be used that does not cause numerical issues, e.g. $\delta \in\left[10^{-10}, 10^{-5}\right]$ for double-precision arithmetic

numerical approximation

- given $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$, its gradient is the vector function

$$
\nabla f:=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{p}}\right)
$$

- each partial derivative $\frac{\partial f}{\partial x_{i}}$ can be approximated at \mathbf{x} by the symmetric difference formula

$$
\Delta_{i} f(\mathbf{x} ; \delta):=\frac{f\left(\mathbf{x}+\delta \mathbf{e}_{i}\right)-f\left(\mathbf{x}-\delta \mathbf{e}_{i}\right)}{2 \delta}
$$

for small $\delta>0$, where \mathbf{e}_{i} is the i standard basis vector of \mathbb{R}^{m}

- in practice, the smallest δ should be used that does not cause numerical issues, e.g. $\delta \in\left[10^{-10}, 10^{-5}\right]$ for double-precision arithmetic

example

- relative error for $f(x)=x^{3}, \nabla f(x)=3 x^{2}$

$$
\frac{|\Delta f(x ; \delta)-\nabla f(x)|}{\nabla f(x)}
$$

numerical vs. analytical

- apart from accuracy issues, the numerical approximation is impractical in high dimensions: one evaluation of Δf requires $2 p$ evaluations of f, and dimension p is easily in the order of millions
- we turn to analytical computation of the gradient, which costs roughly as much as one evaluation of f
- but the numerical approximation always remains useful for double-checking

analytical computation

- all derivatives we care about are the derivatives of the error function with respect to the model parameters: the error function is scalar and we need its gradient
- we are going to write the error function as a composition of simpler functions, and use the chain rule to compute the gradient efficiently
- the error function can be as complex as a program with control flow statements
- each component function, called a unit, is assumed to be at least piecewise differentiable with a known formula for its derivative
- a unit may be a vector function, so we need Jacobian matrices in general, not just gradients

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$
- $\frac{\partial y}{\partial y}=1, \frac{\partial y}{\partial a}=e^{a}=7.39, \frac{\partial y}{\partial b}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial b}=\frac{\partial y}{\partial a}=7.39$,
$\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=\frac{\partial y}{\partial a}=7.39, \frac{\partial y}{\partial x}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial y}{\partial z} w=14.78$, $\frac{\partial y}{\partial w}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial w}=\frac{\partial y}{\partial z} x=22.17$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$
- $\frac{\partial y}{\partial y}=1, \frac{\partial y}{\partial a}=e^{a}=7.39, \frac{\partial y}{\partial b}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial b}=\frac{\partial y}{\partial a}=7.39$,
$\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=\frac{\partial y}{\partial a}=7.39, \frac{\partial y}{\partial x}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial y}{\partial z} w=14.78$, $\frac{\partial y}{\partial w}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial w}=\frac{\partial y}{\partial z} x=22.17$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$
- $\frac{\partial y}{\partial y}=1, \frac{\partial y}{\partial a}=e^{a}=7.39, \frac{\partial y}{\partial b}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial b}=\frac{\partial y}{\partial a}=7.39$
$\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=\frac{\partial y}{\partial a}=7.39, \frac{\partial y}{\partial x}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial y}{\partial z} w=14.78$,
$\frac{\partial y}{\partial w}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial w}=\frac{\partial y}{\partial z} x=22.17$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$
- $\frac{\partial y}{\partial y}=1, \frac{\partial y}{\partial a}=e^{a}=7.39, \frac{\partial y}{\partial b}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial b}=\frac{\partial y}{\partial a}=7.39$,
$\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=\frac{\partial y}{\partial a}=7.39, \frac{\partial y}{\partial x}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial y}{\partial z} w=14.78$,

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$
- $\frac{\partial y}{\partial y}=1, \frac{\partial y}{\partial a}=e^{a}=7.39, \frac{\partial y}{\partial b}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial b}=\frac{\partial y}{\partial a}=7.39$,
$\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=\frac{\partial y}{\partial a}=7.39, \frac{\partial y}{\partial x}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial y}{\partial z} w=14.78$

example

- $y=e^{w x+b}$ is broken down into $y=e^{a}, a=z+b, z=w x$
- we seek $\frac{\partial y}{\partial w}, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial b}$ for $(w, x, b)=(2,3,-4)$
- $\frac{\partial y}{\partial y}=1, \frac{\partial y}{\partial a}=e^{a}=7.39, \frac{\partial y}{\partial b}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial b}=\frac{\partial y}{\partial a}=7.39$,
$\frac{\partial y}{\partial z}=\frac{\partial y}{\partial a} \frac{\partial a}{\partial z}=\frac{\partial y}{\partial a}=7.39, \frac{\partial y}{\partial x}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial y}{\partial z} w=14.78$,
$\frac{\partial y}{\partial w}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial w}=\frac{\partial y}{\partial z} x=22.17$

vector functions: derivative

- a function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} if there is a $q \times p$ matrix A such that

$$
\frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-A \cdot \mathbf{h}}{|\mathbf{h}|} \rightarrow \mathbf{0}
$$

as $\mathbf{h} \rightarrow \mathbf{0}$; matrix A is the derivative of f at \mathbf{x}, denoted as $D f(\mathbf{x})$

$$
f(\mathrm{x})=A \mathbf{x}
$$

vector functions: derivative

- a function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} if there is a $q \times p$ matrix A such that

$$
\frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-A \cdot \mathbf{h}}{|\mathbf{h}|} \rightarrow \mathbf{0}
$$

as $\mathbf{h} \rightarrow \mathbf{0}$; matrix A is the derivative of f at \mathbf{x}, denoted as $D f(\mathbf{x})$

- if

$$
f(\mathbf{x})=A \mathbf{x}
$$

then

$$
D f(\mathbf{x})=A
$$

vector functions: derivative vs. Jacobian

- given $f=\left(f_{1}, \ldots, f_{q}\right): \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ whose its partial derivatives exist at \mathbf{x}, and $\mathbf{y}=f(\mathbf{x})$, its Jacobian matrix at \mathbf{x} can be written as

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\frac{\partial f}{\partial \mathbf{x}}:=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{p}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{q}}{\partial x_{1}} & \cdots & \frac{\partial f_{q}}{\partial x_{p}}
\end{array}\right)
$$

- if f is differentiable at \mathbf{x}, its derivative at \mathbf{x} is

- if f is differentiable at \mathbf{x}, the derivative $D f(\mathbf{x})$ equals the Jacobian at \mathbf{x}; but the Jacobian may exist without any derivative defined

vector functions: derivative vs. Jacobian

- given $f=\left(f_{1}, \ldots, f_{q}\right): \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ whose its partial derivatives exist at \mathbf{x}, and $\mathbf{y}=f(\mathbf{x})$, its Jacobian matrix at \mathbf{x} can be written as

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\frac{\partial f}{\partial \mathbf{x}}:=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{p}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{q}}{\partial x_{1}} & \cdots & \frac{\partial f_{q}}{\partial x_{p}}
\end{array}\right)
$$

- if f is differentiable at \mathbf{x}, its derivative at \mathbf{x} is

$$
D f(\mathbf{x}):=\left(\begin{array}{ccc}
D_{1} f_{1} & \ldots & D_{p} f_{1} \\
\vdots & \ddots & \vdots \\
D_{1} f_{q} & \ldots & D_{p} f_{q}
\end{array}\right)(\mathbf{x})
$$

- if f is differentiable at \mathbf{x}, the derivative $D f(\mathbf{x})$ equals the Jacobian at \mathbf{x}; but the Jacobian may exist without any derivative defined

scalar functions: derivative vs. gradient

- the gradient of a scalar $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ with respect to an input vector \mathbf{x} is a column vector in \mathbb{R}^{p}, the same size as \mathbf{x}

$$
\nabla f:=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{p}}\right)
$$

- in contrast, the derivative is an $1 \times p$ row vector

$$
D f(\mathbf{x}):=\left(\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{p}}
\end{array}\right)=(\nabla f)^{\top}
$$

- the following analysis uses derivatives/Jacobians, so we will transpose them to make them compatible with \mathbf{x}

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \cdot D f(\mathbf{x})
$$

where • denotes matrix multiplication

- how to use it:

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \cdot D f(\mathbf{x})
$$

where • denotes matrix multiplication

- how to use it:

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \cdot D f(\mathbf{x})
$$

where • denotes matrix multiplication

- how to use it:

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \quad D f(\mathbf{x})
$$

where • denotes matrix multiplication

- how to use it:

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \quad D f(\mathbf{x})
$$

where • denotes matrix multiplication

- how to use it:

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \cdot D f(\mathbf{x})
$$

where - denotes matrix multiplication

- how to use it:

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \cdot D f(\mathbf{x})
$$

where • denotes matrix multiplication

- how to use it:

$$
\frac{\partial \mathbf{z}}{\partial \mathbf{x}_{1}}=\frac{\partial \mathbf{z}}{\partial \mathbf{x}_{2}} \cdot \frac{\partial \mathbf{x}_{2}}{\partial \mathbf{x}_{1}}
$$

- now, for all i, let us call the partial derivatives

$$
d \mathbf{x}_{i}^{\top}:=\frac{\partial \mathbf{z}}{\partial \mathbf{x}_{i}}
$$

chain rule

- if $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is differentiable at \mathbf{x} and $g: \mathbb{R}^{q} \rightarrow \mathbb{R}^{r}$ is differentiable at $\mathbf{y}=f(\mathbf{x})$, then $g \circ f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{r}$ is differentiable at \mathbf{x} and

$$
D(g \circ f)(\mathbf{x})=D g(\mathbf{y}) \cdot D f(\mathbf{x})
$$

where • denotes matrix multiplication

- how to use it:

$$
\frac{\partial \mathbf{z}}{\partial \mathbf{x}_{1}}=\frac{\partial \mathbf{z}}{\partial \mathbf{x}_{2}} \cdot \frac{\partial \mathbf{x}_{2}}{\partial \mathbf{x}_{1}}
$$

