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logistics

• audio of lectures available: link shared via piazza

• related courses including coding assignments linked on course website

• oral presentations: selection of papers by Sunday Dec 16; graduate
student to attend presentations on Monday Jan 21

• material marked as XXXX∗: some material like examples or details
skipped during the lectures is to be studied at home; other material
citing recent methods is really optional
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gradient descent



gradient descent
• a first-order Taylor approximation of f : Rd → R at x0 is

f
(1)
x0 (x) := f(x0) + (x− x0)

>∇f(x0)

i.e. , the gradient points in the direction of the greatest increase rate

• a second-order approximation needs the Hessian matrix Hf

f
(2)
x0 (x) := f

(1)
x0 (x) +

1

2
(x− x0)

>(Hf(x0))(x− x0)

• assuming f is locally convex with isotropic Hf(x0) = 1
ε I, the

gradient of f
(2)
x0 is

∇f (2)x0 (x) = ∇f(x0) +
1

ε
(x− x0)

• so if we were to minimize this approximation instead of f , we would
let this gradient vanish and solve for x

arg min
x
f
(2)
x0 (x) = x0 − ε∇f(x0)
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gradient descent

• this yields the update rule

x(τ+1) = x(τ) − ε∇f(x(τ))

i.e. , we are moving in the direction of the greatest decrease rate such
that locally (depending on ε)

f
(1)

x(τ)(x
(τ+1)) = f(x(τ)) + (x(τ+1) − x(τ))>∇f(x(τ))

= f(x(τ))− ε∇f(x(τ))>∇f(x(τ))

≤ f(x(τ))

• the step size ε is inversely proportional to the curvature we assume for
f at the local minimum
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gradient descent in one dimension

f(x)

• ε = 0.05: converges to local minimum

Artwork credit: https://the-fox-after-dark.deviantart.com/
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gradient descent in one dimension

f(x)
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x1

• ε = 0.14: 1/ε less than actual curvature, does not converge
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gradient descent in one dimension

f(x)

x5

x6

• ε = 0.14: 1/ε less than actual curvature, does not converge
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gradient descent in two dimensions

ε = 0.14, iteration 0
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problems

• f non-convex: local minima

• d× d Hessian matrix too expensive (d can be millions): unknown
curvature

• high condition number: elongated regions

• plateaus, saddle points: no progress

• ∇f =
∑n

i=1∇fi itself too expensive (n can also be millions)
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sequential estimation
[Robbins and Monro 1951]

f∗(x)

x

z

• suppose f∗ is the expectation of random variable z conditional on x,
and f is its empirical estimate on n samples

f∗(x) := E[z|x] f(x) :=
1

n

n∑
i=1

fi(x)

• we would like to estimate a root x∗ of f where f(x∗) = 0

Robbins and Monro. AMS 1951. A Stochastic Approximation Method.
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sequential estimation
[Robbins and Monro 1951]

f∗(x)

x∗

x

z

• then we can estimate x∗ sequentially

x(τ+1) = x(τ) − ετz(x(τ)) = x(τ) − ετfi(x(τ))

where z(x(τ)) is an observation of z when x = x(τ) and i is a random
index in {1, . . . , n}

Robbins and Monro. AMS 1951. A Stochastic Approximation Method.



sufficient conditions for convergence

• successive corrections decrease in magnitude

lim
τ→∞

ετ = 0

• the algorithm does not converge short of the root

∞∑
τ=1

ετ =∞

• the accumulated “noise” has finite variance

∞∑
τ=1

ε2τ <∞

Robbins and Monro. AMS 1951. A Stochastic Approximation Method.



online gradient descent

• now, replace x by the parameters θ of our model, and f by ∇E, the
gradient of our empirical risk

• the update rule becomes

θ(τ+1) ← θ(τ) − ετ∇Ei(θ(τ))

• and, under the same conditions, it converges to a root of

∇E(θ) =
1

n

n∑
i=1

∇Ei(θ) =
1

n

n∑
i=1

∇L(f(xi;θ), ti)

that is, to a local minimum of E

• mini-batch gradient descent is similar but with less “stochastic noise”
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gradient computation



numerical approximation

x

f(x)

df

dx
(x) ≈ f(x+ δ)− f(x− δ)

2δ
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numerical approximation

• given f : Rp → R, its gradient is the vector function

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xp

)
• each partial derivative ∂f

∂xi
can be approximated at x by the symmetric

difference formula

∆if(x; δ) :=
f(x + δei)− f(x− δei)

