lecture 5: learning deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2018 - Jan. 2019

outline

machine learning
binary classification
binary classification, again
multi-class classification
regression*
multiple layers

machine learning

machine learning

supervised learning

- learn to map an input to a target output, which can be discrete (classification) or continuous (regression)

unsupervised learning

- learn a compact representation of the data that can be useful for other tasks, e.g. density estimation, clustering, sampling, dimension reduction, manifold learning
- but: in many cases, labels can be obtained automatically, transforming an unsupervised task to supervised
- also: semi-supervised, weakly supervised, ambiguous/noisy labels, self-supervised etc.

reinforcement learning

- learn to select actions, supervised by occasional rewards
- not studied here

machine learning

supervised learning

- learn to map an input to a target output, which can be discrete (classification) or continuous (regression)

unsupervised learning

- learn a compact representation of the data that can be useful for other tasks, e.g. density estimation, clustering, sampling, dimension reduction, manifold learning
- but: in many cases, labels can be obtained automatically, transforming an unsupervised task to supervised
- also: semi-supervised, weakly supervised, ambiguous/noisy labels, self-supervised etc.

reinforcement learning

- learn to select actions, supervised by occasional rewards
- not studied here

machine learning

supervised learning

- learn to map an input to a target output, which can be discrete (classification) or continuous (regression)

unsupervised learning

- learn a compact representation of the data that can be useful for other tasks, e.g. density estimation, clustering, sampling, dimension reduction, manifold learning
- but: in many cases, labels can be obtained automatically, transforming an unsupervised task to supervised
- also: semi-supervised, weakly supervised, ambiguous/noisy labels, self-supervised etc.
reinforcement learning
- learn to select actions, supervised by occasional rewards
- not studied here

learning and optimization

- in a supervised setting, given a distribution p of input data \mathbf{x} and target outputs t, we want to learn the parameters $\boldsymbol{\theta}$ of a model $f(\mathbf{x}, \boldsymbol{\theta})$ by minimizing the risk (objective, cost, or error) function

$$
E^{*}(\boldsymbol{\theta}):=\mathbb{E}_{(\mathbf{x}, t) \sim p} L(f(\mathbf{x} ; \boldsymbol{\theta}), t)
$$

where L is a per-sample loss function that compares predictions $f(\mathbf{x} ; \boldsymbol{\theta})$ to targets t
since the true distribution p is unknown, we use the empirical distribution \hat{p} of a training set $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ with associated target outputs t_{1}, \ldots, t_{n} and minimize instead the

converting the learning problem to optimization

learning and optimization

- in a supervised setting, given a distribution p of input data \mathbf{x} and target outputs t, we want to learn the parameters $\boldsymbol{\theta}$ of a model $f(\mathbf{x}, \boldsymbol{\theta})$ by minimizing the risk (objective, cost, or error) function

$$
E^{*}(\boldsymbol{\theta}):=\mathbb{E}_{(\mathbf{x}, t) \sim p} L(f(\mathbf{x} ; \boldsymbol{\theta}), t)
$$

where L is a per-sample loss function that compares predictions $f(\mathbf{x} ; \boldsymbol{\theta})$ to targets t

- since the true distribution p is unknown, we use the empirical distribution \hat{p} of a training set $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ with associated target outputs t_{1}, \ldots, t_{n} and minimize instead the empirical risk

$$
E(\boldsymbol{\theta}):=\mathbb{E}_{(\mathbf{x}, t) \sim \hat{p}} L(f(\mathbf{x} ; \boldsymbol{\theta}), t)=\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right), t_{i}\right),
$$

converting the learning problem to optimization

however

- the empirical risk is prone to overfitting the training set, even memorizing it
- we need to balance our model's capacity with the amount of training data, find ways to regularize the objective function and use a validation set to select hyperparameters so that our model generalizes on new samples
- the ideal loss function may be hard to optimize, so we have to use a surrogate loss function that may as well improve generalization
- still, all functions encountered are non-convex so we can only hope for local minima

however

- the empirical risk is prone to overfitting the training set, even memorizing it
- we need to balance our model's capacity with the amount of training data, find ways to regularize the objective function and use a validation set to select hyperparameters so that our model generalizes on new samples
- the ideal loss function may be hard to optimize, so we have to use a surrogate loss function that may as well improve generalization
- still, all functions encountered are non-convex so we can only hope for local minima

however

- the empirical risk is prone to overfitting the training set, even memorizing it
- we need to balance our model's capacity with the amount of training data, find ways to regularize the objective function and use a validation set to select hyperparameters so that our model generalizes on new samples
- the ideal loss function may be hard to optimize, so we have to use a surrogate loss function that may as well improve generalization
- still, all functions encountered are non-convex so we can only hope for local minima

however

- the empirical risk is prone to overfitting the training set, even memorizing it
- we need to balance our model's capacity with the amount of training data, find ways to regularize the objective function and use a validation set to select hyperparameters so that our model generalizes on new samples
- the ideal loss function may be hard to optimize, so we have to use a surrogate loss function that may as well improve generalization
- still, all functions encountered are non-convex so we can only hope for local minima

main objective

- through a learning task/objective that may be unimportant, we are primarily interested in learning good representations

```
we are interested in parametric models where we learn a set of
parameters, and the training data are not memorized
we are interested in learning explicit mappings from raw input to
representation, rather than just representing the training data
we may occasionally use "hand-crafted" features or matching
methods, but with the objective of learning better ones
```


main objective

- through a learning task/objective that may be unimportant, we are primarily interested in learning good representations
- we are interested in parametric models where we learn a set of parameters, and the training data are not memorized

```
we are interested in learning explicit mappings from raw input to
representation, rather than just representing the training data
we may occasionally use "hand-crafted" features or matching
methods, but with the objective of learning better ones
```


main objective

- through a learning task/objective that may be unimportant, we are primarily interested in learning good representations
- we are interested in parametric models where we learn a set of parameters, and the training data are not memorized
- we are interested in learning explicit mappings from raw input to representation, rather than just representing the training data
- we may occasionally use "hand-crafted" features or matching methods, but with the objective of learning better ones

main objective

- through a learning task/objective that may be unimportant, we are primarily interested in learning good representations
- we are interested in parametric models where we learn a set of parameters, and the training data are not memorized
- we are interested in learning explicit mappings from raw input to representation, rather than just representing the training data
- we may occasionally use "hand-crafted" features or matching methods, but with the objective of learning better ones

k-nearest neighbor classifier

- an input sample is classified by majority voting (ties broken at random) over the class labels of its k-nearest neighbors in the training set
- no training needed, but prediction can be slow
we are not interested in such an approach (for now) because it gives us little opportunity to learn a representation

k-nearest neighbor classifier

- an inpat sample is classified by majority voting (ties broken at random) poer the class labels of its k-nearest neighbors in the training set
- no training needed, but prediction can be slow
- we are not interested in such an approach (for now) because it gives us little opportunity to learn a representation

binary classification

perceptron
 [Rosenblatt 1962]

- perceptron, as introduced by Rosenblatt, refers to a wide range of network architectures, learning algorithms and hardware implementations
- due to Minsky and Papert, perceptron now refers to a binary linear classifier and an algorithm
- let's have a closer look at that

perceptron model

- given input $\mathbf{x} \in \mathbb{R}^{d}$, the perceptron is a generalized linear model

$$
y=f(\mathbf{x} ; \mathbf{w}):=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}\right)
$$

where $\mathbf{w} \in \mathbb{R}^{d}$ is a weight (parameter) vector to be learned, and

$$
\operatorname{sgn}(x):= \begin{cases}+1, & x \geq 0 \\ -1, & x<0\end{cases}
$$

perceptron algorithm

- an input \mathbf{x} with output $y=f(\mathbf{x} ; \mathbf{w})$ is classified to class C_{1} if $y=1$ and to C_{2} if $y=-1$
- given a training sample $\mathbf{x} \in \mathbb{R}^{d}$ and a target variable $s \in\{-1,1\}, \mathbf{x}$ is correctly classified iff output $y=f(\mathbf{x} ; \mathbf{w})$ equals s, i.e. $s y>0$
- we are given training samples $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$ and target variables $s_{1}, \ldots, s_{n} \in\{-1,1\}$
- starting from an initial parameter vector $\mathrm{w}^{(0)}$, the algorithm learns by iteratively choosing a random sample \mathbf{x}_{i} that is misclassified and updating

perceptron algorithm

- an input \mathbf{x} with output $y=f(\mathbf{x} ; \mathbf{w})$ is classified to class C_{1} if $y=1$ and to C_{2} if $y=-1$
- given a training sample $\mathbf{x} \in \mathbb{R}^{d}$ and a target variable $s \in\{-1,1\}, \mathbf{x}$ is correctly classified iff output $y=f(\mathbf{x} ; \mathbf{w})$ equals s, i.e. $s y>0$
- we are given training samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$ and target variables $s_{1}, \ldots, s_{n} \in\{-1,1\}$
- starting from an initial parameter vector $\mathbf{w}^{(0)}$, the algorithm learns by iteratively choosing a random sample \mathbf{x}_{i} that is misclassified and updating