- then, we are back-propagating from $d \mathbf{x}_{2}$ to $d \mathbf{x}_{1}$

$$
d \mathbf{x}_{1}^{\top}=d \mathbf{x}_{2}^{\top} \cdot D f\left(\mathbf{x}_{1}\right)
$$

chaining

- let $f=f_{4} \circ f_{3} \circ f_{2} \circ f_{1} \circ f_{0}$ and $\mathbf{z}=f(\mathbf{x})$

chaining

- let $f=f_{4} \circ f_{3} \circ f_{2} \circ f_{1} \circ f_{0}$ and $\mathbf{z}=f(\mathbf{x})$

- we apply the chain rule

$$
\begin{aligned}
\frac{\partial \mathbf{z}}{\partial \mathbf{x}}=D f(\mathbf{x}) & =D\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =D\left(f_{4} \circ f_{3} \circ f_{2}\right)\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =D\left(f_{4} \circ f_{3}\right)\left(\mathbf{x}_{3}\right) \cdot D f_{2}\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =D f_{4}\left(\mathbf{x}_{4}\right) \cdot D f_{3}\left(\mathbf{x}_{3}\right) \cdot D f_{2}\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x})
\end{aligned}
$$

$$
=d \mathbf{x}_{3}^{\top} \cdot D f_{2}\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x})
$$

$$
=d \mathbf{x}_{2}^{\top} \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x})
$$

chaining

- let $f=f_{4} \circ f_{3} \circ f_{2} \circ f_{1} \circ f_{0}$ and $\mathbf{z}=f(\mathbf{x})$

- we apply the chain rule, then collect back into factors $d \mathbf{x}_{i}$

$$
\begin{aligned}
\frac{\partial \mathbf{z}}{\partial \mathbf{x}}=D f(\mathbf{x}) & =D\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right)\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =D\left(f_{4} \circ f_{3} \circ f_{2}\right)\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =D\left(f_{4} \circ f_{3}\right)\left(\mathbf{x}_{3}\right) \cdot D f_{2}\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =D f_{4}\left(\mathbf{x}_{4}\right) \cdot D f_{3}\left(\mathbf{x}_{3}\right) \cdot D f_{2}\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =d \mathbf{x}_{4}^{\top} \cdot D f_{3}\left(\mathbf{x}_{3}\right) \cdot D f_{2}\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =d \mathbf{x}_{3}^{\top} \cdot D f_{2}\left(\mathbf{x}_{2}\right) \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =d \mathbf{x}_{2}^{\top} \cdot D f_{1}\left(\mathbf{x}_{1}\right) \cdot D f_{0}(\mathbf{x}) \\
& =d \mathbf{x}_{1}^{\top} \cdot D f_{0}(\mathbf{x}) \\
& =d \mathbf{x}^{\top}
\end{aligned}
$$

back-propagation

forward pass

$$
\mathbf{x}_{1}=f_{0}(\mathbf{x}) \quad \mathbf{x}_{2}=f_{1}\left(\mathbf{x}_{1}\right) \quad \mathbf{x}_{3}=f_{2}\left(\mathbf{x}_{2}\right) \quad \mathbf{x}_{4}=f_{3}\left(\mathbf{x}_{3}\right) \quad \mathbf{z}=f_{4}\left(\mathbf{x}_{4}\right)
$$

back-propagation

forward pass

$$
\mathbf{x}_{1}=f_{0}(\mathbf{x}) \quad \mathbf{x}_{2}=f_{1}\left(\mathbf{x}_{1}\right) \quad \mathbf{x}_{3}=f_{2}\left(\mathbf{x}_{2}\right) \quad \mathbf{x}_{4}=f_{3}\left(\mathbf{x}_{3}\right) \quad \mathbf{z}=f_{4}\left(\mathbf{x}_{4}\right)
$$

backward pass

$$
\begin{array}{lll}
d \mathbf{z}^{\top}=I & d \mathbf{x}_{4}^{\top}=d \mathbf{z}^{\top} \cdot D f_{4}\left(\mathbf{x}_{4}\right) & d \mathbf{x}_{3}^{\top}=d \mathbf{x}_{4}^{\top} \cdot D f_{3}\left(\mathbf{x}_{3}\right) \\
d \mathbf{x}_{2}^{\top}=d \mathbf{x}_{3}^{\top} \cdot D f_{3}\left(\mathbf{x}_{3}\right) & d \mathbf{x}_{1}^{\top}=d \mathbf{x}_{2}^{\top} \cdot D f_{1}\left(\mathbf{x}_{1}\right) & d \mathbf{x}^{\top}=d \mathbf{x}_{1}^{\top} \cdot D f_{0}(\mathbf{x})
\end{array}
$$

back-propagation is dynamic programming

- we need to store all the \mathbf{x}_{i} that we compute in the forward pass before the backward pass begins
- the $d \mathbf{x}_{i}$ can be computed on the fly in reverse order on a chain, but may need to be all stored on a general network structure

```
problem down into a collection of smaller, overlapping subproblems,
store their solutions and save computation time at the expense of a
(hopefully) modest expenditure in storage space
as in all dynamic programming problems, there is a bottom-up
approach that we have just described, and a top-down approach
coming out of the recursive formulation through
can be useful if we are looking for the derivative with respect to only
few parameters
```


back-propagation is dynamic programming

- we need to store all the \mathbf{x}_{i} that we compute in the forward pass before the backward pass begins
- the $d \mathbf{x}_{i}$ can be computed on the fly in reverse order on a chain, but may need to be all stored on a general network structure
- that's exactly what we do in dynamic programming: break the problem down into a collection of smaller, overlapping subproblems, store their solutions and save computation time at the expense of a (hopefully) modest expenditure in storage space
- as in all dynamic programming problems, there is a bottom-up approach that we have just described, and a top-down approach coming out of the recursive formulation through memoization; this can be useful if we are looking for the derivative with respect to only few parameters

partial derivatives

- in the following, for any vector \mathbf{x} appearing in our function, we will use the symbol

$$
d \mathbf{x}^{\top}:=\frac{\partial}{\partial \mathbf{x}}
$$

for the partial derivative operator of any quantity with respect to \mathbf{x}

- in practice, we will apply this to the quantity we want to optimize, i.e. the error
- the error gradient will consist of the partial derivatives with respect to the model parameters, but we still need to compute partial derivatives with respect to all variables appearing in back-propagation

partial derivatives

- in the following, for any vector \mathbf{x} appearing in our function, we will use the symbol

$$
d \mathbf{x}^{\top}:=\frac{\partial}{\partial \mathbf{x}}
$$

for the partial derivative operator of any quantity with respect to \mathbf{x}

- in practice, we will apply this to the quantity we want to optimize, i.e. the error
- the error gradient will consist of the partial derivatives with respect to the model parameters, but we still need to compute partial derivatives with respect to all variables appearing in back-propagation

nodes

- to every variable \mathbf{y} is associated a node with the function f that produces it, from input variable \mathbf{x}
given x , derivative $D f(\mathrm{x})$ is "stored", and output y is computed and flows forward
- given $d \mathbf{y}$, partial derivative $d \mathbf{x}$ is computed and flows backward

nodes

- to every variable \mathbf{y} is associated a node with the function f that produces it, from input variable \mathbf{x}
- given \mathbf{x}, derivative $D f(\mathbf{x})$ is "stored", and output \mathbf{y} is computed and flows forward
- given $d \mathbf{y}$, partial derivative $d \mathrm{x}$ is computed and flows backward

nodes

- to every variable \mathbf{y} is associated a node with the function f that produces it, from input variable \mathbf{x}
- given \mathbf{x}, derivative $D f(\mathbf{x})$ is "stored", and output \mathbf{y} is computed and flows forward
- given $d \mathbf{y}$, partial derivative $d \mathbf{x}$ is computed and flows backward

$$
d \mathbf{x}^{\top}=d \mathbf{y}^{\top} \cdot D f(\mathbf{x}) \quad \text { or } \quad \frac{\partial}{\partial \mathbf{x}}=\frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{x}}
$$

splitting the input

- we split input vector \mathbf{x} into subvectors as $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
- then, the derivative consists of blocks stacked horizontally

$$
D f(\mathrm{x})=\left(D_{1} f D_{2} f\right)(\mathrm{x})
$$

- $d \mathbf{x}$ is also split as $d \mathbf{x}=\left(d \mathbf{x}_{1}, d \mathbf{x}_{2}\right)$ and $d \mathbf{x}^{\top}=d \mathbf{y}^{\top} \cdot D f(\mathbf{x})$ becomes

splitting the input

- we split input vector \mathbf{x} into subvectors as $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
- then, the derivative consists of blocks stacked horizontally

$$
D f(\mathbf{x})=\left(D_{1} f D_{2} f\right)(\mathbf{x}) \quad \text { or } \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}_{1}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}_{2}}\right)
$$

splitting the input

- we split input vector \mathbf{x} into subvectors as $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
- then, the derivative consists of blocks stacked horizontally

$$
D f(\mathbf{x})=\left(D_{1} f D_{2} f\right)(\mathbf{x}) \quad \text { or } \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left(\begin{array}{ll}
\frac{\partial \mathbf{y}}{\partial \mathbf{x}_{1}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}_{2}}
\end{array}\right)
$$