2δ

for small δ > 0, where ei is the i standard basis vector of Rm

• in practice, the smallest δ should be used that does not cause
numerical issues, e.g. δ ∈ [10−10, 10−5] for double-precision arithmetic
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example

10−22 10−19 10−16 10−13 10−10 10−7 10−4 10−1 102

10−14

10−8

10−2

104

δ

re
la

ti
ve

er
ro

r
x = 10−9 x = 10−6 x = 10−3

x = 100 x = 103 x = 106

• relative error for f(x) = x3, ∇f(x) = 3x2

|∆f(x; δ)−∇f(x)|
∇f(x)



numerical vs. analytical

• apart from accuracy issues, the numerical approximation is impractical
in high dimensions: one evaluation of ∆f requires 2p evaluations of f ,
and dimension p is easily in the order of millions

• we turn to analytical computation of the gradient, which costs roughly
as much as one evaluation of f

• but the numerical approximation always remains useful for
double-checking



analytical computation

• all derivatives we care about are the derivatives of the error function
with respect to the model parameters: the error function is scalar and
we need its gradient

• we are going to write the error function as a composition of simpler
functions, and use the chain rule to compute the gradient efficiently

• the error function can be as complex as a program with control flow
statements

• each component function, called a unit, is assumed to be at least
piecewise differentiable with a known formula for its derivative

• a unit may be a vector function, so we need Jacobian matrices in
general, not just gradients
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vector functions: derivative

• a function f : Rp → Rq is differentiable at x if there is a q × p matrix
A such that

f(x + h)− f(x)−A · h
|h|

→ 0

as h→ 0; matrix A is the derivative of f at x, denoted as Df(x)

• if
f(x) = Ax

then
Df(x) = A
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vector functions: derivative vs. Jacobian

• given f = (f1, . . . , fq) : Rp → Rq whose its partial derivatives exist at
x, and y = f(x), its Jacobian matrix at x can be written as

∂y

∂x
=
∂f

∂x
:=


∂f1
∂x1

. . . ∂f1
∂xp

...
. . .

...
∂fq
∂x1

. . .
∂fq
∂xp


• if f is differentiable at x, its derivative at x is

Df(x) :=

 D1f1 . . . Dpf1
...

. . .
...

D1fq . . . Dpfq

 (x)

• if f is differentiable at x, the derivative Df(x) equals the Jacobian at
x; but the Jacobian may exist without any derivative defined
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 D1f1 . . . Dpf1
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...

D1fq . . . Dpfq
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scalar functions: derivative vs. gradient

• the gradient of a scalar f : Rp → R with respect to an input vector x
is a column vector in Rp, the same size as x

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xp

)
• in contrast, the derivative is an 1× p row vector

Df(x) :=

(
∂f

∂x1
. . .

∂f

∂xp

)
= (∇f)>

• the following analysis uses derivatives/Jacobians, so we will transpose
them to make them compatible with x



chain rule

• if f : Rp → Rq is differentiable at x and g : Rq → Rr is differentiable
at y = f(x), then g ◦ f : Rp → Rr is differentiable at x and

D(g ◦ f)(x) = Dg(y) ·Df(x)

where · denotes matrix multiplication

• how to use it:
∂z

∂x1

=
∂z

∂x2

· ∂x2

∂x1

x x1 x2 x3 x4 z

f

g

dx2dx1
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• if f : Rp → Rq is differentiable at x and g : Rq → Rr is differentiable
at y = f(x), then g ◦ f : Rp → Rr is differentiable at x and

D(g ◦ f)(x) = Dg(y) ·Df(x)
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• now, for all i, let us call the partial derivatives

dx>i :=
∂z

∂xi



chain rule

• if f : Rp → Rq is differentiable at x and g : Rq → Rr is differentiable
at y = f(x), then g ◦ f : Rp → Rr is differentiable at x and

D(g ◦ f)(x) = Dg(y) ·Df(x)

where · denotes matrix multiplication

• how to use it:
∂z

∂x1

=
∂z

∂x2

· ∂x2

∂x1

x x1 x2 x3 x4 z
f

g

dx2dx1

• then, we are back-propagating from dx2 to dx1

dx>1 = dx>2 ·Df(x1)



chaining

• let f = f4 ◦ f3 ◦ f2 ◦ f1 ◦ f0 and z = f(x)

x x1 x2 x3 x4 z
f0 f1 f2 f3 f4



chaining

• let f = f4 ◦ f3 ◦ f2 ◦ f1 ◦ f0 and z = f(x)

x x1 x2 x3 x4 z
f0 f1 f2 f3 f4

• we apply the chain rule

∂z

∂x
= Df(x) = D(f4 ◦ f3 ◦ f2 ◦ f1)(x1) ·Df0(x)