$$
\mathbf{w}^{(\tau+1)} \leftarrow \mathbf{w}^{(\tau)}+\epsilon s_{i} \mathbf{x}_{i}
$$

perceptron algorithm

- initial parameter vector \mathbf{w}_{0}, normal to the decision boundary and pointing to the region to be classified as blue (+)

perceptron algorithm

- pick a random point \mathbf{x}_{0} that is misclassified: blue $(+)$ in red $(-)$ region

perceptron algorithm

- because \mathbf{x}_{0} is blue and \mathbf{w} is pointing at blue, we add $\epsilon \mathbf{x}_{0}$ to \mathbf{w}_{0}

perceptron algorithm

- with the new parameter vector \mathbf{w}_{1}, the decision boundary is updated

perceptron algorithm

- pick a new random point \mathbf{x}_{1} that is misclassified: red in blue region

perceptron algorithm

- because \mathbf{x}_{1} is red and \mathbf{w} is pointing at blue, we subtract $\epsilon \mathbf{x}_{1}$ from \mathbf{w}_{1}

perceptron algorithm

- with the new \mathbf{w}_{2}, the decision boundary is updated again

perceptron algorithm

- again, random point \mathbf{x}_{2}, blue misclassified in red region

perceptron algorithm

- and we add $\epsilon \mathbf{X}_{2}$ to \mathbf{w}_{2}

perceptron algorithm

now at \mathbf{w}_{3}
perceptron algorithm

- one last random point \mathbf{x}_{3}, red in blue region

perceptron algorithm

- and we subtract

perceptron algorithm

- finally at \mathbf{w}_{4}, all points are classified correctly

perceptron algorithm

- finally at \mathbf{w}_{4}, all points are classified correctly

perceptron algorithm

- finally at \mathbf{w}_{4}, all points are classified correctly

"details"

- we do not say anything about convergence now; we will discuss later
- there is one more parameter to be learned: a more general linear model would be

$$
y=f(\mathbf{x} ; \mathbf{w}, b):=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

where $\mathbf{w} \in \mathbb{R}^{d}$ is a weight vector, and b is a bias

- this is often omitted because we can just add an extra dimension $d+1$ to x and w and always set $x_{d+1}=1$; then w_{d+1} plays the role of bias

"details"

- we do not say anything about convergence now; we will discuss later
- there is one more parameter to be learned: a more general linear model would be

$$
y=f(\mathbf{x} ; \mathbf{w}, b):=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

where $\mathbf{w} \in \mathbb{R}^{d}$ is a weight vector, and b is a bias

- this is often omitted because we can just add an extra dimension $d+1$ to \mathbf{x} and \mathbf{w} and always set $x_{d+1}=1$; then w_{d+1} plays the role of bias

support vector machine (SVM)

[Boser et al. 1992]

- given a decision boundary that classifies all points correctly, define the margin as its distance to the nearest point

support vector machine (SVM)

[Boser et al. 1992]

- this was not optimal in the case of perceptron

support vector machine (SVM)

[Boser et al. 1992]

- there is another decision boundary for which the margin is maximum; the vectors at this distance are the support vectors

SVM model

- there is now an explicit bias parameter b, but otherwise the SVM model is the same: activation

$$
a:=\mathbf{w}^{\top} \mathbf{x}+b
$$

and output

$$
y=f(\mathbf{x} ; \mathbf{w}, b):=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)=\operatorname{sgn}(a)
$$

we are given
$s_{1}, \ldots, s_{n} \in\{-1,1\}$

SVM model

- there is now an explicit bias parameter b, but otherwise the SVM model is the same: activation

$$
a:=\mathbf{w}^{\top} \mathbf{x}+b
$$

and output

$$
y=f(\mathbf{x} ; \mathbf{w}, b):=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)=\operatorname{sgn}(a)
$$

- again, an input \mathbf{x} with $a=\mathbf{w}^{\top} \mathbf{x}+b$ and output $y=\operatorname{sgn}(a)$ is classified to class C_{1} if $y=1(a \geq 0)$ and to C_{2} if $y=-1(a<0)$
- again, given a training sample \mathbf{x} and a target variable s, \mathbf{x} is correctly classified iff $s y>0$, i.e. $s a=s\left(\mathbf{w}^{\top} \mathbf{x}+b\right) \geq 0$
- we are given training samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$ and target variables $s_{1}, \ldots, s_{n} \in\{-1,1\}$

margin*

- the distance of \mathbf{x} to the boundary is $\left|\mathbf{w}^{\top} \mathbf{x}+b\right| /\|\mathbf{w}\|$
- this is $s\left(\mathbf{w}^{\top} \mathbf{x}+b\right) /\|\mathbf{w}\|$ if it is classified correctly
- if all points are classified correctly, then the margin is

- the margin is invariant to scaling of \mathbf{w} and b, so we choose $s_{i} a_{i}=s_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)=1$ for the point that is nearest to the boundary

margin*

- the distance of \mathbf{x} to the boundary is $\left|\mathbf{w}^{\top} \mathbf{x}+b\right| /\|\mathbf{w}\|$
- this is $s\left(\mathbf{w}^{\top} \mathbf{x}+b\right) /\|\mathbf{w}\|$ if it is classified correctly
- if all points are classified correctly, then the margin is

- the margin is invariant to scaling of \mathbf{w} and b, so we choose $s_{i} a_{i}=s_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)=1$ for the point that is nearest to the boundary

margin*

- the distance of \mathbf{x} to the boundary is $\left|\mathbf{w}^{\top} \mathbf{x}+b\right| /\|\mathbf{w}\|$
- this is $s\left(\mathbf{w}^{\top} \mathbf{x}+b\right) /\|\mathbf{w}\|$ if it is classified correctly
- if all points are classified correctly, then the margin is

$$
\frac{1}{\|\mathbf{w}\|} \min _{i}\left(s_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)
$$

margin*

- the distance of \mathbf{x} to the boundary is $\left|\mathbf{w}^{\top} \mathbf{x}+b\right| /\|\mathbf{w}\|$
- this is $s\left(\mathbf{w}^{\top} \mathbf{x}+b\right) /\|\mathbf{w}\|$ if it is classified correctly
- if all points are classified correctly, then the margin is

$$
\frac{1}{\|\mathbf{w}\|} \min _{i}\left(s_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)
$$

- the margin is invariant to scaling of \mathbf{w} and b, so we choose $s_{i} a_{i}=s_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)=1$ for the point that is nearest to the boundary

maximum margin

- the margin is maximized by

$$
\arg \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}
$$

subject to

$$
s_{i} a_{i} \geq 1
$$

for all training samples i, where $a_{i}:=\mathbf{w}^{\top} \mathbf{x}_{i}+b$

- this is a quadratic programming problem

maximum margin

- the margin is maximized by

$$
\arg \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}
$$

subject to

$$
s_{i} a_{i} \geq 1
$$

for all training samples i, where $a_{i}:=\mathbf{w}^{\top} \mathbf{x}_{i}+b$

- this is a quadratic programming problem

overlapping class distributions

[Cortes and Vapnik 1995]

- assuming that all training samples can be correctly classified is unrealistic

overlapping class distributions

[Cortes and Vapnik 1995]

- introduce slack variables $\xi_{i} \geq 0$ that should be minimized; $\xi_{i} \leq 1$ for correctly classified samples, $\xi_{i}=0$ beyond the margin

overlapping class distributions

- the constraints $s_{i} a_{i} \geq 1$ are now replaced by

$$
\begin{aligned}
s_{i} a_{i} & \geq 1-\xi_{i} \\
\xi_{i} & \geq 0
\end{aligned}
$$

where $a_{i}:=\mathbf{w}^{\top} \mathbf{x}_{i}+b$
and the objective $\arg \min _{w, b} \frac{1}{2}\|\mathrm{w}\|^{2}$ is replaced by

where hyperparameter C controls the trade-off between slack variables and margin

overlapping class distributions

- the constraints $s_{i} a_{i} \geq 1$ are now replaced by

$$
\begin{aligned}
s_{i} a_{i} & \geq 1-\xi_{i} \\
\xi_{i} & \geq 0
\end{aligned}
$$

where $a_{i}:=\mathbf{w}^{\top} \mathbf{x}_{i}+b$

- and the objective $\arg \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}$ is replaced by

$$
\arg \min _{\mathbf{w}, b} \frac{C}{n} \sum_{i=1}^{n} \xi_{i}+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

where hyperparameter C controls the trade-off between slack variables and margin

"details"