- $d \mathbf{x}$ is also split as $d \mathbf{x}=\left(d \mathbf{x}_{1}, d \mathbf{x}_{2}\right)$ and $d \mathbf{x}^{\top}=d \mathbf{y}^{\top} \cdot D f(\mathbf{x})$ becomes

$$
d \mathbf{x}_{i}^{\top}=d \mathbf{y}^{\top} \cdot D_{i} f(\mathbf{x}) \quad \text { or } \quad \frac{\partial}{\partial \mathbf{x}_{i}}=\frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{x}_{i}}
$$

example: maximum

- if $f\left(x_{1}, x_{2}\right)=\max \left(x_{1}, x_{2}\right)$, then $D_{i} f\left(x_{1}, x_{2}\right)=\mathbb{1}\left[x_{i}=\max \left(x_{1}, x_{2}\right)\right]$
- and $d y$ is routed into the branch of the maximum input

example: maximum

- if $f\left(x_{1}, x_{2}\right)=\max \left(x_{1}, x_{2}\right)$, then $D_{i} f\left(x_{1}, x_{2}\right)=\mathbb{1}\left[x_{i}=\max \left(x_{1}, x_{2}\right)\right]$

example: maximum

- if $f\left(x_{1}, x_{2}\right)=\max \left(x_{1}, x_{2}\right)$, then $D_{i} f\left(x_{1}, x_{2}\right)=\mathbb{1}\left[x_{i}=\max \left(x_{1}, x_{2}\right)\right]$
- and $d y$ is routed into the branch of the maximum input

example: sum

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1}+\mathbf{x}_{2}$ and $\mathbf{x}_{i} \in \mathbb{R}^{p}$, then $D_{i} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=I_{p}$
- and $d \mathbf{y}$ is distributed to both branches

example: sum

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1}+\mathbf{x}_{2}$ and $\mathbf{x}_{i} \in \mathbb{R}^{p}$, then $D_{i} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=I_{p}$

example: sum

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1}+\mathbf{x}_{2}$ and $\mathbf{x}_{i} \in \mathbb{R}^{p}$, then $D_{i} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=I_{p}$
- and $d \mathbf{y}$ is distributed to both branches
example: vector sum*

- if $f(\mathbf{x})=\mathbf{1}_{p}^{\top} \mathbf{x}=\sum_{i=1}^{p} x_{i}$ and $\mathbf{x} \in \mathbb{R}^{p}$, then $D f(\mathbf{x})=\mathbf{1}_{p}^{\top}$
- and $d y$ is distributed to every element

example: vector sum*

- if $f(\mathbf{x})=\mathbf{1}_{p}^{\top} \mathbf{x}=\sum_{i=1}^{p} x_{i}$ and $\mathbf{x} \in \mathbb{R}^{p}$, then $\operatorname{Df}(\mathbf{x})=\mathbf{1}_{p}^{\top}$

example: vector sum*

- if $f(\mathbf{x})=\mathbf{1}_{p}^{\top} \mathbf{x}=\sum_{i=1}^{p} x_{i}$ and $\mathbf{x} \in \mathbb{R}^{p}$, then $D f(\mathbf{x})=\mathbf{1}_{p}^{\top}$
- and $d y$ is distributed to every element

example: product*

- if $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, then $D_{1} f\left(x_{1}, x_{2}\right)=x_{2}$ and $D_{2} f\left(x_{1}, x_{2}\right)=x_{1}$
- the derivative on each branch is multinlied by the innut of the other

example: product*

- if $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, then $D_{1} f\left(x_{1}, x_{2}\right)=x_{2}$ and $D_{2} f\left(x_{1}, x_{2}\right)=x_{1}$
- the derivative on each branch is multiplied by the input of the other

example: product*

- if $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, then $D_{1} f\left(x_{1}, x_{2}\right)=x_{2}$ and $D_{2} f\left(x_{1}, x_{2}\right)=x_{1}$
- the derivative on each branch is multiplied by the input of the other
example: Hadamard (element-wise) product*

- if $f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \circ \mathrm{x}_{2}$, then $D_{1} f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\operatorname{diag}\left(\mathrm{x}_{2}\right)$ and $D_{2} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\operatorname{diag}\left(\mathbf{x}_{1}\right)$
- the derivative on each branch is element-wise multiplied by the input of the other
example: Hadamard (element-wise) product*

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1} \circ \mathbf{x}_{2}$, then $D_{1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\operatorname{diag}\left(\mathbf{x}_{2}\right)$ and $D_{2} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\operatorname{diag}\left(\mathbf{x}_{1}\right)$
- the derivative on each branch is element-wise multiplied by the input of the other

example: Hadamard (element-wise) product*

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1} \circ \mathbf{x}_{2}$, then $D_{1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\operatorname{diag}\left(\mathbf{x}_{2}\right)$ and $D_{2} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\operatorname{diag}\left(\mathbf{x}_{1}\right)$
- the derivative on each branch is element-wise multiplied by the input of the other

example: dot product*

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1} \cdot \mathbf{x}_{2}=\mathbf{x}_{1}^{\top} \mathbf{x}_{2}$, then $D_{1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{2}$ and $D_{2} f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}$
- the derivative on each branch is multiplied by the input of the other; this can be seen by composing an element-wise product with a vector sum

example: dot product*

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1} \cdot \mathbf{x}_{2}=\mathbf{x}_{1}^{\top} \mathbf{x}_{2}$, then $D_{1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{2}$ and $D_{2} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1}$
- the derivative on each branch is multiplied by the input of the other; this can be seen by composing an element-wise product with a vector sum

example: dot product*

- if $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1} \cdot \mathbf{x}_{2}=\mathbf{x}_{1}^{\top} \mathbf{x}_{2}$, then $D_{1} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{2}$ and $D_{2} f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{x}_{1}$
- the derivative on each branch is multiplied by the input of the other; this can be seen by composing an element-wise product with a vector sum

splitting the output

- we split output \mathbf{y} into subvectors as $\mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x})\right)$
- then, the derivative consists of blocks stacked vertically

$$
D f(\mathbf{x})=\left(D f_{1} ; D f_{2}\right)(\mathbf{x}) \quad \text { or } \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left(\frac{\partial \mathbf{y}_{1}}{\partial \mathbf{x}} ; \frac{\partial \mathbf{y}_{2}}{\partial \mathbf{x}}\right)
$$

- $d \mathbf{y}$ is also split as $d \mathbf{y}=\left(d \mathbf{y}_{1}, d \mathbf{y}_{2}\right)$ and $d \mathbf{x}^{\top}=d \mathbf{y}^{\top} \cdot D f(\mathbf{x})$ becomes

splitting the output

- we split output \mathbf{y} into subvectors as $\mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x})\right)$
- then, the derivative consists of blocks stacked vertically

$$
D f(\mathbf{x})=\left(D f_{1} ; D f_{2}\right)(\mathbf{x}) \quad \text { or } \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left(\frac{\partial \mathbf{y}_{1}}{\partial \mathbf{x}} ; \frac{\partial \mathbf{y}_{2}}{\partial \mathbf{x}}\right)
$$

splitting the output

- we split output \mathbf{y} into subvectors as $\mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x})\right)$
- then, the derivative consists of blocks stacked vertically

$$
D f(\mathbf{x})=\left(D f_{1} ; D f_{2}\right)(\mathbf{x}) \quad \text { or } \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left(\frac{\partial \mathbf{y}_{1}}{\partial \mathbf{x}} ; \frac{\partial \mathbf{y}_{2}}{\partial \mathbf{x}}\right)
$$

- $d \mathbf{y}$ is also split as $d \mathbf{y}=\left(d \mathbf{y}_{1}, d \mathbf{y}_{2}\right)$ and $d \mathbf{x}^{\top}=d \mathbf{y}^{\top} \cdot D f(\mathbf{x})$ becomes

$$
d \mathbf{x}^{\top}=\sum_{i} d \mathbf{y}_{i}^{\top} \cdot D f_{i}(\mathbf{x}) \quad \text { or } \quad \frac{\partial}{\partial \mathbf{x}}=\sum_{i} \frac{\partial}{\partial \mathbf{y}_{i}} \cdot \frac{\partial \mathbf{y}_{i}}{\partial \mathbf{x}}
$$

example: splitter (sharing)

- if $f(\mathbf{x})=(\mathbf{x}, \mathbf{x})$ and $\mathbf{x} \in \mathbb{R}^{p}$, then $D f(\mathbf{x})=\left(I_{p} ; I_{p}\right)$
- and the node behaves like sum backwards

$$
d \mathbf{x}=d \mathbf{y}_{1}+d \mathbf{y}_{2} \quad \text { or } \quad \frac{\partial}{\partial \mathbf{x}}=\frac{\partial}{\partial \mathbf{y}_{1}}+\frac{\partial}{\partial \mathbf{y}_{2}}
$$

example: splitter (sharing)

- if $f(\mathbf{x})=(\mathbf{x}, \mathbf{x})$ and $\mathbf{x} \in \mathbb{R}^{p}$, then $D f(\mathbf{x})=\left(I_{p} ; I_{p}\right)$
- and the node behaves like sum backwards

example: splitter (sharing)

- if $f(\mathbf{x})=(\mathbf{x}, \mathbf{x})$ and $\mathbf{x} \in \mathbb{R}^{p}$, then $D f(\mathbf{x})=\left(I_{p} ; I_{p}\right)$
- and the node behaves like sum backwards

$$
d \mathbf{x}=d \mathbf{y}_{1}+d \mathbf{y}_{2} \quad \text { or } \quad \frac{\partial}{\partial \mathbf{x}}=\frac{\partial}{\partial \mathbf{y}_{1}}+\frac{\partial}{\partial \mathbf{y}_{2}}
$$