= D(f4 ◦ f3 ◦ f2)(x2) ·Df1(x1) ·Df0(x)

= D(f4 ◦ f3)(x3) ·Df2(x2) ·Df1(x1) ·Df0(x)

= Df4(x4) ·Df3(x3) ·Df2(x2) ·Df1(x1) ·Df0(x)

= dx>4 ·Df3(x3) ·Df2(x2) ·Df1(x1) ·Df0(x)

= dx>3 ·Df2(x2) ·Df1(x1) ·Df0(x)

= dx>2 ·Df1(x1) ·Df0(x)

= dx>1 ·Df0(x)

= dx>



chaining

• let f = f4 ◦ f3 ◦ f2 ◦ f1 ◦ f0 and z = f(x)

x x1 x2 x3 x4 z
f0 f1 f2 f3 f4

• we apply the chain rule, then collect back into factors dxi

∂z

∂x
= Df(x) = D(f4 ◦ f3 ◦ f2 ◦ f1)(x1) ·Df0(x)

= D(f4 ◦ f3 ◦ f2)(x2) ·Df1(x1) ·Df0(x)

= D(f4 ◦ f3)(x3) ·Df2(x2) ·Df1(x1) ·Df0(x)

= Df4(x4) ·Df3(x3) ·Df2(x2) ·Df1(x1) ·Df0(x)

= dx>4 ·Df3(x3) ·Df2(x2) ·Df1(x1) ·Df0(x)

= dx>3 ·Df2(x2) ·Df1(x1) ·Df0(x)

= dx>2 ·Df1(x1) ·Df0(x)

= dx>1 ·Df0(x)

= dx>



back-propagation

• let f = f4 ◦ f3 ◦ f2 ◦ f1 ◦ f0 and z = f(x)

x x1 x2 x3 x4 z
f0 f1 f2 f3 f4

forward pass

x1 = f0(x) x2 = f1(x1) x3 = f2(x2) x4 = f3(x3) z = f4(x4)



back-propagation

• let f = f4 ◦ f3 ◦ f2 ◦ f1 ◦ f0 and z = f(x)

x x1 x2 x3 x4 z
f0 f1 f2 f3 f4

forward pass

x1 = f0(x) x2 = f1(x1) x3 = f2(x2) x4 = f3(x3) z = f4(x4)

dx dx1 dx2 dx3 dx4 dz

backward pass

dz> = I dx>4 = dz> ·Df4(x4) dx>3 = dx>4 ·Df3(x3)

dx>2 = dx>3 ·Df3(x3) dx>1 = dx>2 ·Df1(x1) dx> = dx>1 ·Df0(x)



back-propagation is dynamic programming

• we need to store all the xi that we compute in the forward pass before
the backward pass begins

• the dxi can be computed on the fly in reverse order on a chain, but
may need to be all stored on a general network structure

• that’s exactly what we do in dynamic programming: break the
problem down into a collection of smaller, overlapping subproblems,
store their solutions and save computation time at the expense of a
(hopefully) modest expenditure in storage space

• as in all dynamic programming problems, there is a bottom-up
approach that we have just described, and a top-down approach
coming out of the recursive formulation through memoization; this
can be useful if we are looking for the derivative with respect to only
few parameters
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partial derivatives

• in the following, for any vector x appearing in our function, we will
use the symbol

dx> :=
∂

∂x

for the partial derivative operator of any quantity with respect to x

• in practice, we will apply this to the quantity we want to optimize, i.e.
the error

• the error gradient will consist of the partial derivatives with respect to
the model parameters, but we still need to compute partial derivatives
with respect to all variables appearing in back-propagation
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nodes

x Df(x) y y

f

x

dx

y

dy

• to every variable y is associated a node with the function f that
produces it, from input variable x

• given x, derivative Df(x) is “stored”, and output y is computed and
flows forward

• given dy, partial derivative dx is computed and flows backward

dx> = dy> ·Df(x) or
∂

∂x
=

∂

∂y
· ∂y
∂x
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splitting the input

x1 D1f(x)

y y

x2 D2f(x)

f

x1

dx1

x2

dx2

y

dy

• we split input vector x into subvectors as x = (x1,x2)
• then, the derivative consists of blocks stacked horizontally