- we do not say anything about how to solve this problem yet
- the standard treatment of SVM introduces Lagrange multipliers for the constraints and results in the dual formulation where coordinates only appear in dot products
- at this point, writing $\phi(\mathrm{x})$ instead of x , gives rise to

$$
\kappa(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{\top} \phi(\mathbf{y})
$$

- this kernel trick can make the classifier nonlinear assuming an appropriate positive-definite kernel function κ for the problem at hand
- we are not interested in this approach here because
- we want to learn a parametric model and discard the training data after learning
- we do not want to design a matching function κ any more than designing the representation ϕ; we want to learn from raw data

"details"

- we do not say anything about how to solve this problem yet
- the standard treatment of SVM introduces Lagrange multipliers for the constraints and results in the dual formulation where coordinates only appear in dot products
- at this point, writing $\phi(\mathbf{x})$ instead of \mathbf{x}, gives rise to

$$
\kappa(\mathbf{x}, \mathbf{y})=\phi(\mathbf{x})^{\top} \phi(\mathbf{y})
$$

- this kernel trick can make the classifier nonlinear assuming an appropriate positive-definite kernel function κ for the problem at hand

"details"

- we do not say anything about how to solve this problem yet
- the standard treatment of SVM introduces Lagrange multipliers the constraints and results in the dual formulation where coordinates only appear in dot preducts
- at this point, writing $\phi(\mathbf{x})$ instead of gives rise to
- this kernel nck can make the classifier nonlinear assuming an appropriate positive-definite kernel function κ for the problem at rrand
- we are not interested in this approach here because
- we want to learn a parametric model and discard the training data after learning
- we do not want to design a matching function κ any more than designing the representation ϕ; we want to learn from raw data

(binary) logistic regression

[Cox 1958]

- again, activation (but here we omit the bias)

$$
a=\mathbf{w}^{\top} \mathbf{x}
$$

and output

$$
y=f(\mathbf{x} ; \mathbf{w}):=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\sigma(a)
$$

- but now we have a different nonlinearity: σ is the sigmoid function

(binary) logistic regression

[Cox 1958]

- again, activation (but here we omit the bias)

$$
a=\mathbf{w}^{\top} \mathbf{x}
$$

and output

$$
y=f(\mathbf{x} ; \mathbf{w}):=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\sigma(a)
$$

- but now we have a different nonlinearity: σ is the sigmoid function

$$
\sigma(x):=\frac{1}{1+e^{-x}}
$$

probabilistic interpretation*

- the output y represents the posterior probability of class C_{1} given input \mathbf{x}, which by Bayes rule is

$$
\begin{aligned}
y & =p\left(C_{1} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid C_{1}\right) p\left(C_{1}\right)}{p\left(\mathbf{x} \mid C_{1}\right) p\left(C_{1}\right)+p\left(\mathbf{x} \mid C_{2}\right) p\left(C_{2}\right)} \\
& =\frac{1}{1+e^{-a}}=\sigma(a)
\end{aligned}
$$

- here the activation a is defined to represent the log-odds

$$
a=\ln \frac{p\left(C_{1} \mid \mathbf{x}\right)}{p\left(C_{2} \mid \mathbf{x}\right)}=\ln \frac{p\left(\mathbf{x} \mid C_{1}\right) p\left(C_{1}\right)}{p\left(\mathbf{x} \mid C_{2}\right) p\left(C_{2}\right)}
$$

maximum likelihood

- we are given training samples $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ with $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and target variables $T=\left(t_{1}, \ldots, t_{n}\right)$ with $t_{i} \in\{0,1\}$
- watch out: target variables are in $\{0,1\}$ here, not $\{-1,1\}$
- the probabilistic interpretation allows us to define the learning objective: maximize the likelihood function

$$
p(T \mid X, \mathbf{w})=\prod_{i=1} y_{i}^{t_{i}}\left(1-y_{i}\right)^{1-t_{i}}
$$

- or, minimize the (average) cross-entropy error function

where $y_{i}=\sigma\left(a_{i}\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)$

maximum likelihood

- we are given training samples $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ with $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and target variables $T=\left(t_{1}, \ldots, t_{n}\right)$ with $t_{i} \in\{0,1\}$
- watch out: target variables are in $\{0,1\}$ here, not $\{-1,1\}$
- the probabilistic interpretation allows us to define the learning objective: maximize the likelihood function

$$
p(T \mid X, \mathbf{w})=\prod_{i=1}^{n} y_{i}^{t_{i}}\left(1-y_{i}\right)^{1-t_{i}}
$$

- or, minimize the (average) cross-entropy error function

where $y_{i}=\sigma\left(a_{i}\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)$

maximum likelihood

- we are given training samples $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ with $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and target variables $T=\left(t_{1}, \ldots, t_{n}\right)$ with $t_{i} \in\{0,1\}$
- watch out: target variables are in $\{0,1\}$ here, not $\{-1,1\}$
- the probabilistic interpretation allows us to define the learning objective: maximize the likelihood function

$$
p(T \mid X, \mathbf{w})=\prod_{i=1}^{n} y_{i}^{t_{i}}\left(1-y_{i}\right)^{1-t_{i}}
$$

- or, minimize the (average) cross-entropy error function

$$
E(\mathbf{w}):=-\frac{1}{n} \sum_{i=1}^{n}\left(t_{i} \ln y_{i}+\left(1-t_{i}\right) \ln \left(1-y_{i}\right)\right)
$$

where $y_{i}=\sigma\left(a_{i}\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)$

example

raw data

example

example

SVM

example

binary classification, again

three solutions so far

	perceptron	SVM	logistic
objective	-	yes	yes
constraints	-	yes	-
regularizer	-	yes	-
algorithm	yes	-	-
probabilistic	-	-	yes

perceptron, again

- "choose a random sample i that is misclassified and update"

$$
\mathbf{w}^{(\tau+1)} \leftarrow \mathbf{w}^{(\tau)}+\epsilon s_{i} \mathbf{x}_{i}
$$

- given sample \mathbf{x}_{i}, if $s_{i} y_{i}>0$ (i.e. $\left.s_{i} a_{i} \geq 0\right)$ the sample is correctly classified and there is no action; otherwise, we attempt to minimize $-s_{i} a_{i}=-s_{i} \mathbf{w}^{\top} \mathbf{x}_{i}$: the error function is

- indeed, given any random sample \mathbf{x}_{i} (correctly classified or not), the undate is

$$
\mathbf{W}^{(\tau+1)} \leftarrow \mathbf{W}^{(\tau)}-\epsilon \nabla_{\mathbf{w}} E_{i}\left(\mathbf{w}^{(\tau)}\right)
$$

perceptron, again

- "choose a random sample i that is misclassified and update"

$$
\mathbf{w}^{(\tau+1)} \leftarrow \mathbf{w}^{(\tau)}+\epsilon s_{i} \mathbf{x}_{i}
$$

- given sample \mathbf{x}_{i}, if $s_{i} y_{i}>0$ (i.e. $s_{i} a_{i} \geq 0$) the sample is correctly classified and there is no action; otherwise, we attempt to minimize $-s_{i} a_{i}=-s_{i} \mathbf{w}^{\top} \mathbf{x}_{i}$: the error function is

$$
E(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} E_{i}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left[-s_{i} a_{i}\right]_{+}=\frac{1}{n} \sum_{i=1}^{n}\left[-s_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right]_{+}
$$

- indeed, given any random sample x_{i} (correctly classified or not), the update is

perceptron, again

- "choose a random sample i that is misclassified and update"

$$
\mathbf{w}^{(\tau+1)} \leftarrow \mathbf{w}^{(\tau)}+\epsilon s_{i} \mathbf{x}_{i}
$$

- given sample \mathbf{x}_{i}, if $s_{i} y_{i}>0$ (i.e. $s_{i} a_{i} \geq 0$) the sample is correctly classified and there is no action; otherwise, we attempt to minimize $-s_{i} a_{i}=-s_{i} \mathbf{w}^{\top} \mathbf{x}_{i}$: the error function is

$$
E(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} E_{i}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left[-s_{i} a_{i}\right]_{+}=\frac{1}{n} \sum_{i=1}^{n}\left[-s_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right]_{+}
$$

- indeed, given any random sample \mathbf{x}_{i} (correctly classified or not), the update is

$$
\mathbf{w}^{(\tau+1)} \leftarrow \mathbf{w}^{(\tau)}-\epsilon \nabla_{\mathbf{w}} E_{i}\left(\mathbf{w}^{(\tau)}\right)
$$

positive part

- quantity $[x]_{+}$is the positive part of x; this function also known as rectified linear unit (ReLU):

$$
\operatorname{relu}(x):=[x]_{+}:=\max (0, x)
$$

gradient descent

- in general, given an error function in parameters $\boldsymbol{\theta}$ of the additive form

$$
E(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n} E_{i}(\boldsymbol{\theta})
$$