- whenever a variable is shared (used more than once), we need to sum the gradients flowing from all paths where it appears

example: tuples*

- if $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$ and $f=(g, g)$, then $D f(\mathbf{x})$ is block-wise diagonal: $\operatorname{diag}\left(D g\left(\mathbf{x}_{1}\right), D g\left(\mathbf{x}_{2}\right)\right)$
and the backward paths flow independently like the forward

$$
d \mathbf{x}_{i}^{\top}=d \mathbf{y}_{i}^{\top} \cdot D g\left(\mathbf{x}_{i}\right) \quad \text { or } \quad \frac{\partial}{\partial \mathbf{x}_{i}}=\frac{\partial}{\partial \mathbf{y}_{i}} \cdot \frac{\partial \mathbf{y}_{i}}{\partial \mathbf{x}_{i}}
$$

example: tuples*

- if $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$ and $f=(g, g)$, then $D f(\mathbf{x})$ is block-wise diagonal: $\operatorname{diag}\left(D g\left(\mathbf{x}_{1}\right), D g\left(\mathbf{x}_{2}\right)\right)$
- and the backward paths flow independently like the forward

example: tuples*

- if $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)$ and $f=(g, g)$, then $D f(\mathbf{x})$ is block-wise diagonal: $\operatorname{diag}\left(D g\left(\mathbf{x}_{1}\right), D g\left(\mathbf{x}_{2}\right)\right)$
- and the backward paths flow independently like the forward

$$
d \mathbf{x}_{i}^{\top}=d \mathbf{y}_{i}^{\top} \cdot D g\left(\mathbf{x}_{i}\right) \quad \text { or } \quad \frac{\partial}{\partial \mathbf{x}_{i}}=\frac{\partial}{\partial \mathbf{y}_{i}} \cdot \frac{\partial \mathbf{y}_{i}}{\partial \mathbf{x}_{i}}
$$

example: element-wise functions

- if $\mathbf{x} \in \mathbb{R}^{p}$ and f is element-wise with $f(\mathbf{x})=\left(g\left(x_{1}\right), \ldots, g\left(x_{p}\right)\right)$ where $g: \mathbb{R} \rightarrow \mathbb{R}$, then $D f(\mathbf{x})=\operatorname{diag} \mathbf{d}$ is diagonal, where $\mathrm{d}=\left(D g\left(x_{1}\right), \ldots, D g\left(x_{p}\right)\right)$
- and the partial derivatives are element-wise multiplied

example: element-wise functions

- if $\mathbf{x} \in \mathbb{R}^{p}$ and f is element-wise with $f(\mathbf{x})=\left(g\left(x_{1}\right), \ldots, g\left(x_{p}\right)\right)$ where $g: \mathbb{R} \rightarrow \mathbb{R}$, then $D f(\mathbf{x})=\operatorname{diag} \mathbf{d}$ is diagonal, where $\mathbf{d}=\left(D g\left(x_{1}\right), \ldots, D g\left(x_{p}\right)\right)$
- and the partial derivatives are element-wise multiplied

example: element-wise functions

- if $\mathbf{x} \in \mathbb{R}^{p}$ and f is element-wise with $f(\mathbf{x})=\left(g\left(x_{1}\right), \ldots, g\left(x_{p}\right)\right)$ where $g: \mathbb{R} \rightarrow \mathbb{R}$, then $D f(\mathbf{x})=\operatorname{diag} \mathbf{d}$ is diagonal, where $\mathbf{d}=\left(D g\left(x_{1}\right), \ldots, D g\left(x_{p}\right)\right)$
- and the partial derivatives are element-wise multiplied

example: squared norm*

- if $f(\mathbf{x})=\|\mathbf{x}\|^{2}$ then $D f(\mathbf{x})=2 \mathbf{x}^{\top}$
and $d y$ is multiplied by $2 \mathbf{x}^{\top}$; this can be seen by composing a splitter (factor 2) with a dot product (factor \mathbf{x}^{\top})

example: squared norm*

- if $f(\mathbf{x})=\|\mathbf{x}\|^{2}$ then $D f(\mathbf{x})=2 \mathbf{x}^{\top}$
and $d y$ is multiplied by $2 \mathbf{x}$; this can be seen by composing a splitter (factor 2) with a dot product (factor \mathbf{x}^{\top})

example: squared norm*

- if $f(\mathbf{x})=\|\mathbf{x}\|^{2}$ then $D f(\mathbf{x})=2 \mathbf{x}^{\top}$
- and $d y$ is multiplied by $2 \mathbf{x}^{\top}$; this can be seen by composing a splitter (factor 2) with a dot product (factor \mathbf{x}^{\top})

matrix derivatives*

[lonescu et al. 2015]

- derivatives for
- SVD decomposition $A=U \Sigma V^{\top}$
- eigenvalue decomposition $A=U \Sigma U^{\top}$
- nonlinear matrix functions $f(A)=U f(\Sigma) U^{\top}$
- application to spectral methods for image segmentation

matrix calculus*

- results like these, and many more

$$
\begin{aligned}
\frac{\partial A \mathbf{x}}{\partial \mathbf{x}} & =A \\
\frac{\partial \mathbf{x}^{\top} A \mathbf{x}}{\partial \mathbf{x}} & =\mathbf{x}^{\top}\left(A+A^{\top}\right) \\
\frac{\partial \operatorname{vec}\left(\mathbf{x}^{\top} A \mathbf{x}\right)}{\partial \operatorname{vec} A} & =\mathbf{x}^{\top} \otimes \mathbf{x}^{\top} \\
\frac{\partial A X B}{\partial X} & =B^{\top} \otimes A \\
\frac{d A^{-1}}{d A} & =-\left(A^{-\top} \otimes A^{-1}\right) \\
\frac{d \ln |A|}{d A} & =\operatorname{vec}\left(A^{-\top}\right)^{\top} \\
\frac{\partial \operatorname{tr}(A X)}{\partial X} & =\operatorname{vec}\left(A^{\top}\right)^{\top}
\end{aligned}
$$

in general

- apparently, we do not need to store the Jacobian matrix $\operatorname{Df}(\mathbf{x})$, which may be huge, but only what is needed to compute the partial derivatives in the backward pass
- our function can be decomposed into a directed acyclic graph (DAG) of nodes, called a computational graph
- each time we call the function in the forward pass, a new graph may be constructed if our program contains control flow statements like conditionals and loops; methods supporting this operation are called dynamic

automatic differentiation

[Wengert 1964]

- is the more general set of methods used to automatically evaluate the derivative of a given function at a given input; it is not numerical and not symbolic
- what we call back-propagation here is known as the reverse accumulation mode in this context and makes sense because we compute the gradient of a single scalar quantity with respect to maybe millions of parameters
- forward accumulation makes sense when we need the derivative of many variables with respect to few parameters
- we will use the term automatic differentiation to refer to the process of generating a computer program for the derivatives given the program for the original function and the input variables

aside: higher-order derivatives*

- the Hessian was assumed fixed and isotropic in gradient descent; if we knew it, we could use the Newton method instead and solve all curvature-related problems
- given $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$, its Hessian matrix at \mathbf{x} is

$$
H f(\mathbf{x}):=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{p}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{p} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{p}^{2}}
\end{array}\right)(\mathbf{x})=\nabla(D f)(\mathbf{x})
$$

- unfortunately, this is a $p \times p$ matrix and with p in the order of millions, it is impractical even to store it, let alone compute it

aside: multiplication by Hessian*

[Pearlmutter 1994]

- fortunately, in many cases what we need is only the product of the Hessian with a given vector \mathbf{v}, which is just a vector in \mathbb{R}^{p}

$$
\mathbf{v}^{\top} \cdot H f(\mathbf{x})=\mathbf{v}^{\top} \cdot \nabla(D f)(\mathbf{x})=\nabla_{\mathbf{v}}(D f)(\mathbf{x})
$$

- here $\nabla_{\mathbf{v}}$ is the directional derivative operator

$$
\nabla_{\mathbf{v}}(f):=\mathbf{v}^{\top} \cdot \nabla f
$$

- remember that in back-propagation, for each variable x , we defined a vector $d \mathbf{x}$, which was computed in the backward pass
- so all we need to do is allocate another vector $\nabla_{\mathrm{v}}(\mathrm{x})$ for the forward pass and another $\nabla_{\mathrm{v}}(d \mathrm{x})$ for the backward, and compute them by applying the chain rule in both passes!

aside: multiplication by Hessian*

[Pearlmutter 1994]

- fortunately, in many cases what we need is only the product of the Hessian with a given vector \mathbf{v}, which is just a vector in \mathbb{R}^{p}

$$
\mathbf{v}^{\top} \cdot H f(\mathbf{x})=\mathbf{v}^{\top} \cdot \nabla(D f)(\mathbf{x})=\nabla_{\mathbf{v}}(D f)(\mathbf{x})
$$

- here $\nabla_{\mathbf{v}}$ is the directional derivative operator

$$
\nabla_{\mathbf{v}}(f):=\mathbf{v}^{\top} \cdot \nabla f
$$

- remember that in back-propagation, for each variable \mathbf{x}, we defined a vector $d \mathbf{x}$, which was computed in the backward pass
- so all we need to do is allocate another vector $\nabla_{\mathbf{v}}(\mathbf{x})$ for the forward pass and another $\nabla_{\mathbf{v}}(d \mathbf{x})$ for the backward, and compute them by applying the chain rule in both passes!

automatic differentiation: units

automatic differentiation

forward

- evaluation is carried out by units, one calling another
- when invoked, each unit generates a node object
- each node holds the gradient with respect to its unit's inputs, including parameters
- it also holds any information needed for the backward pass
- all gradients are set to zero, except for the gradient with respect to the scalar quantity that is to be optimized (the error), which is set to one
- the method is invoked on the node of this quantity
- this, in turn, triggers the same method on all units that have participated in the forward pass

automatic differentiation

forward

- evaluation is carried out by units, one calling another
- when invoked, each unit generates a node object
- each node holds the gradient with respect to its unit's inputs, including parameters
- it also holds any information needed for the backward pass

backward

- all gradients are set to zero, except for the gradient with respect to the scalar quantity that is to be optimized (the error), which is set to one
- the back() method is invoked on the node of this quantity
- this, in turn, triggers the same method on all units that have participated in the forward pass

units and nodes

unit u manually generates node n

units and nodes

- unit u manually generates node n

units and nodes

- unit u manually generates node n

units and nodes

- given a function f with derivative $D f$, a unit is a function of the form def forward $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$:

$$
\mathbf{y}=f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)
$$

$$
\operatorname{def} \operatorname{back}\left(d \mathbf{y}, d \mathbf{x}_{1}, \ldots, d \mathbf{x}_{n}\right):
$$

$$
d \mathbf{x}_{1}^{\top}+=d \mathbf{y}^{\top} \cdot D_{1} f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)
$$

$$
d \mathbf{x}_{n}^{\top}+=d \mathbf{y}^{\top} \cdot D_{n} f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)
$$

return node (\mathbf{y}, back)