Df(x) = (D1f D2f)(x) or
∂y

∂x
=

(
∂y

∂x1

∂y

∂x2

)
• dx is also split as dx = (dx1, dx2) and dx> = dy> ·Df(x) becomes

dx>i = dy> ·Dif(x) or
∂

∂xi
=

∂

∂y
· ∂y
∂xi
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example: maximum

x1 0

5 y

x2 1

max

3

0

5

dy

5

dy

• if f(x1, x2) = max(x1, x2), then Dif(x1, x2) = 1[xi = max(x1, x2)]

• and dy is routed into the branch of the maximum input
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example: sum

x1 Ip

x1 + x2 y

x2 Ip

+

x1

dy

x2

dy

x1 + x2

dy

• if f(x1,x2) = x1 + x2 and xi ∈ Rp, then Dif(x1,x2) = Ip

• and dy is distributed to both branches
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example: vector sum∗

x 1>p 1>p x y

∑
x

dy1>p

1>p x

dy

• if f(x) = 1>p x =
∑p

i=1 xi and x ∈ Rp, then Df(x) = 1>p
• and dy is distributed to every element
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x 1>p 1>p x y
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• if f(x) = 1>p x =
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example: product∗

x1 x2

x1x2 y

x2 x1

×
x1

(dy)x2

x2

(dy)x1

x1x2

dy

• if f(x1, x2) = x1x2, then D1f(x1, x2) = x2 and D2f(x1, x2) = x1

• the derivative on each branch is multiplied by the input of the other
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example: Hadamard (element-wise) product∗
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• the derivative on each branch is element-wise multiplied by the input
of the other
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example: dot product∗
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• if f(x1,x2) = x1 · x2 = x>1 x2, then D1f(x1,x2) = x2 and
D2f(x1,x2) = x1

• the derivative on each branch is multiplied by the input of the other;
this can be seen by composing an element-wise product with a vector
sum
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splitting the output

y1 y1

x

(
Df1
Df2

)
(x)

y2 y2

f = (f1, f2)

y1

dy1
x

dx
y2

dy2

• we split output y into subvectors as y = (y1,y2) = (f1(x), f2(x))
• then, the derivative consists of blocks stacked vertically

Df(x) = (Df1;Df2)(x) or
∂y

∂x
=

(
∂y1

∂x
;
∂y2

∂x

)
• dy is also split as dy = (dy1, dy2) and dx> = dy> ·Df(x) becomes

dx> =
∑
i

dy>i ·Dfi(x) or
∂

∂x
=
∑
i

∂

∂yi
· ∂yi
∂x
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example: splitter (sharing)

x y1

x

(
Ip
Ip

)
x y2

f = (id, id)

x

dy1
x

dy1 + dy2
x

dy2

• if f(x) = (x,x) and x ∈ Rp, then Df(x) = (Ip; Ip)

• and the node behaves like sum backwards

dx = dy1 + dy2 or
∂

∂x
=

∂

∂y1

+
∂

∂y2

• whenever a variable is shared (used more than once), we need to sum
the gradients flowing from all paths where it appears
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example: tuples∗

x1 Dg(x1) y1 y1

x2 Dg(x2) y2 y2

f = (g, g)

x1

dx1

y1

dy1

x2

dx2

y2

dy2

• if x = (x1,x2), y = (y1,y2) and f = (g, g), then Df(x) is block-wise
diagonal: diag(Dg(x1), Dg(x2))

• and the backward paths flow independently like the forward

dx>i = dy>i ·Dg(xi) or
∂

∂xi
=

∂

∂yi
· ∂yi
∂xi
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example: element-wise functions

x d y y

f = (g, . . . , g)

x

dy ◦ d

y

dy

• if x ∈ Rp and f is element-wise with f(x) = (g(x1), . . . , g(xp)) where
g : R→ R, then Df(x) = diagd is diagonal, where
d = (Dg(x1), . . . , Dg(xp))

• and the partial derivatives are element-wise multiplied
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example: squared norm∗

x 2x> ‖x‖2 y

‖ · ‖2

x

2(dy)x

‖x‖2

dy

• if f(x) = ‖x‖2 then Df(x) = 2x>

• and dy is multiplied by 2x>; this can be seen by composing a splitter
(factor 2) with a dot product (factor x>)
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matrix derivatives∗

[Ionescu et al. 2015]
AlexNet VGG Ground

Image ReLU-5 ReLU-4 ReLU-5 Truth
NCuts DeepNCuts NCuts DeepNCuts NCuts DeepNCuts (Human)

Figure 3. Segmentation results on images from the test set of BSDS300. We show on the first column the input image followed by a
baseline (original parameters) and our DeepNcuts both using AlexNet ReLU-5. Two other pairs of baselines and DeepNCut models trained
based on the J2 objective follow. The first pair uses ReLU-4 and the second ReLU-5. The improvements obtained by learning are both
quantitatively significant and easily visible on this side-by-side comparison.