- online (or stochastic) gradient descent updates the parameters after seeing one random sample i, according to

- batch gradient descent updates the parameters once after seeing the entire dataset, according to

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon \nabla_{\boldsymbol{\theta}} E\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

gradient descent

- in general, given an error function in parameters $\boldsymbol{\theta}$ of the additive form

$$
E(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n} E_{i}(\boldsymbol{\theta})
$$

- online (or stochastic) gradient descent updates the parameters after seeing one random sample i, according to

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon \nabla_{\boldsymbol{\theta}} E_{i}\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

- batch gradient descent updates the parameters once after seeing the
entire dataset, according to

gradient descent

- in general, given an error function in parameters $\boldsymbol{\theta}$ of the additive form

$$
E(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n} E_{i}(\boldsymbol{\theta})
$$

- online (or stochastic) gradient descent updates the parameters after seeing one random sample i, according to

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon \nabla_{\boldsymbol{\theta}} E_{i}\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

- batch gradient descent updates the parameters once after seeing the entire dataset, according to

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon \nabla_{\boldsymbol{\theta}} E\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

gradient descent

- mini-batch (or stochastic) gradient descent (SGD) is the most common option and updates the parameters after seeing a random subset $I \subset\{1, \ldots, n\}$ of samples of fixed size $m=|I|$ according to

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon \frac{1}{m} \sum_{i \in I} \nabla_{\boldsymbol{\theta}} E_{i}\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

- ϵ is the learning rate and is a hyperparameter; we will discuss later the convergence to a local minimum of F and conditions on ϵ
- whatever the choice, an iteration over the entire dataset is called an
- stochastic versions make more sense when dataset is redundant
- it is important to take random samples

gradient descent

- mini-batch (or stochastic) gradient descent (SGD) is the most common option and updates the parameters after seeing a random subset $I \subset\{1, \ldots, n\}$ of samples of fixed size $m=|I|$ according to

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon \frac{1}{m} \sum_{i \in I} \nabla_{\boldsymbol{\theta}} E_{i}\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

- ϵ is the learning rate and is a hyperparameter; we will discuss later the convergence to a local minimum of E and conditions on ϵ
- whatever the choice, an iteration over the entire dataset is called an
- stochastic versions make more sense when dataset is redundant
- it is important to take random samples

gradient descent

- mini-batch (or stochastic) gradient descent (SGD) is the most common option and updates the parameters after seeing a random subset $I \subset\{1, \ldots, n\}$ of samples of fixed size $m=|I|$ according to

$$
\boldsymbol{\theta}^{(\tau+1)} \leftarrow \boldsymbol{\theta}^{(\tau)}-\epsilon \frac{1}{m} \sum_{i \in I} \nabla_{\boldsymbol{\theta}} E_{i}\left(\boldsymbol{\theta}^{(\tau)}\right)
$$

- ϵ is the learning rate and is a hyperparameter; we will discuss later the convergence to a local minimum of E and conditions on ϵ
- whatever the choice, an iteration over the entire dataset is called an epoch
- stochastic versions make more sense when dataset is redundant
- it is important to take random samples

SVM, again

- either $s_{i} a_{i} \geq 1$ and $\xi_{i}=0$ (correct side of margin) or $\xi_{i}=1-s_{i} a_{i}$

SVM, again

- the constraints

$$
\begin{aligned}
s_{i} a_{i} & \geq 1-\xi_{i} \\
\xi_{i} & \geq 0
\end{aligned}
$$

do not tell the whole truth
either $s_{i} a_{i} \geq 1$ and $\xi_{i}=0$ (correct side of margin) or $\xi_{i}=1-s_{i} a_{i}$:

$$
\xi_{i}=\left[1-s_{i} a_{i}\right]_{+}
$$

the error function becomes

without ξ_{i} and without constraints, where $\lambda=1 / C$

SVM, again

- the constraints

$$
\begin{aligned}
s_{i} a_{i} & \geq 1-\xi_{i} \\
\xi_{i} & \geq 0
\end{aligned}
$$

do not tell the whole truth

- either $s_{i} a_{i} \geq 1$ and $\xi_{i}=0$ (correct side of margin) or $\xi_{i}=1-s_{i} a_{i}$:

$$
\xi_{i}=\left[1-s_{i} a_{i}\right]_{+}
$$

- the error function becomes

without ξ_{i} and without constraints, where $\lambda=1 / C$

SVM, again

- the constraints

$$
\begin{aligned}
s_{i} a_{i} & \geq 1-\xi_{i} \\
\xi_{i} & \geq 0
\end{aligned}
$$

do not tell the whole truth

- either $s_{i} a_{i} \geq 1$ and $\xi_{i}=0$ (correct side of margin) or $\xi_{i}=1-s_{i} a_{i}$:

$$
\xi_{i}=\left[1-s_{i} a_{i}\right]_{+}
$$

- the error function becomes

$$
E(\mathbf{w}, b)=\frac{1}{n} \sum_{i=1}^{n}\left[1-s_{i} a_{i}\right]_{+}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

without ξ_{i} and without constraints, where $\lambda=1 / C$

weight decay

- as $\|\mathbf{w}\|$ increases, the classifier function becomes more sensitive to perturbations in the input and is harder to generalize to new data
- the term

helps to keep $\|\mathbf{w}\|$ low because its gradient is $-\lambda \mathbf{w}$; it is a standard regularization method and we can add it to any method including perceptron and logistic regression
- λ is another hyperparameter
- weight decay is only applied to weights, not to bias

weight decay

- as $\|\mathbf{w}\|$ increases, the classifier function becomes more sensitive to perturbations in the input and is harder to generalize to new data
- the term

$$
\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

helps to keep $\|\mathbf{w}\|$ low because its gradient is $-\lambda \mathbf{w}$; it is a standard regularization method and we can add it to any method including perceptron and logistic regression
λ is another hyperparameter
weight decay is only applied to weights, not to bias

weight decay

- as $\|\mathbf{w}\|$ increases, the classifier function becomes more sensitive to perturbations in the input and is harder to generalize to new data
- the term

$$
\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

helps to keep $\|\mathbf{w}\|$ low because its gradient is $-\lambda \mathbf{w}$; it is a standard regularization method and we can add it to any method including perceptron and logistic regression

- λ is another hyperparameter
- weight decay is only applied to weights, not to bias

logistic regression, again

- recall that

$$
E(\mathbf{w}):=-\frac{1}{n} \sum_{i=1}^{n}\left(t_{i} \ln y_{i}+\left(1-t_{i}\right) \ln \left(1-y_{i}\right)\right)
$$

where $y_{i}=\sigma\left(a_{i}\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)$
using variables $s_{i}=2 t_{i}-1$ in $\{-1,1\}$, each term is
if $t_{i}=1\left(s_{i}=1\right) \quad \ln \sigma\left(a_{i}\right)$
if $t_{i}=0\left(s_{i}=-1\right) \quad \ln \left(1-\sigma\left(a_{i}\right)\right)=\ln \sigma\left(-a_{i}\right)$
in either case $\ln \sigma\left(s_{i} a_{i}\right)$

- the error function becomes

logistic regression, again

- recall that

$$
E(\mathbf{w}):=-\frac{1}{n} \sum_{i=1}^{n}\left(t_{i} \ln y_{i}+\left(1-t_{i}\right) \ln \left(1-y_{i}\right)\right)
$$

where $y_{i}=\sigma\left(a_{i}\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)$

- using variables $s_{i}=2 t_{i}-1$ in $\{-1,1\}$, each term is

$$
\begin{array}{ll}
\hline \text { if } t_{i}=1\left(s_{i}=1\right) & \ln \sigma\left(a_{i}\right) \\
\text { if } t_{i}=0\left(s_{i}=-1\right) & \ln \left(1-\sigma\left(a_{i}\right)\right)=\ln \sigma\left(-a_{i}\right) \\
\text { in either case } & \ln \sigma\left(s_{i} a_{i}\right) \\
\hline
\end{array}
$$

logistic regression, again

- recall that

$$
E(\mathbf{w}):=-\frac{1}{n} \sum_{i=1}^{n}\left(t_{i} \ln y_{i}+\left(1-t_{i}\right) \ln \left(1-y_{i}\right)\right)
$$

where $y_{i}=\sigma\left(a_{i}\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)$

- using variables $s_{i}=2 t_{i}-1$ in $\{-1,1\}$, each term is

$$
\begin{array}{ll}
\hline \text { if } t_{i}=1\left(s_{i}=1\right) & \ln \sigma\left(a_{i}\right) \\
\text { if } t_{i}=0\left(s_{i}=-1\right) & \ln \left(1-\sigma\left(a_{i}\right)\right)=\ln \sigma\left(-a_{i}\right) \\
\text { in either case } & \ln \sigma\left(s_{i} a_{i}\right) \\
\hline
\end{array}
$$