- holds \mathbf{y} and an associated derivative $d \mathbf{y}$ of the same shape - exposes a method back $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ where \mathbf{x}_{i} can be nodes
- automatically adds its own dy as first argument
- if an input \mathbf{x}_{i} is a node, extracts the derivative part $d \mathbf{x}_{i}$
- otherwise, $d \mathbf{x}_{i}$ is an object for which operation $+=$ is ignored

units and nodes

- given a function f with derivative $D f$, a unit is a function of the form def forward $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$:

$$
\begin{aligned}
& \mathbf{y}=f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \\
& \operatorname{def} \operatorname{back}\left(d \mathbf{y}, d \mathbf{x}_{1}, \ldots, d \mathbf{x}_{n}\right): \\
& \quad d \mathbf{x}_{1}^{\top}+=d \mathbf{y}^{\top} \cdot D_{1} f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \\
& \quad \vdots \\
& \quad d \mathbf{x}_{n}^{\top}+=d \mathbf{y}^{\top} \cdot D_{n} f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \\
& \text { return } \operatorname{node}(\mathbf{y}, \text { back })
\end{aligned}
$$

- a node object:
- holds \mathbf{y} and an associated derivative $d \mathbf{y}$ of the same shape
- exposes a method $\operatorname{back}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ where \mathbf{x}_{i} can be nodes
- automatically adds its own $d \mathbf{y}$ as first argument
- if an input \mathbf{x}_{i} is a node, extracts the derivative part $d \mathbf{x}_{i}$
- otherwise, $d \mathbf{x}_{i}$ is an object for which operation $+=$ is ignored

the affine unit

- input vectors are represented as rows of $m \times p$ input matrix X where m is the mini-batch size and p the input dimension
- parameters are represented by $p \times q$ weight matrix W and $1 \times q$ bias vector \mathbf{b} where q is the output dimension
- the unit is defined as

return $\operatorname{node}(A$, back $)$

the affine unit

- input vectors are represented as rows of $m \times p$ input matrix X where m is the mini-batch size and p the input dimension
- parameters are represented by $p \times q$ weight matrix W and $1 \times q$ bias vector \mathbf{b} where q is the output dimension
- the unit is defined as

$$
\begin{gathered}
\text { def } \operatorname{affine}(X,(W, \mathbf{b})) \text { : } \\
A=\operatorname{dot}(X, W)+\mathbf{b} \\
\operatorname{def} \operatorname{back}(d A, d X,(d W, d \mathbf{b})): \\
d W+=\operatorname{dot}\left(X^{\top}, d A\right) \\
d \mathbf{b}+=\operatorname{sum}(d A) \\
d X+=\operatorname{dot}\left(d A, W^{\top}\right) \\
\text { return } \operatorname{node}(A, \text { back })
\end{gathered}
$$

the affine unit in math*

forward

- input $X \in \mathbb{R}^{m \times p}, W \in \mathbb{R}^{p \times q}, \mathbf{b} \in \mathbb{R}^{q}$, output $A \in \mathbb{R}^{m \times q}$

$$
A=f(X ; W, \mathbf{b}):=X W+\mathbf{1}_{m} \mathbf{b}^{\top}
$$

observe that in the code, addition of \mathbf{b} is handled by broadcasting

- if $\mathbf{a}_{i}, \mathbf{w}_{i}$ is the i-th column of A, W,

and there are no other dependencies, so by the chain rule

- finally, the partial derivative with respect to W

the affine unit in math*

forward

- input $X \in \mathbb{R}^{m \times p}, W \in \mathbb{R}^{p \times q}, \mathbf{b} \in \mathbb{R}^{q}$, output $A \in \mathbb{R}^{m \times q}$

$$
A=f(X ; W, \mathbf{b}):=X W+\mathbf{1}_{m} \mathbf{b}^{\top}
$$

observe that in the code, addition of \mathbf{b} is handled by broadcasting backward

- if $\mathbf{a}_{i}, \mathbf{w}_{i}$ is the i-th column of A, W,

$$
\frac{\partial \mathbf{a}_{i}}{\partial \mathbf{w}_{i}}=\frac{\partial\left(X \mathbf{w}_{i}\right)}{\partial \mathbf{w}_{i}}=X
$$

and there are no other dependencies, so by the chain rule

$$
d \mathbf{w}_{i}^{\top}:=\frac{\partial}{\partial \mathbf{w}_{i}}=\frac{\partial}{\partial \mathbf{a}_{i}} \cdot \frac{\partial \mathbf{a}_{i}}{\partial \mathbf{w}_{i}}=d \mathbf{a}_{i}^{\top} \cdot X
$$

- finally, the partial derivative with respect to W

$$
d W=\left(d A^{\top} X\right)^{\top}=X^{\top} d A
$$

the affine unit in math*

- by symmetry, writing $A^{\top}=W^{\top} X^{\top}+\mathbf{b} \mathbf{1}_{\underline{m}}^{\top}$ and using the previous result for $d W$, we find $d X^{\top}=\left(W^{\top}\right)^{\top} d A^{\top}$ or

$$
d X=(d A) W^{\top}
$$

again, by replacing X and W by 1_{m} and b^{\top} respectively in the previous result for $d W$,

$$
d \mathrm{~b}^{\top}=\left(d A^{\top} 1_{m}\right)^{\top}=1_{m}^{\top} d A
$$

- observe that distributing b in the forward yields a sum in the backward

the affine unit in math*

- by symmetry, writing $A^{\top}=W^{\top} X^{\top}+\mathbf{b 1} 1_{\underline{m}}^{\top}$ and using the previous result for $d W$, we find $d X^{\top}=\left(W^{\top}\right)^{\top} d A^{\top}$ or

$$
d X=(d A) W^{\top}
$$

- again, by replacing X and W by $\mathbf{1}_{m}$ and \mathbf{b}^{\top} respectively in the previous result for $d W$,

$$
d \mathbf{b}^{\top}=\left(d A^{\top} \mathbf{1}_{m}\right)^{\top}=\mathbf{1}_{m}^{\top} d A
$$

- observe that distributing b in the forward yields a sum in the backward

the logistic unit

- the input is an $m \times q$ activation matrix A and the $m \times k$ one-of- k encoded target matrix, where k is the number of classes
- there are no parameters
- the unit integrates softmax with average cross-entropy loss

the logistic unit

- the input is an $m \times q$ activation matrix A and the $m \times k$ one-of- k encoded target matrix, where k is the number of classes
- there are no parameters
- the unit integrates softmax with average cross-entropy loss

$$
\begin{aligned}
& \text { def } \operatorname{logistic}(A, T) \text { : } \\
& \qquad \begin{array}{l}
E=\exp (A) \\
Y=E / \operatorname{sum}_{1}(E) \\
C=-\operatorname{sum}_{1}(T * \log (Y)) \\
D=\operatorname{sum}_{0}(C) / m \\
\text { def } \operatorname{back}\left(d D, d A,,_{-}\right): \\
d A+=d D *(Y-T) / m \\
\text { return } \operatorname{node}(D, \text { back })
\end{array}
\end{aligned}
$$

the logistic unit in math*

forward

- E is given element-wise as $e_{i j}=\exp \left(a_{i j}\right)$, and $m \times q$ matrix Y is row-normalized as

$$
Y=\left(\operatorname{diag}\left(E \mathbf{1}_{k}\right)\right)^{-1} E
$$

- the i-th row of Y is the softmax output of the i-th input sample representing the k posterior class probabilities

C is actually a $m \times 1$ column vector and its i-th element represents the cross-entropy loss of the i-th input sample

the logistic unit in math*

forward

- E is given element-wise as $e_{i j}=\exp \left(a_{i j}\right)$, and $m \times q$ matrix Y is row-normalized as

$$
Y=\left(\operatorname{diag}\left(E \mathbf{1}_{k}\right)\right)^{-1} E
$$

- the i-th row of Y is the softmax output of the i-th input sample representing the k posterior class probabilities
- C is actually a $m \times 1$ column vector and its i-th element represents the cross-entropy loss of the i-th input sample

$$
c_{i}=-\sum_{j=1}^{k} t_{i j} \log \left(y_{i j}\right)
$$

- finally, $D=\frac{1}{m} \sum_{i=1}^{m} c_{i}$ is a scalar and represents the average cross-entropy (data) error over the mini-batch

the logistic unit in math*

backward

- if $\mathbf{a}_{i}^{\top}, \mathbf{y}_{i}^{\top}, \mathbf{t}_{i}^{\top}$ is the i-th row of A, Y, T, the derivative of the cross-entropy loss is, according to what we have seen,

$$
\frac{\partial c_{i}}{\partial \mathbf{a}_{i}}\left(\mathbf{a}_{i}, \mathbf{t}_{i}\right)=\left(\boldsymbol{\sigma}\left(\mathbf{a}_{i}\right)-\mathbf{t}_{i}\right)^{\top}=\left(\mathbf{y}_{i}-\mathbf{t}_{i}\right)^{\top}
$$

- since D is the average of the individual sample losses c_{i}, the derivative of the total error, which is 1 by default, is distributed over the samples with a factor of $\frac{1}{m}$

$$
d A^{\top}=\frac{1}{m}(Y-T) \cdot d D
$$

why integrate softmax with cross-entropy?