2972

• derivatives for

• SVD decomposition A = UΣV >

• eigenvalue decomposition A = UΣU>

• nonlinear matrix functions f(A) = Uf(Σ)U>

• application to spectral methods for image segmentation

Ionescu, Vantzos, Sminchisescu. ICCV 2015. Matrix Backpropagation for Deep Networks with Structured Layers.



matrix calculus∗

• results like these, and many more

∂Ax

∂x
= A

∂x>Ax

∂x
= x>(A+A>)

∂vec(x>Ax)

∂vecA
= x> ⊗ x>

∂AXB

∂X
= B> ⊗A

dA−1

dA
= −(A−> ⊗A−1)

d ln |A|
dA

= vec(A−>)>

∂tr(AX)

∂X
= vec(A>)>

Fackler 2005. Notes on Matrix Calculus. http://www4.ncsu.edu/~pfackler/MatCalc.pdf

http://www4.ncsu.edu/~pfackler/MatCalc.pdf


in general

• apparently, we do not need to store the Jacobian matrix Df(x),
which may be huge, but only what is needed to compute the partial
derivatives in the backward pass

• our function can be decomposed into a directed acyclic graph (DAG)
of nodes, called a computational graph

• each time we call the function in the forward pass, a new graph may
be constructed if our program contains control flow statements like
conditionals and loops; methods supporting this operation are called
dynamic



automatic differentiation
[Wengert 1964]

• is the more general set of methods used to automatically evaluate the
derivative of a given function at a given input; it is not numerical and
not symbolic

• what we call back-propagation here is known as the reverse
accumulation mode in this context and makes sense because we
compute the gradient of a single scalar quantity with respect to
maybe millions of parameters

• forward accumulation makes sense when we need the derivative of
many variables with respect to few parameters

• we will use the term automatic differentiation to refer to the process
of generating a computer program for the derivatives given the
program for the original function and the input variables

Wengert. CACM 1964. A simple automatic derivative evaluation program.



aside: higher-order derivatives∗

• the Hessian was assumed fixed and isotropic in gradient descent; if we
knew it, we could use the Newton method instead and solve all
curvature-related problems

• given f : Rp → R, its Hessian matrix at x is

Hf(x) :=


∂2f
∂x21

. . . ∂2f
∂x1∂xp

...
. . .

...
∂2f

∂xp∂x1
. . . ∂2f

∂x2p

 (x) = ∇(Df)(x)

• unfortunately, this is a p× p matrix and with p in the order of
millions, it is impractical even to store it, let alone compute it



aside: multiplication by Hessian∗

[Pearlmutter 1994]

• fortunately, in many cases what we need is only the product of the
Hessian with a given vector v, which is just a vector in Rp

v> ·Hf(x) = v> · ∇(Df)(x) = ∇v(Df)(x)

• here ∇v is the directional derivative operator

∇v(f) := v> · ∇f

• remember that in back-propagation, for each variable x, we defined a
vector dx, which was computed in the backward pass

• so all we need to do is allocate another vector ∇v(x) for the forward
pass and another ∇v(dx) for the backward, and compute them by
applying the chain rule in both passes!

Pearlmutter. NC 1994. Fast Exact Multiplication By the Hessian.
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automatic differentiation:
units



automatic differentiation

forward

• evaluation is carried out by units, one calling another

• when invoked, each unit generates a node object

• each node holds the gradient with respect to its unit’s inputs,
including parameters

• it also holds any information needed for the backward pass

backward

• all gradients are set to zero, except for the gradient with respect to the
scalar quantity that is to be optimized (the error), which is set to one

• the back() method is invoked on the node of this quantity

• this, in turn, triggers the same method on all units that have
participated in the forward pass



automatic differentiation

forward

• evaluation is carried out by units, one calling another

• when invoked, each unit generates a node object

• each node holds the gradient with respect to its unit’s inputs,
including parameters

• it also holds any information needed for the backward pass

backward

• all gradients are set to zero, except for the gradient with respect to the
scalar quantity that is to be optimized (the error), which is set to one

• the back() method is invoked on the node of this quantity

• this, in turn, triggers the same method on all units that have
participated in the forward pass



units and nodes

u
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y

dy

• unit u manually generates node n
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units and nodes

• given a function f with derivative Df , a unit is a function of the form

def forward(x1, . . . ,xn):
y = f(x1, . . . ,xn)
def back(dy, dx1, . . . , dxn):
dx>1 += dy> ·D1f(x1, . . . ,xn)