- the error function becomes

$$
E(\mathbf{w})=-\frac{1}{n} \sum_{i=1}^{n} \ln \sigma\left(s_{i} a_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \ln \left(1+e^{-s_{i} a_{i}}\right)
$$

maximum posterior*

- weight decay also appears in probabilistic formulations by considering the weight vector \mathbf{w} a random variable and incorporating a Gaussian prior for \mathbf{w}

$$
p(\mathbf{w} \mid \lambda)=\exp \left(-\frac{\lambda}{2}\|\mathbf{w}\|^{2}\right)
$$

- the posterior distribution given the dataset X, T is

$$
p(\mathbf{w} \mid X, T) \propto p(T \mid X, \mathbf{w}) p(\mathbf{w} \mid \lambda)
$$

- taking negative logarithm, the error function to minimize is

maximum posterior*

- weight decay also appears in probabilistic formulations by considering the weight vector \mathbf{w} a random variable and incorporating a Gaussian prior for \mathbf{w}

$$
p(\mathbf{w} \mid \lambda)=\exp \left(-\frac{\lambda}{2}\|\mathbf{w}\|^{2}\right)
$$

- the posterior distribution given the dataset X, T is

$$
p(\mathbf{w} \mid X, T) \propto p(T \mid X, \mathbf{w}) p(\mathbf{w} \mid \lambda)
$$

- taking negative logarithm, the error function to minimize is

maximum posterior*

- weight decay also appears in probabilistic formulations by considering the weight vector \mathbf{w} a random variable and incorporating a Gaussian prior for \mathbf{w}

$$
p(\mathbf{w} \mid \lambda)=\exp \left(-\frac{\lambda}{2}\|\mathbf{w}\|^{2}\right)
$$

- the posterior distribution given the dataset X, T is

$$
p(\mathbf{w} \mid X, T) \propto p(T \mid X, \mathbf{w}) p(\mathbf{w} \mid \lambda)
$$

- taking negative logarithm, the error function to minimize is

$$
E(\mathbf{w})=-\ln p(T \mid X, \mathbf{w})+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

error function and optimization

- in all three cases, we can define the error function (or cost function)

$$
E(\boldsymbol{\theta}):=\frac{1}{n} \sum_{i=1}^{n} L\left(\hat{f}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right), s_{i}\right)+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

- there are no constraints: in all three cases, we can use (stochastic) gradient descent to minimize the error function with respect to parameters θ

error function and optimization

- in all three cases, we can define the error function (or cost function)

$$
E(\boldsymbol{\theta}):=\frac{\frac{1}{n} \sum_{i=1}^{n} L\left(\hat{f}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right), s_{i}\right)}{\text { data term }}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

- there are no constraints: in all three cases, we can use (stochastic) gradient descent to minimize the error function with respect to parameters θ

error function and optimization

- in all three cases, we can define the error function (or cost function)

$$
E(\boldsymbol{\theta}):=\frac{\frac{1}{n} \sum_{i=1}^{n} L\left(\hat{f}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right), s_{i}\right)+\frac{\lambda}{2}\|\mathbf{w}\|^{2}}{\text { data term }} \text { regularization term }
$$

- there are no constraints: in all three cases, we can use (stochastic) gradient descent to minimize the error function with respect to parameters θ

error function and optimization

- in all three cases, we can define the error function (or cost function)

$$
E(\boldsymbol{\theta}):=\frac{\frac{1}{n} \sum_{i=1}^{n} L\left(\hat{f}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right), s_{i}\right)+\frac{\lambda}{2}\|\mathbf{w}\|^{2}}{\text { data term }}
$$

- there are no constraints: in all three cases, we can use (stochastic) gradient descent to minimize the error function with respect to parameters $\boldsymbol{\theta}$

prediction function

- in all three cases, we can use parameters $\boldsymbol{\theta}=(\mathbf{w}, b)$ and function

$$
\hat{f}(\mathbf{x} ; \mathbf{w}, b)=\mathbf{w}^{\top} \mathbf{x}+b
$$

during learning (training); this is the activation, without the nonlinearity
in all three cases, when the optimal parameters $\theta^{*}=\arg \min _{\theta} E(\theta)$ are found, use the prediction function
to classify new samples during inference (testing)

prediction function

- in all three cases, we can use parameters $\boldsymbol{\theta}=(\mathbf{w}, b)$ and function

$$
\hat{f}(\mathbf{x} ; \mathbf{w}, b)=\mathbf{w}^{\top} \mathbf{x}+b
$$

during learning (training); this is the activation, without the nonlinearity

- in all three cases, when the optimal parameters $\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} E(\boldsymbol{\theta})$ are found, use the prediction function

$$
f\left(\mathbf{x} ; \mathbf{w}^{*}, b^{*}\right)=\operatorname{sgn}\left(\mathbf{w}^{* \top} \mathbf{x}+b^{*}\right)= \begin{cases}+1, & \mathbf{w}^{* \top} \mathbf{x}+b^{*} \geq 0 \\ -1, & \mathbf{w}^{* \top} \mathbf{x}+b^{*}<0\end{cases}
$$

to classify new samples during inference (testing)

loss function

- in all cases, we can use loss function

$$
L(a, s)=\ell(s a)
$$

where a is the activation and s the target variable in $\{-1,1\}$ ("sign")

- the only difference is

loss function

- in all cases, we can use loss function

$$
L(a, s)=\ell(s a)
$$

where a is the activation and s the target variable in $\{-1,1\}$ ("sign")

- the only difference is

	$\ell(x)$
perceptron	$[-x]_{+}$
SVM (hinge)	$[1-x]_{+}$
logistic	$\ln \left(1+e^{-x}\right)$

loss function

- perceptron and logistic are asymptotically equivalent
- both SVM and logistic penalize small positive inputs

loss function

- perceptron and logistic are asymptotically equivalent
- both SVM and logistic penalize small positive inputs

derivatives

- the actual value of the loss is never used; all that matters is its derivative

derivatives

- the actual value of the loss is never used; all that matters is its derivative

derivatives

- in all cases, a sample that is correctly classified with an activation well above some margin does not contribute at all to the error function: the loss derivative is zero
- in all cases, a sample that is correctly classified with an activation well below some margin has a fixed negative contribution: the loss derivative is -1
- the same holds for logistic regression, which is unexpected if one looks at the saturating form of the sigmoid $\left(\frac{d \sigma}{d x}(x)\right.$ tends to zero for $|x| \rightarrow \infty)$
- this is because the \log of cross-entropy cancels the effect of the exp of the sigmoid and is a good reason the treat these two as one function operating directly on the activation

derivatives

- in all cases, a sample that is correctly classified with an activation well above some margin does not contribute at all to the error function: the loss derivative is zero
- in all cases, a sample that is correctly classified with an activation well below some margin has a fixed negative contribution: the loss derivative is -1
- the same holds for logistic regression, which is unexpected if one looks at the saturating form of the sigmoid $\left(\frac{d \sigma}{d x}(x)\right.$ tends to zero for $|x| \rightarrow \infty)$
- this is because the log of cross-entropy cancels the effect of the exp of the sigmoid and is a good reason the treat these two as one function operating directly on the activation

question

- perceptron and hinge loss differ only by a shift; once the bias is learned, aren't they equivalent?

example

perceptron

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 1

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 2

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 3

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 4

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 5

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 6

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 7

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 8

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

example

perceptron
epoch 9

hinge

logistic

- \#classes $k=2$, \#samples $n=200$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-3}$, weight decay coefficient $\lambda=10^{-3}$

multi-class classification

multi-class logistic regression

- there are now k classes C_{1}, \ldots, C_{k} and, given input $\mathbf{x} \in \mathbb{R}^{d}$, one activation per class for $j=1, \ldots, k$

$$
a_{j}=\mathbf{w}_{j}^{\top} \mathbf{x}+b_{j}
$$

or, in matrix form

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)=W^{\top} \mathbf{x}+\mathbf{b}
$$

where $W=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right)$ is a $d \times k$ weight matrix and $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$ a bias vector
and one output $y_{j} \in[0,1]$ per class for $j=1, \ldots, k$

$$
y_{j}=f_{j}(\mathbf{x} ; W, \mathbf{b}):=\sigma_{j}\left(W^{\top} \mathbf{x}+\mathbf{b}\right)=\sigma_{j}(\mathbf{a})
$$

or output vector $\mathbf{y} \in[0,1]^{k}$

multi-class logistic regression

- there are now k classes C_{1}, \ldots, C_{k} and, given input $\mathbf{x} \in \mathbb{R}^{d}$, one activation per class for $j=1, \ldots, k$

$$
a_{j}=\mathbf{w}_{j}^{\top} \mathbf{x}+b_{j}
$$

or, in matrix form

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)=W^{\top} \mathbf{x}+\mathbf{b}
$$

where $W=\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right)$ is a $d \times k$ weight matrix and $\mathbf{b}=\left(b_{1}, \ldots, b_{k}\right)$ a bias vector