- the simplified formula is faster compared to blind application of back-propagation at the level of elementary functions
- if this is not convincing, try evaluating the binary cross-entropy loss

$$
\ell(x):=\ln \left(1+e^{-x}\right)
$$

- $\ell(-1)=1.3133$
- $\ell(-2)=2.1269$
- $\ell(-5)=5.0067$
- $\ell(-10)=10.0000$
- $\ell(-20)=20.0000$
- $\ell(-50)=50.0000$
- $\ell(-100)=100.0000$
- $\ell(-200)=200.0000$
- $\ell(-500)=500.0000$
- $\ell(-1000)=\infty$
- $\ell(-2000)=\infty$

why integrate softmax with cross-entropy?

- the simplified formula is faster compared to blind application of back-propagation at the level of elementary functions if this is not convincing, try evaluating the binary cross-entropy loss
$\ell(-1)=1.3133$
$\ell(-2)=2.1269$
$\ell(-5)=5.0067$
$\ell(-10)=10.0000$
$\ell(-20)=20.0000$
$\ell(-50)=50.0000$
- $\ell(-100)=100.0000$
-
-
-

why integrate softmax with cross-entropy?

- the simplified formula is faster compared to blind application of back-propagation at the level of elementary functions
- if this is not convincing, try evaluating the binary cross-entropy loss

$$
\ell(x):=\ln \left(1+e^{-x}\right)
$$

- $\ell(-1)=1.3133$
- $\ell(-2)=2.1269$
- $\ell(-5)=5.0067$
- $\ell(-10)=10.0000$
- $\ell(-20)=20.0000$
- $\ell(-50)=50.0000$
- $\ell(-100)=100.0000$
- $\ell(-200)=200.0000$
- $\ell(-500)=500.0000$
\qquad
\square
$\ell(-2000)=\infty$

why integrate softmax with cross-entropy?

- the simplified formula is faster compared to blind application of back-propagation at the level of elementary functions
- if this is not convincing, try evaluating the binary cross-entropy loss

$$
\ell(x):=\ln \left(1+e^{-x}\right)
$$

- $\ell(-1)=1.3133$
- $\ell(-2)=2.1269$
- $\ell(-5)=5.0067$
- $\ell(-20)=20.0000$
- $\ell(-50)=50.0000$
- $\ell(-100)=100.0000$
- $\ell(-200)=200.0000$
- $\ell(-500)=500.0000$
- $\ell(-1000)=\infty$
- $\ell(-2000)=\infty$

why integrate softmax with cross-entropy?

- the simplified formula is faster compared to blind application of back-propagation at the level of elementary functions
- if this is not convincing, try evaluating the binary cross-entropy loss

$$
\ell(x):=\ln \left(1+e^{-x}\right)
$$

- $\ell(-1)=1.3133$
- $\ell(-2)=2.1269$
- $\ell(-5)=5.0067$
- $\ell(-10)=10.0000$
- $\ell(-20)=20.0000$
- $\ell(-50)=50.0000$
- $\ell(-100)=100.0000$
- $\ell(-200)=200.0000$
- $\ell(-500)=500.0000$

why integrate softmax with cross-entropy?

- the simplified formula is faster compared to blind application of back-propagation at the level of elementary functions
- if this is not convincing, try evaluating the binary cross-entropy loss

$$
\ell(x):=\ln \left(1+e^{-x}\right)
$$

- $\ell(-1)=1.3133$
- $\ell(-2)=2.1269$
- $\ell(-5)=5.0067$
- $\ell(-10)=10.0000$
- $\ell(-20)=20.0000$
- $\ell(-50)=50.0000$
- $\ell(-100)=100.0000$
- $\ell(-200)=200.0000$
- $\ell(-500)=500.0000$
- $\ell(-1000)=\infty$
- $\ell(-2000)=\infty$

back-propagation

back-propagation

back-propagation

back-propagation

forward

$A=\operatorname{dot}(X, W)+\mathbf{b}$
$E=\exp (A)$
$Y=E / \operatorname{sum}_{1}(E)$
$C=-\operatorname{sum}_{1}(T * \log (Y))$
$D=\operatorname{sum}_{0}(C) / m$

back-propagation

$$
\begin{aligned}
& \text { forward } \\
& \begin{array}{l}
A=\operatorname{dot}(X, W)+\mathbf{b} \\
\begin{array}{|l}
E
\end{array}=\exp (A) \\
Y=E / \operatorname{sum}_{1}(E) \\
C=-\operatorname{sum}_{1}(T * \log (Y)) \\
\hline D=\operatorname{sum}_{0}(C) / m \\
\hline
\end{array}
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& \text { forward } \\
& A=\operatorname{dot}(X, W)+\mathbf{b} \\
& E=\exp (A) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& \text { backward } \\
& d A=d D *(Y-T) / m
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& \text { forward } \\
& A=\operatorname{dot}(X, W)+\mathbf{b} \\
& E=\exp (A) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& \text { backward } \\
& d A=d D *(Y-T) / m \\
& \hline d W+=\operatorname{dot}\left(X^{\top}, d A\right) \\
& \hline d \mathbf{b}=\operatorname{sum}_{0}(d A) \\
& \hline
\end{aligned}
$$

back-propagation

automatic differentiation

forward
$A=\operatorname{dot}(X, W)+\mathbf{b}$
$E=\exp (A)$
$Y=E / \operatorname{sum}_{1}(E)$
$C=-\operatorname{sum}_{1}(T * \log (Y))$
$D=\operatorname{sum}_{0}(C) / m$
backward
now we organize forward and backward code into units

automatic differentiation

forward

automatic differentiation

forward

$A=\operatorname{affine}(X,(W, \mathbf{b}))$	
$E=\exp (A)$	
$Y=E / \operatorname{sum}_{1}(E) \quad$ def affine $(X,(W, \mathbf{b}))$:	
$C=-\operatorname{sum}_{1}(T * \log (Y))$	$\frac{A=\operatorname{dot}(X, W)+\mathbf{b}}{\mathbf{d e f} \operatorname{back}(d A, d X,(d W, d \mathbf{b}))}$:
$D=\operatorname{sum}_{0}(C) / m$	$\begin{gathered} \text { def } \operatorname{back}(d A, d X,(d W, d \mathbf{b})): \\ d W+=\operatorname{dot}\left(X^{\top}, d A\right) \end{gathered}$
backward	$d \mathbf{b}+=\operatorname{sum}_{0}(d A)$
$d A=d D *(Y-T) / m$	$d X+=\operatorname{dot}\left(d A, W^{\top}\right)$
$A . \operatorname{back}(X,(W, \mathbf{b}))$	return $\operatorname{node}(A$, back $)$

automatic differentiation

forward

$A=\operatorname{affine}(X,(W, \mathbf{b}))$
$E=\exp (A)$
$Y=E / \operatorname{sum}_{1}(E)$
$C=-\operatorname{sum}_{1}(T * \log (Y))$
$D=\operatorname{sum}_{0}(C) / m$
backward
$d A=d D *(Y-T) / m$
$A . \operatorname{back}(X,(W, \mathbf{b}))$
def $\operatorname{logistic}(A, T)$:

automatic differentiation

forward
$A=\operatorname{affine}(X,(W, \mathbf{b}))$
$D=\operatorname{entropy}(A, T)$
backward
$D \cdot \operatorname{back}(A, T)$
$A \cdot \operatorname{back}(X,(W, \mathbf{b}))$
def $\operatorname{logistic}(A, T)$:
$E=\exp (A)$
$Y=E / \operatorname{sum}_{1}(E)$
$C=-\operatorname{sum}_{1}(T * \log (Y))$
$D=\operatorname{sum}_{0}(C) / m$
def $\operatorname{back}\left(d D, d A, _\right)$:

$$
d A+=d D *(Y-T) / m
$$

return $\operatorname{node}(D$, back)

automatic differentiation: functions

the relu unit*

- relu is an element-wise activation function; its input is activation matrix A and returns matrix Z of the same size
- its backward pass behaves like a switch

the relu unit*

- relu is an element-wise activation function; its input is activation matrix A and returns matrix Z of the same size
- its backward pass behaves like a switch

$$
\begin{aligned}
& \text { def } \operatorname{relu}(A) \text { : } \\
& Z=\max (0, A) \\
& \operatorname{def} \operatorname{back}(d Z, d A) \text { : } \\
& \quad d A+=d Z *(Z>0) \\
& \text { return } \operatorname{node}(Z, \text { back })
\end{aligned}
$$

the decay unit*

- it takes as input a tuple or list W of weight matrices of any size and returns the weight decay error term $\frac{\lambda}{2}\|w\|^{2}$ for each $w \in W$, where $\|\cdot\|_{F}$ is the Frobenius norm
- the backward derivative is proportional to w, as for the ℓ_{2} norm

return $\operatorname{node}(R$, back)

the decay unit*

- it takes as input a tuple or list W of weight matrices of any size and returns the weight decay error term $\frac{\lambda}{2}\|w\|^{2}$ for each $w \in W$, where $\|\cdot\|_{F}$ is the Frobenius norm
- the backward derivative is proportional to w, as for the ℓ_{2} norm def $\operatorname{decay}(W)$:

$$
R=\frac{\lambda}{2} * \operatorname{sum}\left(\|w\|_{F}^{2} \text { for } w \text { in } W\right)
$$

$$
\operatorname{def} \operatorname{back}(d R, d W)
$$

$$
\text { for }(w, d w) \text { in } \operatorname{zip}(W, d W):
$$

$$
d w+=d R * \lambda * w
$$

return $\operatorname{node}(R$, back $)$

the add unit*

- it takes as input a tuple or list X of matrices (or vectors, or scalars) of the same size and returns their sum
- its backward pass distributes the derivative to all input branches

return node(S, back)
operator + is overloaded for n.odes such that $A+B$ means $\operatorname{add}((A, B))$

the add unit*

- it takes as input a tuple or list X of matrices (or vectors, or scalars) of the same size and returns their sum
- its backward pass distributes the derivative to all input branches

$$
\begin{aligned}
& \text { def } \operatorname{add}(X): \\
& S=\operatorname{sum}(X) \\
& \text { def } \operatorname{back}(d S, d X) \text { : } \\
& \text { for } d x \text { in } d X: \\
& d x+=d S
\end{aligned}
$$

$$
\text { return } \operatorname{node}(S, \text { back })
$$

- operator + is overloaded for nodes such that $A+B$ means $\operatorname{add}((A, B))$

the add unit*

- it takes as input a tuple or list X of matrices (or vectors, or scalars) of the same size and returns their sum
- its backward pass distributes the derivative to all input branches

$$
\begin{aligned}
& \text { def } \operatorname{add}(X): \\
& S=\operatorname{sum}(X) \\
& \text { def } \operatorname{back}(d S, d X) \\
& \text { for } d x \text { in } d X: \\
& d x+=d S \\
& \text { return } \operatorname{node}(S, \text { back })
\end{aligned}
$$