...
dx>n += dy> ·Dnf(x1, . . . ,xn)

return node(y,back)

• a node object:

• holds y and an associated derivative dy of the same shape
• exposes a method back(x1, . . . ,xn) where xi can be nodes
• automatically adds its own dy as first argument
• if an input xi is a node, extracts the derivative part dxi
• otherwise, dxi is an object for which operation += is ignored
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the affine unit

• input vectors are represented as rows of m× p input matrix X where
m is the mini-batch size and p the input dimension

• parameters are represented by p× q weight matrix W and 1× q bias
vector b where q is the output dimension

• the unit is defined as

def affine(X, (W,b)):
A = dot(X,W ) + b
def back(dA, dX, (dW, db)):
dW += dot(X>, dA)
db += sum0(dA)
dX += dot(dA,W>)

return node(A,back)
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the affine unit in math∗

forward

• input X ∈ Rm×p, W ∈ Rp×q, b ∈ Rq, output A ∈ Rm×q

A = f(X;W,b) := XW + 1mb
>

observe that in the code, addition of b is handled by broadcasting

backward

• if ai, wi is the i-th column of A, W ,

∂ai
∂wi

=
∂(Xwi)

∂wi

= X

and there are no other dependencies, so by the chain rule

dw>i :=
∂

∂wi

=
∂

∂ai
· ∂ai
∂wi

= da>i ·X

• finally, the partial derivative with respect to W

dW = (dA>X)> = X>dA
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the affine unit in math∗

• by symmetry, writing A> = W>X> + b1>m and using the previous
result for dW , we find dX> = (W>)>dA> or

dX = (dA)W>

• again, by replacing X and W by 1m and b> respectively in the
previous result for dW ,

db> = (dA>1m)> = 1>mdA

• observe that distributing b in the forward yields a sum in the backward
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the logistic unit

• the input is an m× q activation matrix A and the m× k one-of-k
encoded target matrix, where k is the number of classes

• there are no parameters

• the unit integrates softmax with average cross-entropy loss

def logistic(A, T ):
E = exp(A)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m
def back(dD, dA, ):
dA += dD ∗ (Y − T )/m

return node(D,back)
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the logistic unit in math∗

forward

• E is given element-wise as eij = exp(aij), and m× q matrix Y is
row-normalized as

Y = (diag(E1k))
−1E

• the i-th row of Y is the softmax output of the i-th input sample
representing the k posterior class probabilities

• C is actually a m× 1 column vector and its i-th element represents
the cross-entropy loss of the i-th input sample

ci = −
k∑
j=1

tij log(yij)

• finally, D = 1
m

∑m
i=1 ci is a scalar and represents the average

cross-entropy (data) error over the mini-batch
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the logistic unit in math∗

backward

• if a>i , y>i , t>i is the i-th row of A, Y , T , the derivative of the
cross-entropy loss is, according to what we have seen,

∂ci
∂ai

(ai, ti) = (σ(ai)− ti)
> = (yi − ti)

>

• since D is the average of the individual sample losses ci, the derivative
of the total error, which is 1 by default, is distributed over the samples
with a factor of 1

m

dA> =
1

m
(Y − T ) · dD



why integrate softmax with cross-entropy?

• the simplified formula is faster compared to blind application of
back-propagation at the level of elementary functions

• if this is not convincing, try evaluating the binary cross-entropy loss

`(x) := ln(1 + e−x)

• `(−1) = 1.3133

• `(−2) = 2.1269

• `(−5) = 5.0067

• `(−10) = 10.0000

• `(−20) = 20.0000

• `(−50) = 50.0000

• `(−100) = 100.0000

• `(−200) = 200.0000

• `(−500) = 500.0000

• `(−1000) =∞
• `(−2000) =∞
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automatic differentiation

forward
A = dot(X,W ) + b
E = exp(A)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

backward
dA = dD ∗ (Y − T )/m
dW += dot(X>, dA)
db = sum0(dA)

now we organize forward and backward
code into units
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A = dot(X,W ) + b
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def affine(X, (W,b)):
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def back(dA, dX, (dW, db)):
dW += dot(X>, dA)
db += sum0(dA)
dX += dot(dA,W>)

return node(A,back)
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automatic differentiation
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Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

backward
dA = dD ∗ (Y − T )/m
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C = −sum1(T ∗ log(Y ))
D = sum0(C)/m
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automatic differentiation

forward
A = affine(X, (W,b))
D = entropy(A, T )

backward
D.back(A, T )
A.back(X, (W,b))

def logistic(A, T ):
E = exp(A)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m
def back(dD, dA, ):
dA += dD ∗ (Y − T )/m

return node(D,back)