- and one output $y_{j} \in[0,1]$ per class for $j=1, \ldots, k$

$$
y_{j}=f_{j}(\mathbf{x} ; W, \mathbf{b}):=\boldsymbol{\sigma}_{j}\left(W^{\top} \mathbf{x}+\mathbf{b}\right)=\boldsymbol{\sigma}_{j}(\mathbf{a})
$$

or output vector $\mathbf{y} \in[0,1]^{k}$

$$
\mathbf{y}=\left(y_{1}, \ldots, y_{k}\right)=f(\mathbf{x} ; W, \mathbf{b}):=\boldsymbol{\sigma}\left(W^{\top} \mathbf{x}+\mathbf{b}\right)=\boldsymbol{\sigma}(\mathbf{a})
$$

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

softmax

- the softmax function generalizes the sigmoid function and yields a vector of k values in $[0,1]$ by exponentiating and then normalizing

$$
\boldsymbol{\sigma}(\mathbf{a}):=\operatorname{softmax}(\mathbf{a}):=\frac{1}{\sum_{j} e^{a_{j}}}\left(e^{a_{1}}, \ldots, e^{a_{k}}\right)
$$

- as activation values increase, softmax tends to focus on the maximum

cross-entropy error

- we are given training samples $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{d \times n}$ and target variables $T=\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right) \in\{0,1\}^{k \times n}$
- this is an 1-of- k or one-hot encoding scheme: $t_{j i}=\mathbb{1}\left[\mathbf{x}_{i} \in C_{j}\right]$
- there is a similar probabilistic interpretation: output $y_{j i}$ represents the posterior class probability $p\left(C_{j} \mid \mathbf{x}_{i}\right)$
again, maximizing the likelihood function yields the average cross-entropy error function

where $Y=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right) \in[0,1]^{k \times n}$ and $\mathbf{y}_{i}=\sigma\left(\mathbf{a}_{i}\right)=\sigma\left(W^{\top} \mathbf{x}_{i}+\mathbf{b}\right)$

cross-entropy error

- we are given training samples $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in \mathbb{R}^{d \times n}$ and target variables $T=\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right) \in\{0,1\}^{k \times n}$
- this is an 1-of- k or one-hot encoding scheme: $t_{j i}=\mathbb{1}\left[\mathbf{x}_{i} \in C_{j}\right]$
- there is a similar probabilistic interpretation: output $y_{j i}$ represents the posterior class probability $p\left(C_{j} \mid \mathbf{x}_{i}\right)$
- again, maximizing the likelihood function yields the average cross-entropy error function

$$
E(W, \mathbf{b})=\frac{1}{n} \sum_{i=1}^{n} L\left(\mathbf{a}_{i}, \mathbf{t}_{i}\right)=-\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} t_{j i} \ln y_{j i}
$$

where $Y=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right) \in[0,1]^{k \times n}$ and $\mathbf{y}_{i}=\boldsymbol{\sigma}\left(\mathbf{a}_{i}\right)=\boldsymbol{\sigma}\left(W^{\top} \mathbf{x}_{i}+\mathbf{b}\right)$

cross-entropy loss

- given a single sample \mathbf{x} and target variable \mathbf{t}, and corresponding producing activation $\mathbf{a}=W^{\top} \mathbf{x}+\mathbf{b}$, the loss function is

$$
\begin{aligned}
L(\mathbf{a}, \mathbf{t}) & =-\mathbf{t}^{\top} \ln \boldsymbol{\sigma}(\mathbf{a}) \\
& =-\mathbf{t}^{\top}\left(\mathbf{a}-\ln \left(\sum_{j=1}^{k} e^{a_{j}}\right)\right)
\end{aligned}
$$

suppose the correct label (nonzero element of t) is l, i.e. $\mathrm{t}=\mathrm{e}_{l}$, where $\left\{\mathbf{e}_{j}\right\}+j=1^{k}$ is the standard basis of \mathbb{R}^{k} also this term can be approximated by the maximum element of a: $L(\mathbf{a}, \mathbf{t}) \approx \max \mathbf{a}-a_{l}=\max _{j} a_{j}-a_{l}$
\qquad

cross-entropy loss

- given a single sample \mathbf{x} and target variable \mathbf{t}, and corresponding producing activation $\mathbf{a}=W^{\top} \mathbf{x}+\mathbf{b}$, the loss function is

$$
L(\mathbf{a}, \mathbf{t})=-\mathbf{t}^{\top} \ln \boldsymbol{\sigma}(\mathbf{a})
$$

$$
=-\mathbf{t}^{\top}\left(\mathbf{a}-\ln \left(\sum_{j=1}^{k} e^{a_{j}}\right)\right)
$$

- suppose the correct label (nonzero element of \mathbf{t}) is l, i.e. $\mathbf{t}=\mathbf{e}_{l}$, where $\left\{\mathbf{e}_{j}\right\}+j=1^{k}$ is the standard basis of \mathbb{R}^{k}
- also this term can be approximated by the maximum element of \mathbf{a} :

$$
L(\mathbf{a}, \mathbf{t}) \approx \max \mathbf{a}-a_{l}=\max _{j} a_{j}-a_{l}
$$

cross-entropy loss derivative

- remember, it's only derivatives that matter
- the derivative of the cross-entropy loss with respect to the activation is particularly simple, no approximation needed:

$$
\nabla_{\mathbf{a}} L(\mathbf{a}, \mathbf{t})=\boldsymbol{\sigma}(\mathbf{a})-\mathbf{t}=\mathbf{y}-\mathbf{t}
$$

- again, exp and log cancel, and that's a reason to keep softmax followed by cross-entropy as one function
- example (correct label $l=2$): correct, and increases otherwise

cross-entropy loss derivative

- remember, it's only derivatives that matter
- the derivative of the cross-entropy loss with respect to the activation is particularly simple, no approximation needed:

$$
\nabla_{\mathbf{a}} L(\mathbf{a}, \mathbf{t})=\boldsymbol{\sigma}(\mathbf{a})-\mathbf{t}=\mathbf{y}-\mathbf{t}
$$

- again, exp and log cancel, and that's a reason to keep softmax followed by cross-entropy as one function
- example (correct label $l=2$):

\mathbf{t}	0	1	0	0	0
\mathbf{y}	0.1	0.6	0.2	0.0	0.1
$\frac{\partial L}{\partial \mathbf{a}}$	0.1	-0.4	0.2	0.0	0.1

cross-entropy loss derivative

- remember, it's only derivatives that matter
- the derivative of the cross-entropy loss with respect to the activation is particularly simple, no approximation needed:

$$
\nabla_{\mathbf{a}} L(\mathbf{a}, \mathbf{t})=\boldsymbol{\sigma}(\mathbf{a})-\mathbf{t}=\mathbf{y}-\mathbf{t}
$$

- again, exp and log cancel, and that's a reason to keep softmax followed by cross-entropy as one function
- example (correct label $l=2$):

\mathbf{t}	0	1	0	0	0
\mathbf{y}	0.1	0.6	0.2	0.0	0.1
$\frac{\partial L}{\partial \mathbf{a}}$	0.1	-0.4	0.2	0.0	0.1

- by increasing a class activation, the loss decreases if the class is correct, and increases otherwise

multiclass SVM*

- following the representation of correct label $l \in\{1, \ldots, k\}$
- several extensions, e.g. Weston and Watkins

$$
L(\mathbf{a}, l):=\left[1+\max _{j \neq l} a_{j}-a_{l}\right]_{+}=\max _{j \neq l}\left[1+a_{j}-a_{l}\right]_{+}
$$

similar to the previous approximation of cross-entropy, plus margin

- Crammer and Singer

$$
L(\mathbf{a}, l):=\sum_{j \neq l}\left[1+a_{j}-a_{l}\right]_{+}
$$

penalizes all labels that have better activation than the correct one

- both interpretable with simple derivatives

example

- we now apply logistic regression and SVM (W\&W) to classify three classes in 2d
- soft assignment: to visualize the class confidences, we apply softmax to activations in each case, even if SVM is not probabilistic
- hard assignment: now we threshold activations with sgn instead, as we do in testing
- we repeat at different epochs during training

soft assignment

epoch 00

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

soft assignment

epoch 05

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

soft assignment

epoch 10

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

soft assignment

epoch 15

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

soft assignment

epoch 20

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

soft assignment

epoch 25

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

soft assignment

epoch 30

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

soft assignment

epoch 35

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 00

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 04

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 08

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 12

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 16

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 20

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 24

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

hard assignment

epoch 28

hinge (W\&W)

logistic

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=10$
- learning rate $\epsilon=10^{-2}$, weight decay coefficient $\lambda=10^{-3}$

MNIST digits dataset

$$
\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 9 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

- 10 classes, 60 k training images, 10 k test images, 28×28 images

from images to vectors

- all classifiers considered so far work with vectors
- we have seen how to extract a descriptor-a vector-from an image
- however, the point now is how to learn to extract a descriptor
- so we start from raw pixels: a gray-scale input image is just a 28×28 matrix, and we vectorize it into 784×1
linear classifier on raw pixels

28×28

784×1

linear classifier on raw pixels

- input - weights - bias - softmax - parameters to be learned
linear classifier on raw pixels

- input - weights - bias - softmax - parameters to be learned
linear classifier on raw pixels

- input - weights - bias - softmax - parameters to be learned

linear classifier on raw pixels

- input - weights - bias - softmax - parameters to be learned

linear classifier on raw pixels

- input - weights - bias - softmax - parameters to be learned

what is being learned?