- operator + is overloaded for nodes such that $A+B$ means $\operatorname{add}((A, B))$

the loss function

- it takes as input the activation matrix A, the target matrix T and the weight matrix list W
- it calls the logistic unit on (A, T) and the decay unit on W, and returns the sum of the two scalar terms

$$
\begin{aligned}
& \text { def } \operatorname{loss}(A, T, W) \text { : } \\
& L=\operatorname{logistic}(A, T)+\operatorname{decay}(W) \\
& \text { return } \operatorname{block}(L)
\end{aligned}
$$

- addition is handled by add and the error derivative flows backward to both branches

the loss function

- it takes as input the activation matrix A, the target matrix T and the weight matrix list W
- it calls the logistic unit on (A, T) and the decay unit on W, and returns the sum of the two scalar terms

$$
\begin{aligned}
& \text { def } \operatorname{loss}(A, T, W) \text { : } \\
& L=\operatorname{logistic}(A, T)+\operatorname{decay}(W) \\
& \text { return } \operatorname{block}(L)
\end{aligned}
$$

- addition is handled by add and the error derivative flows backward to both branches

the model function

- this is a two-layer network model where an affine layer is followed by a relu activation function and another affine layer
- the parameter tuple $U_{i}=\left(W_{i}, \mathbf{b}_{i}\right)$ for layer i contains a weight matrix W_{i} and a bias vector \mathbf{b}_{i}
- unit calls are nested like every other function

$$
\begin{aligned}
& \text { def } \operatorname{model}\left(X,\left(U_{1}, U_{2}\right)\right): \\
& \quad A=\operatorname{affine}\left(\operatorname{relu}\left(\operatorname{affine}\left(X, U_{1}\right)\right), U_{2}\right) \\
& \quad \text { return } \operatorname{block}(A)
\end{aligned}
$$

functions and blocks

- function f containing units u_{1}, u_{2}, u_{3}
- f dynamically generates block b containing nodes n_{1}, n_{2}, n_{3}, manually generated by u_{1}, u_{2}, u_{3} respectively

functions and blocks

- function f containing units u_{1}, u_{2}, u_{3}
- f dynamically generates block b containing nodes n_{1}, n_{2}, n_{3}, manually generated by u_{1}, u_{2}, u_{3} respectively

functions and blocks

- function f containing units u_{1}, u_{2}, u_{3}
- f dynamically generates block b containing nodes n_{1}, n_{2}, n_{3}, manually generated by u_{1}, u_{2}, u_{3} respectively

functions and blocks

- a function is a function of the following form, where code is arbitrary but computation takes place through calls to units or functions

$$
\begin{aligned}
& \text { def } \operatorname{name}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right): \\
& \langle\text { code generating the following }\rangle \\
& \mathbf{r}_{1}=\operatorname{call}_{1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n_{1}}\right) \\
& \quad \vdots \\
& \mathbf{r}_{s}=\operatorname{call}_{s}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n_{s}}\right) \\
& \text { return } \operatorname{block}\left(\mathbf{r}_{s}\right)
\end{aligned}
$$

- all calls are recorded as a list of units or functions by call order, each associated with a list of arguments
- its method back() does not add its own derivative in the
arguments
- its method back() is automatically generated and its body calls
the recorded functions with the same arguments in reverse order

functions and blocks

- a function is a function of the following form, where code is arbitrary but computation takes place through calls to units or functions

$$
\begin{aligned}
& \text { def } \operatorname{name}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right): \\
& \langle\text { code generating the following }\rangle \\
& \mathbf{r}_{1}=\operatorname{call}_{1}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n_{1}}\right) \\
& \quad \vdots \\
& \mathbf{r}_{s}=\operatorname{call}_{s}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n_{s}}\right) \\
& \text { return } \operatorname{block}\left(\mathbf{r}_{s}\right)
\end{aligned}
$$

- all calls are recorded as a list of units or functions by call order, each associated with a list of arguments
- a block object is a node, but
- its method back() does not add its own derivative in the arguments
- its method $\operatorname{back}()$ is automatically generated and its body calls the recorded functions with the same arguments in reverse order

back-propagation

back-propagation

back-propagation

back-propagation

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& \hline E=\exp \left(A_{2}\right) \\
& \hline Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& \hline
\end{aligned}
$$

back-propagation

$A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1}$ $Z=\max \left(0, A_{1}\right)$

$$
A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2}
$$

$$
\begin{array}{|l|}
\hline E=\exp \left(A_{2}\right) \\
\hline Y=E / \operatorname{sum}_{1}(E) \\
\hline C=-\operatorname{sum}_{1}(T * \log (Y)) \\
D=\operatorname{sum}_{0}(C) / m \\
\hline
\end{array}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& \hline E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& \hline C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& \hline D=\operatorname{sum}_{0}(C) / m \\
& \hline
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& \hline D=\operatorname{sum}_{0}(C) / m \\
& \hline
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right)
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R
\end{aligned}
$$

back-propagation

$$
\begin{align*}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L)
\end{align*}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& \hline
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& \hline d W_{2}=d R * \lambda * W_{2} \\
& \hline
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& \hline
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& d \mathbf{b}_{2}=\operatorname{sum} m_{0}\left(d A_{2}\right) \\
& d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right)
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& \hline d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& \hline d \mathbf{b}_{2}=\operatorname{sum}\left(d A_{2}\right) \\
& \hline d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right) \\
& \hline
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum} 1(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& d \mathbf{b}_{2}=\operatorname{sum} \mathbf{m}_{0}\left(d A_{2}\right) \\
& d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right)
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum} m_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& d \mathbf{b}_{2}=\operatorname{sum} \\
& 0 \\
& d Z=\operatorname{dot}\left(d A_{2}\right) \\
& \left.d A_{1}, W_{2}^{\top}\right) \\
& \hline d Z *(Z>0)
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& d \mathbf{b}_{2}=\operatorname{sum}\left(d A_{2}\right) \\
& d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right) \\
& d A_{1}=d Z *(Z>0) \\
& \hline d W_{1}+=\operatorname{dot}\left(X^{\top}, d A_{1}\right) \\
& \hline d \mathbf{b}_{1}=\operatorname{sum}_{0}\left(d A_{1}\right) \\
& \hline
\end{aligned}
$$

back-propagation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& d \mathbf{b}_{2}=\operatorname{sum} \\
& \left.d Z A_{2}\right) \\
& d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right) \\
& d A_{1}=d Z *(Z>0) \\
& d W_{1}+=\operatorname{dot}\left(X^{\top}, d A_{1}\right) \\
& \hline d \mathbf{b}_{1}=\operatorname{sum}_{0}\left(d A_{1}\right) \\
& \hline
\end{aligned}
$$

automatic differentiation

$$
\begin{array}{|l}
\hline A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
Z=\max \left(0, A_{1}\right) \\
A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
E=\exp \left(A_{2}\right) \\
Y=E / \operatorname{sum}(E) \\
C=-\operatorname{sum}_{1}(T * \log (Y)) \\
D=\operatorname{sum}_{0}(C) / m \\
R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
L=D+R \\
\hline \hline d D, d R)=(d L, d L) \\
d W_{1}=d R * \lambda * W_{1} \\
d W_{2}=d R * \lambda * W_{2} \\
d A_{2}=d D *(Y-T) / m \\
d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
d \mathbf{b}_{2}=\operatorname{sum} m_{0}\left(d A_{2}\right) \\
d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right) \\
d A_{1}=d Z *(Z>0) \\
d W_{1}+=\operatorname{dot}\left(X^{\top}, d A_{1}\right) \\
d \mathbf{b}_{1}=\operatorname{sum}{ }_{0}\left(d A_{1}\right) \\
\hline
\end{array}
$$

now we organize forward and backward code into units and functions

automatic differentiation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& Z=\max \left(0, A_{1}\right) \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& d \mathbf{b}_{2}=\operatorname{sum} \\
& \left.d Z A_{2}\right) \\
& d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right) \\
& d A_{1}=d Z *(Z>0) \\
& d W_{1}+=\operatorname{dot}\left(X^{\top}, d A_{1}\right) \\
& d \mathbf{b}_{1}=\operatorname{sum}_{0}\left(d A_{1}\right)
\end{aligned}
$$

automatic differentiation

$$
\begin{aligned}
& A_{1}=\operatorname{dot}\left(X, W_{1}\right)+\mathbf{b}_{1} \\
& \hline Z=\operatorname{relu}\left(A_{1}\right) \stackrel{\leftrightarrow}{*} \\
& A_{2}=\operatorname{dot}\left(Z, W_{2}\right)+\mathbf{b}_{2} \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& D=\operatorname{sum}_{0}(C) / m \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& d A_{2}=d D *(Y-T) / m \\
& d W_{2}+=\operatorname{dot}\left(Z^{\top}, d A_{2}\right) \\
& d \mathbf{b}_{2}=\operatorname{sum} m_{0}\left(d A_{2}\right) \\
& d Z=\operatorname{dot}\left(d A_{2}, W_{2}^{\top}\right) \\
& Z Z \cdot \operatorname{back}\left(A_{1}\right) \\
& d W_{1}+=\operatorname{dot}\left(X^{\top}, d A_{1}\right) \\
& d \mathbf{b}_{1}=\operatorname{sum} m_{0}\left(d A_{1}\right)
\end{aligned}
$$

automatic differentiation

automatic differentiation

automatic differentiation

$$
\begin{aligned}
& A_{1}=\operatorname{affine}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right) \\
& Z=\operatorname{relu}\left(A_{1}\right) \\
& A_{2}=\operatorname{affine}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right) \\
& E=\exp \left(A_{2}\right) \\
& Y=E / \operatorname{sum}_{1}(E) \\
& C=-\operatorname{sum}_{1}(T * \log (Y)) \\
& \begin{array}{l}
D=\operatorname{sum}_{0}(C) / m \\
R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right)
\end{array} \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& \xrightarrow[d W_{2}=d R * \lambda * W_{2}]{d A_{2}=d D *(Y-T) / m} \xrightarrow[\text { return } \operatorname{node}(D, \text { back })]{d}
\end{aligned}
$$