..

automatic differentiation:
functions



the relu unit∗

• relu is an element-wise activation function; its input is activation
matrix A and returns matrix Z of the same size

• its backward pass behaves like a switch

def relu(A):
Z = max(0, A)
def back(dZ, dA):
dA += dZ ∗ (Z > 0)

return node(Z, back)



the relu unit∗

• relu is an element-wise activation function; its input is activation
matrix A and returns matrix Z of the same size

• its backward pass behaves like a switch

def relu(A):
Z = max(0, A)
def back(dZ, dA):
dA += dZ ∗ (Z > 0)

return node(Z, back)



the decay unit∗

• it takes as input a tuple or list W of weight matrices of any size and
returns the weight decay error term λ

2‖w‖
2 for each w ∈W , where

‖ · ‖F is the Frobenius norm

• the backward derivative is proportional to w, as for the `2 norm

def decay(W ):
R = λ

2 ∗ sum(‖w‖2F for w in W )
def back(dR, dW ):

for (w, dw) in zip(W,dW ):
dw += dR ∗ λ ∗ w

return node(R,back)
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the add unit∗

• it takes as input a tuple or list X of matrices (or vectors, or scalars) of
the same size and returns their sum

• its backward pass distributes the derivative to all input branches

def add(X):
S = sum(X)
def back(dS, dX):

for dx in dX:
dx += dS

return node(S, back)

• operator + is overloaded for nodes such that A+B means
add((A,B))
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the same size and returns their sum
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the loss function

• it takes as input the activation matrix A, the target matrix T and the
weight matrix list W

• it calls the logistic unit on (A, T ) and the decay unit on W , and
returns the sum of the two scalar terms

def loss(A, T,W ):
L = logistic(A, T ) + decay(W )
return block(L)

• addition is handled by add and the error derivative flows backward to
both branches



the loss function

• it takes as input the activation matrix A, the target matrix T and the
weight matrix list W

• it calls the logistic unit on (A, T ) and the decay unit on W , and
returns the sum of the two scalar terms

def loss(A, T,W ):
L = logistic(A, T ) + decay(W )
return block(L)

• addition is handled by add and the error derivative flows backward to
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the model function

• this is a two-layer network model where an affine layer is followed by a
relu activation function and another affine layer

• the parameter tuple Ui = (Wi,bi) for layer i contains a weight matrix
Wi and a bias vector bi

• unit calls are nested like every other function

def model(X, (U1, U2)):
A = affine(relu(affine(X,U1)), U2)
return block(A)



functions and blocks
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• function f containing units u1, u2, u3

• f dynamically generates block b containing nodes n1, n2, n3, manually
generated by u1, u2, u3 respectively
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functions and blocks

• a function is a function of the following form, where code is arbitrary
but computation takes place through calls to units or functions

def name(x1, . . . ,xn):
〈code generating the following〉
r1 = call1(a1, . . . ,an1)

...
rs = calls(a1, . . . ,ans)
return block(rs)

• all calls are recorded as a list of units or functions by call order, each
associated with a list of arguments

• a block object is a node, but

• its method back() does not add its own derivative in the
arguments

• its method back() is automatically generated and its body calls
the recorded functions with the same arguments in reverse order
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dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)

T C D L

Y

E

b2 A2 W2 R

Z

b1 A1 W1

X input

bias

bias

weight

weight

target

affine

relu



back-propagation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

T C D L

Y

E

b2 A2 W2 R

Z

b1 A1 W1

X input

bias

bias

weight

weight

target

affine



back-propagation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

T C D L

Y

E

b2 A2 W2 R

Z

b1 A1 W1

X input

bias

bias

weight

weight

target

affine



automatic differentiation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

now we organize forward and backward
code into units and functions



automatic differentiation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

def relu(A):
Z = max(0, A)
def back(dZ, dA):
dA += dZ ∗ (Z > 0)

return node(Z,back)



automatic differentiation

A1 = dot(X,W1) + b1

Z = relu(A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

Z.back(A1)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

def relu(A):
Z = max(0, A)
def back(dZ, dA):
dA += dZ ∗ (Z > 0)

return node(Z,back)



automatic differentiation

A1 = dot(X,W1) + b1

Z = relu(A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

Z.back(A1)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

def affine(X, (W,b)):
A = dot(X,W ) + b
def back(dA, dX, (dW, db)):
dW += dot(X>, dA)
db += sum0(dA)
dX += dot(dA,W>)

return node(A,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def affine(X, (W,b)):
A = dot(X,W ) + b
def back(dA, dX, (dW, db)):
dW += dot(X>, dA)
db += sum0(dA)
dX += dot(dA,W>)

return node(A,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/m
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def logistic(A, T ):
E = exp(A)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m
def back(dD, dA, ):
dA += dD ∗ (Y − T )/m

return node(D,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = logistic(A2, T )