- the columns of W are multiplied with \mathbf{x}; they live in the same space
- we can reshape each one back from 784×1 to 28×28 : it should look like a digit

linear classifier on MNIST: patterns

0

1

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- test error 7.67%

linear classifier on MNIST: patterns

2

3

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- test error 7.67%

linear classifier on MNIST: patterns

4

5

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- test error 7.67%

linear classifier on MNIST: patterns

6

7

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- test error 7.67%

linear classifier on MNIST: patterns

8

9

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- test error 7.67%
regression*
$4 \square>4$ 可 $4 \equiv>4 \equiv \Rightarrow$ 三
line fitting*

- linear model with parameters $\mathbf{w}=(a, b)$

$$
y=a x+b=(a, b)^{\top}(x, 1)=\mathbf{w}^{\top} \phi(x)
$$

- least squares error given samples $\left(x_{1}, \ldots, x_{n}\right)$, targets $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$

$$
E(\mathbf{w})=\sum_{i=1}^{n}\left(\mathbf{w}^{\top} \phi\left(x_{i}\right)-t_{i}\right)^{2}
$$

line fitting*

- linear model with parameters $\mathbf{w}=(a, b)$

$$
y=a x+b=(a, b)^{\top}(x, 1)=\mathbf{w}^{\top} \phi(x)
$$

- least squares solution, where $\Phi=\left(\phi\left(x_{1}\right) ; \ldots ; \phi\left(x_{n}\right)\right) \in \mathbb{R}^{n \times 2}$

$$
\mathbf{w}^{*}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
$$

polynomial curve fitting*

- linear model with parameters $\mathbf{w} \in \mathbb{R}^{4}$

$$
y=\mathbf{w}^{\top} \phi(x)=\mathbf{w}^{\top}\left(1, x, x^{2}, x^{3}\right)
$$

- least squares solution, where $\Phi=\left(\phi\left(x_{1}\right) ; \ldots ; \phi\left(x_{n}\right)\right) \in \mathbb{R}^{n \times 4}$

$$
\mathbf{w}^{*}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
$$

overfitting*

- linear model with parameters $\mathbf{w} \in \mathbb{R}^{11}$

$$
y=\mathbf{w}^{\top} \phi(x)=\mathbf{w}^{\top}\left(1, x, x^{2}, \ldots, x^{10}\right)
$$

- least squares solution, where $\Phi=\left(\phi\left(x_{1}\right) ; \ldots ; \phi\left(x_{n}\right)\right) \in \mathbb{R}^{n \times 11}$

$$
\mathbf{w}^{*}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
$$

more data*

- linear model with parameters $\mathbf{w} \in \mathbb{R}^{11}$

$$
y=\mathbf{w}^{\top} \phi(x)=\mathbf{w}^{\top}\left(1, x, x^{2}, \ldots, x^{10}\right)
$$

- least squares solution, where $\Phi=\left(\phi\left(x_{1}\right) ; \ldots ; \phi\left(x_{n}\right)\right) \in \mathbb{R}^{n \times 11}$

$$
\mathbf{w}^{*}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
$$

regularization*

- linear model with parameters $\mathbf{w} \in \mathbb{R}^{11}$

$$
y=\mathbf{w}^{\top} \phi(x)=\mathbf{w}^{\top}\left(1, x, x^{2}, \ldots, x^{10}\right)
$$

- regularized least squares error with parameter λ

$$
E(\mathbf{w})=\sum_{i=1}^{n}\left(\mathbf{w}^{\top} \phi\left(x_{i}\right)-t_{i}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

regularization*

- linear model with parameters $\mathbf{w} \in \mathbb{R}^{11}$

$$
y=\mathbf{w}^{\top} \phi(x)=\mathbf{w}^{\top}\left(1, x, x^{2}, \ldots, x^{10}\right)
$$

- regularized least squares solution with parameter $\lambda=10^{-3}$

$$
\mathbf{w}^{*}=\left(\lambda I+\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
$$

severe regularization*

- linear model with parameters $\mathbf{w} \in \mathbb{R}^{11}$

$$
y=\mathbf{w}^{\top} \phi(x)=\mathbf{w}^{\top}\left(1, x, x^{2}, \ldots, x^{10}\right)
$$

- regularized least squares solution with parameter $\lambda=1$

$$
\mathbf{w}^{*}=\left(\lambda I+\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
$$

generalization error*

- linear model with parameters $\mathbf{w} \in \mathbb{R}^{11}$

$$
y=\mathbf{w}^{\top} \phi(x)=\mathbf{w}^{\top}\left(1, x, x^{2}, \ldots, x^{10}\right)
$$

- regularized least squares solution with parameter $\lambda \in\left[10^{-8}, 10^{0}\right]$

$$
\mathbf{w}^{*}=\left(\lambda I+\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{t}
$$

setting hyperparameters

- optimize both parameters and hyperparameters on the training set
\square
- train parameters on training set, hyperparameters on test set

train

\square

- train parameters on training set, hyperparameters on validation set
\square

setting hyperparameters

- optimize both parameters and hyperparameters on the training set: could work perfectly on training set, no idea how it works on test set train
- train parameters on training set, hyperparameters on test set
- train parameters on training set, hyperparameters on validation set
\square
\square

setting hyperparameters

- optimize both parameters and hyperparameters on the training set: could work perfectly on training set, no idea how it works on test set train
- train parameters on training set, hyperparameters on test set
\square
\square
train parameters on training set, hyperparameters on validation set
\square
\square

setting hyperparameters

- optimize both parameters and hyperparameters on the training set: could work perfectly on training set, no idea how it works on test set train
- train parameters on training set, hyperparameters on test set: no idea how it works no new data; the test set represents new data and should never be touched but for evaluation at the very end
train
test
train parameters on training set, hyperparameters on validation set
\square
\square

setting hyperparameters

- optimize both parameters and hyperparameters on the training set: could work perfectly on training set, no idea how it works on test set train
- train parameters on training set, hyperparameters on test set: no idea how it works no new data; the test set represents new data and should never be touched but for evaluation at the very end
train
- train parameters on training set, hyperparameters on validation set
\square

setting hyperparameters

- optimize both parameters and hyperparameters on the training set: could work perfectly on training set, no idea how it works on test set train
- train parameters on training set, hyperparameters on test set: no idea how it works no new data; the test set represents new data and should never be touched but for evaluation at the very end

train
test

- train parameters on training set, hyperparameters on validation set: great, validation data are new so we test our model's generalization; test data are also new and are only used for evaluation

```
train
```


k-fold cross-validation*

- split data into k groups; treat $k-1$ as training and 1 as validation, measure on test set; repeat over all splits and average the results

better use only one split; even better, each dataset has an official validation set so results are comparable

k-fold cross-validation*

- split data into k groups; treat $k-1$ as training and 1 as validation, measure on test set; repeat over all splits and average the results | val | | run 1 |
| :--- | :--- | :--- |

better use only one split; even better,
each dataset has an official validation set so results are comparable

k-fold cross-validation*

- split data into k groups; treat $k-1$ as training and 1 as validation, measure on test set; repeat over all splits and average the results

| val | |
| :--- | :--- | test

k-fold cross-validation*

- split data into k groups; treat $k-1$ as training and 1 as validation, measure on test set; repeat over all splits and average the results

| val | |
| :--- | :--- | test

| | val | |
| :--- | :--- | :--- | test

	val	

test

each dataset has an official validation set so results are comparable

k-fold cross-validation*

- split data into k groups; treat $k-1$ as training and 1 as validation, measure on test set; repeat over all splits and average the results

| val | |
| :--- | :--- | test

test

k-fold cross-validation*

- split data into k groups; treat $k-1$ as training and 1 as validation, measure on test set; repeat over all splits and average the results

val	

\square

	val	
	run 2	

	val	

test
\square test

- too expensive for large datasets: better use only one split; even better, each dataset has an official validation set so results are comparable