$Z . \operatorname{back}\left(A_{1}\right)$
$A_{1} \cdot \operatorname{back}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)$

automatic differentiation

$$
\begin{aligned}
& A_{1}=\operatorname{affine}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right) \\
& Z=\operatorname{relu}\left(A_{1}\right) \\
& A_{2}=\operatorname{affine}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right) \\
& D=\operatorname{logistic}\left(A_{2}, T\right) \\
& R=\frac{\lambda}{2} *\left(\left\|W_{1}\right\|_{F}^{2}+\left\|W_{2}\right\|_{F}^{2}\right) \\
& L=D+R \\
& (d D, d R)=(d L, d L) \\
& d W_{1}=d R * \lambda * W_{1} \\
& d W_{2}=d R * \lambda * W_{2} \\
& D . \operatorname{back}\left(A_{2}, T\right) \\
& A_{2} \cdot \operatorname{back}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)
\end{aligned}
$$

$Z . \operatorname{back}\left(A_{1}\right)$
$A_{1} \cdot \operatorname{back}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)$

automatic differentiation

$A_{1}=\operatorname{affine}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)$
$Z=\operatorname{relu}\left(A_{1}\right)$
$A_{2}=\operatorname{affine}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)$
$D=\operatorname{logistic}\left(A_{2}, T\right)$

$A_{2} \cdot \operatorname{back}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)$
$Z . \operatorname{back}\left(A_{1}\right)$
$A_{1} \cdot \operatorname{back}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)$

automatic differentiation

```
\(A_{1}=\operatorname{affine}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)\)
\(Z=\operatorname{relu}\left(A_{1}\right)\)
\(A_{2}=\operatorname{affine}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)\)
\(D=\operatorname{logistic}\left(A_{2}, T\right)\)
```

R	def decay (W) :		
$L=D+R$	$R=\frac{\lambda}{2} * \operatorname{sum}\left(\\|w\\|_{F}^{2}\right.$ for w in $\left.W\right)$		
$(d D, d R)=(d L, d L)$	def back $(d R, d W)$:		
R. back $\left(\left(W_{1}, W_{2}\right)\right)$	$d w+=d R * \lambda * w$		
D. $\operatorname{back}\left(A_{2}, T\right)$	return $\operatorname{node}(R$, back)		

$A_{2} \cdot \operatorname{back}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)$
$Z . \operatorname{back}\left(A_{1}\right)$
$A_{1} \cdot \operatorname{back}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)$

automatic differentiation

```
\(A_{1}=\operatorname{affine}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)\)
\(Z=\operatorname{relu}\left(A_{1}\right)\)
\(A_{2}=\operatorname{affine}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)\)
\(D=\operatorname{logistic}\left(A_{2}, T\right)\)
```

$R=\operatorname{decay}\left(\left(W_{1}, W_{2}\right)\right)$	$\text { def } \operatorname{add}(X) \text { : }$
$L=D+R$	$S=\operatorname{sum}(X)$
(dD, dR) = (dL, dL)	for $d x$ in $d X$:
$R . \operatorname{back}\left(\left(W_{1}, W_{2}\right)\right)$	$d x+=d S$
$D . \operatorname{back}\left(A_{2}, T\right)$	return $\operatorname{node}(S$, back)
$A_{2} \cdot \operatorname{back}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)$	

```
\(Z . \operatorname{back}\left(A_{1}\right)\)
\(A_{1} \cdot \operatorname{back}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)\)
```


automatic differentiation

```
\(A_{1}=\operatorname{affine}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)\)
\(Z=\operatorname{relu}\left(A_{1}\right)\)
\(A_{2}=\operatorname{affine}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)\)
\(D=\operatorname{logistic}\left(A_{2}, T\right)\)
```

$R=\operatorname{decay}\left(\left(W_{1}, W_{2}\right)\right)$	$\text { def } \operatorname{add}(X):$
$L=\operatorname{add}((D, R))$	def back ($d S, d X$:
$\underline{L . \operatorname{back}((D, R))}$	for $d x$ in $d X$:
R. $\operatorname{back}\left(\left(W_{1}, W_{2}\right)\right)$	$d x+=d S$
$D . \operatorname{back}\left(A_{2}, T\right)$	return $\operatorname{node}(S$, back

$A_{2} \cdot \operatorname{back}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)$
$Z . \operatorname{back}\left(A_{1}\right)$
$A_{1} \cdot \operatorname{back}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)$

automatic differentiation

```
A1 = affine(X,( (W1, b
Z=relu(}\mp@subsup{A}{1}{}
A}=\operatorname{affine(Z,( }\mp@subsup{W}{2}{},\mp@subsup{\mathbf{b}}{2}{2})
D=\operatorname{logistic}(\mp@subsup{A}{2}{},T)
R=\operatorname{decay((W},\mp@subsup{W}{1}{},\mp@subsup{W}{2}{}))
L= add((D,R))
L. back((D,R))
R. back((W, (W W ))
D. back}(\mp@subsup{A}{2}{},T
A2\cdot\operatorname{back}(Z,(W2, b}\mp@subsup{\mathbf{D}}{2}{})
Z. back( }\mp@subsup{A}{1}{}
A1.}\cdot\operatorname{back}(X,(\mp@subsup{W}{1}{},\mp@subsup{\mathbf{b}}{1}{})
```


automatic differentiation

```
A1 = affine(X,( (W , b
Z= relu( }\mp@subsup{A}{1}{}
A}=\operatorname{affine}(Z,(\mp@subsup{W}{2}{},\mp@subsup{\mathbf{b}}{2}{})
L= loss(A}\mp@subsup{A}{2}{},T,(\mp@subsup{W}{1}{},\mp@subsup{W}{2}{})
\(L . \operatorname{back}\left(A_{2}, T,\left(W_{1}, W_{2}\right)\right)\)
A2.}\operatorname{back}(Z,(\mp@subsup{W}{2}{},\mp@subsup{\mathbf{b}}{2}{})
Z. back( }\mp@subsup{A}{1}{}
A1.}\cdot\operatorname{back}(X,(\mp@subsup{W}{1}{},\mp@subsup{\mathbf{b}}{1}{})
```


automatic differentiation

```
A1 = affine(X,( (W1, b
Z=relu( }\mp@subsup{A}{1}{}
A}=\operatorname{affine(Z,( (W2, b}\mp@subsup{\mathbf{b}}{2}{})
L = \operatorname { l o s s } ( A _ { 2 } , T , ( W _ { 1 } , W _ { 2 } ) )
```

$L . \operatorname{back}\left(A_{2}, T,\left(W_{1}, W_{2}\right)\right)$
$A_{2} \cdot \operatorname{back}\left(Z,\left(W_{2}, \mathbf{b}_{2}\right)\right)$
$Z . \operatorname{back}\left(A_{1}\right)$
$A_{1} \cdot \operatorname{back}\left(X,\left(W_{1}, \mathbf{b}_{1}\right)\right)$
def $\operatorname{loss}(A, T, W)$:
$L=\operatorname{logistic}(A, T)+\operatorname{decay}(W)$ return block (L)
def $\operatorname{loss}(A, T, W)$:
$D=\operatorname{logistic}(A, T)$
$R=\operatorname{decay}(W)$
$L=\operatorname{add}((D, R))$
def $\operatorname{back}(A, T, W):$
L. $\operatorname{back}((D, R))$
R. back(M)
D. $\operatorname{back}(A, T)>$
return block(L, back)

automatic differentiation

automatic differentiation

automatic differentiation

$A_{2}=\operatorname{model}\left(X,\left(\left(W_{1}, \mathbf{b}_{1}\right),\left(W_{2}, \mathbf{b}_{2}\right)\right)\right)$
$L=\operatorname{loss}\left(A_{2}, T,\left(W_{1}, W_{2}\right)\right)$
$L . \operatorname{back}\left(A_{2}, T,\left(W_{1}, W_{2}\right)\right)$
$A_{2} \cdot \operatorname{back}\left(X,\left(\left(W_{1}, \mathbf{b}_{1}\right),\left(W_{2}, \mathbf{b}_{2}\right)\right)\right)$

pynet

code available at https://github.com/iavr/pynet

deep learning software

Caffe

PYTÓRCH

TensorFlow
theano

dm/c mxnet

- automatically build computational graphs and compute derivatives
- run on GPU, multiple GPU, distributed
- component (unit, layer) libraries
- pre-trained models
- community

summary

- stochastic gradient descent and its limitations
- numerical gradient approximation
- analytical computation by decomposing and applying the chain rule
- back-propagation as dynamic programming
- chaining, splitting and sharing
- common patterns between forward and backward flow
- decomposition into units (forward) and nodes (backward)
- grouping into functions (forward) and blocks (backward)