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def logistic(A, T ):
E = exp(A)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/m
def back(dD, dA, ):
dA += dD ∗ (Y − T )/m

return node(D,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = logistic(A2, T )

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def decay(W ):

R = λ
2 ∗ sum(‖w‖2F for w in W )

def back(dR, dW ):
for (w, dw) in zip(W,dW ):
dw += dR ∗ λ ∗ w

return node(R,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = logistic(A2, T )

R = decay((W1,W2))

L = D +R

(dD, dR) = (dL, dL)
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def decay(W ):

R = λ
2 ∗ sum(‖w‖2F for w in W )

def back(dR, dW ):
for (w, dw) in zip(W,dW ):
dw += dR ∗ λ ∗ w

return node(R,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = logistic(A2, T )

R = decay((W1,W2))

L = D +R

(dD, dR) = (dL, dL)
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def add(X):
S = sum(X)
def back(dS, dX):

for dx in dX:
dx += dS

return node(S, back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = logistic(A2, T )

R = decay((W1,W2))

L = add((D,R))
L.back((D,R))
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def add(X):
S = sum(X)
def back(dS, dX):

for dx in dX:
dx += dS

return node(S, back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = logistic(A2, T )

R = decay((W1,W2))

L = add((D,R))
L.back((D,R))
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def loss(A, T,W ):
L = logistic(A, T ) + decay(W )
return block(L)

def loss(A, T,W ):
D = logistic(A, T )
R = decay(W )
L = add((D,R))
def back(A, T,W ):
L.back((D,R))
R.back(W )
D.back(A, T )

return block(L,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def loss(A, T,W ):
L = logistic(A, T ) + decay(W )
return block(L)

def loss(A, T,W ):
D = logistic(A, T )
R = decay(W )
L = add((D,R))
def back(A, T,W ):
L.back((D,R))
R.back(W )
D.back(A, T )

return block(L,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def loss(A, T,W ):
L = logistic(A, T ) + decay(W )
return block(L)

def loss(A, T,W ):
D = logistic(A, T )
R = decay(W )
L = add((D,R))
def back(A, T,W ):
L.back((D,R))
R.back(W )
D.back(A, T )

return block(L,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def model(X, (U1, U2)):
A = affine(relu(affine(X,U1)), U2)
return block(A)

def model(X, (U1, U2)):
A1 = affine(X,U1)
Z = relu(A)
A2 = affine(Z,U2)
def back(X, (U1, U2)):
A2.back(Z,U2)
Z.back(A)
A1.back(X,U1)

return block(A2,back)



automatic differentiation

A2 = model(X, ((W1,b1), (W2,b2)))

L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(X, ((W1,b1), (W2,b2)))

def model(X, (U1, U2)):
A = affine(relu(affine(X,U1)), U2)
return block(A)

def model(X, (U1, U2)):
A1 = affine(X,U1)
Z = relu(A)
A2 = affine(Z,U2)
def back(X, (U1, U2)):
A2.back(Z,U2)
Z.back(A)
A1.back(X,U1)

return block(A2,back)



automatic differentiation

A2 = model(X, ((W1,b1), (W2,b2)))

L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(X, ((W1,b1), (W2,b2)))

def model(X, (U1, U2)):
A = affine(relu(affine(X,U1)), U2)
return block(A)

def model(X, (U1, U2)):
A1 = affine(X,U1)
Z = relu(A)
A2 = affine(Z,U2)
def back(X, (U1, U2)):
A2.back(Z,U2)
Z.back(A)
A1.back(X,U1)

return block(A2,back)



pynet

code available at https://github.com/iavr/pynet

https://github.com/iavr/pynet


deep learning software

• automatically build computational graphs and compute derivatives

• run on GPU, multiple GPU, distributed

• component (unit, layer) libraries

• pre-trained models

• community



summary

• stochastic gradient descent and its limitations

• numerical gradient approximation

• analytical computation by decomposing and applying the chain rule

• back-propagation as dynamic programming

• chaining, splitting and sharing

• common patterns between forward and backward flow

• decomposition into units (forward) and nodes (backward)

• grouping into functions (forward) and blocks (backward)
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