"basis" functions

- the most interesting idea discussed here is that the model becomes nonlinear in the raw input by expressing the unknown function as a linear combination (with unknown weights) of a number of fixed nonlinear "basis" functions
- we can re-use this idea in classification because classification is really regression followed by thresholding (or comparison)

"basis" functions

- the most interesting idea discussed here is that the model becomes nonlinear in the raw input by expressing the unknown function as a linear combination (with unknown weights) of a number of fixed nonlinear "basis" functions
- we can re-use this idea in classification because classification is really regression followed by thresholding (or comparison)

basis functions

basis function derivatives

choosing basis functions

- we want basis functions to cover the entire space so that any arbitrary input can be expressed as a linear of combination of such functions
- the Gaussian is localized, the others have larger support
- polynomials and their derivatives can get extremely large; the range of all the others can be easily controlled
- the derivatives of the Gaussian and sigmoid are localized; the derivative of softplus is nonzero over half of the space

multiple layers

linear separability

- two point sets $X_{1}, X_{2} \subset \mathbb{R}^{d}$ are linearly separable iff there is \mathbf{w}, b such that $\mathbf{w}^{\top} x_{1}<b<\mathbf{w}^{\top} x_{2}$ for $\mathbf{x}_{1} \in X_{1}, \mathbf{x}_{2} \in X_{2}$
- or, they can be separated by a perceptron

non-linearly separable classes

0

linear classifier

epoch 00

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 05

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 10

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 15

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 20

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 25

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 30

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 35

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 40

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

linear classifier

epoch 45

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

nonlinear?

○

- so how do we make our classifier nonlinear?

nonlinear?

- define a 10×10 grid over the entire space

nonlinear?

- and a (Gaussian?) basis function centered on every cell

nonlinear?

- then, a linear classifier can separate the 3 classes in 100 dimensions!

the curse of dimensionality

- but, starting from 3 dimensions, we would need 1000 basis functions; remember, a 320×200 image is a vector in $\mathbb{R}^{64,000}$

basis functions

- we need a small set of basis functions to cover the entire space, or at least the regions where our data live
- we did use fixed basis functions before: the Gabor filters discretized the 2 d space of scales and orientations in uniform bins and their responses were used as vectors
- but right in the next layer, the dimensions increase and we cannot afford to have fixed basis functions everywhere: we have to learn from the data, as we did with the codebooks
- codebooks were trained by clustering the features of the observed data, in an unsupervised fashion; but, now, we have the opportunity to learn them jointly with the classifier, in a supervised fashion so, each basis function will have itself some parameters to learn, but what form should the function have?

basis functions

- we need a small set of basis functions to cover the entire space, or at least the regions where our data live
- we did use fixed basis functions before: the Gabor filters discretized the 2 d space of scales and orientations in uniform bins and their responses were used as vectors
- but right in the next layer, the dimensions increase and we cannot afford to have fixed basis functions everywhere: we have to learn from the data, as we did with the codebooks
- codebooks were trained by clustering the features of the observed data, in an unsupervised fashion; but, now, we have the opportunity to learn them jointly with the classifier, in a supervised fashion
- so, each basis function will have itself some parameters to learn, but what form should the function have?

two-layer network

- we describe each sample with a feature vector obtained by a nonlinear function
- we model this function after a (binary) logistic regression unit: much like this unit can act as a classifier, it might also "detect" features that can be useful in the final classification
- layer $1 \rightarrow$ "features"
where h is a nonlinear activation function
- layer $2 \rightarrow$ class probabilities

- $\boldsymbol{\theta}:=\left(W_{1}, \mathbf{b}_{1}, W_{2}, \mathbf{b}_{2}\right)$ is the set of parameters to learn

two-layer network

- we describe each sample with a feature vector obtained by a nonlinear function
- we model this function after a (binary) logistic regression unit: much like this unit can act as a classifier, it might also "detect" features that can be useful in the final classification
- layer $1 \rightarrow$ "features"

$$
\mathbf{a}_{1}=W_{1}^{\top} \mathbf{x}+\mathbf{b}_{1}, \quad \mathbf{z}=h\left(\mathbf{a}_{1}\right)=h\left(W_{1}^{\top} \mathbf{x}+\mathbf{b}_{1}\right)
$$

where h is a nonlinear activation function

- layer $2 \rightarrow$ class probabilities

$$
\mathbf{a}_{2}=W_{2}^{\top} \mathbf{z}+\mathbf{b}_{2}, \quad \mathbf{y}=\boldsymbol{\sigma}\left(\mathbf{a}_{2}\right)=\boldsymbol{\sigma}\left(W_{2}^{\top} \mathbf{z}+\mathbf{b}_{2}\right)
$$

$\boldsymbol{\theta}:=\left(W_{1}, \mathbf{b}_{1}, W_{2}, \mathbf{b}_{2}\right)$ is the set of parameters to learn

two-layer network

- we describe each sample with a feature vector obtained by a nonlinear function
- we model this function after a (binary) logistic regression unit: much like this unit can act as a classifier, it might also "detect" features that can be useful in the final classification
- layer $1 \rightarrow$ "features"

$$
\mathbf{a}_{1}=W_{1}^{\top} \mathbf{x}+\mathbf{b}_{1}, \quad \mathbf{z}=h\left(\mathbf{a}_{1}\right)=h\left(W_{1}^{\top} \mathbf{x}+\mathbf{b}_{1}\right)
$$

where h is a nonlinear activation function

- layer $2 \rightarrow$ class probabilities

$$
\mathbf{a}_{2}=W_{2}^{\top} \mathbf{z}+\mathbf{b}_{2}, \quad \mathbf{y}=\boldsymbol{\sigma}\left(\mathbf{a}_{2}\right)=\boldsymbol{\sigma}\left(W_{2}^{\top} \mathbf{z}+\mathbf{b}_{2}\right)
$$

- $\theta:=\left(W_{1}, \mathbf{b}_{1}, W_{2}, \mathbf{b}_{2}\right)$ is the set of parameters to learn

two-layer network

- we describe each sample with a feature vector obtained by a nonlinear function
- we model this function after a (binary) logistic regression unit: much like this unit can act as a classifier, it might also "detect" features that can be useful in the final classification
- layer $1 \rightarrow$ "features"

$$
\mathbf{a}_{1}=W_{1}^{\top} \mathbf{x}+\mathbf{b}_{1}, \quad \mathbf{z}=h\left(\mathbf{a}_{1}\right)=h\left(W_{1}^{\top} \mathbf{x}+\mathbf{b}_{1}\right)
$$

where h is a nonlinear activation function

- layer $2 \rightarrow$ class probabilities

$$
\mathbf{a}_{2}=W_{2}^{\top} \mathbf{z}+\mathbf{b}_{2}, \quad \mathbf{y}=\boldsymbol{\sigma}\left(\mathbf{a}_{2}\right)=\boldsymbol{\sigma}\left(W_{2}^{\top} \mathbf{z}+\mathbf{b}_{2}\right)
$$

- $\boldsymbol{\theta}:=\left(W_{1}, \mathbf{b}_{1}, W_{2}, \mathbf{b}_{2}\right)$ is the set of parameters to learn

activation function h

- this should be nonlinear, otherwise the whole network will be linear and we don't gain much by the hierarchy (but: linear layers can be useful sometimes)
- it shouldn't have any more parameters, at least for now: all the parameters in a layer are W, \mathbf{b}
- it is a vector-to-vector function and there are still endless choices of nonlinear functions
- so we make the simplest choice for now: an element-wise function
- from the functions we saw previously, we leave polynomials and Gaussians out, and bring a couple more

activation function h

- this should be nonlinear, otherwise the whole network will be linear and we don't gain much by the hierarchy (but: linear layers can be useful sometimes)
- it shouldn't have any more parameters, at least for now: all the parameters in a layer are W, \mathbf{b}
- it is a vector-to-vector function and there are still endless choices of nonlinear functions
- so we make the simplest choice for now: an element-wise function
- from the functions we saw previously, we leave polynomials and Gaussians out, and bring a couple more

activation function h

- this should be nonlinear, otherwise the whole network will be linear and we don't gain much by the hierarchy (but: linear layers can be useful sometimes)
- it shouldn't have any more parameters, at least for now: all the parameters in a layer are W, \mathbf{b}
- it is a vector-to-vector function and there are still endless choices of nonlinear functions
- so we make the simplest choice for now: an element-wise function
- from the functions we saw previously, we leave polynomials and Gaussians out, and bring a couple more

activation functions

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

sigmoid

$\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=2 \sigma(x)-1$
hyperbolic tangent

activation functions

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

sigmoid

$\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=2 \sigma(x)-1$
hyperbolic tangent

$$
\operatorname{relu}(x)=[x]_{+}=\max (0, x)
$$

rectified linear unit (ReLU)

$$
\begin{gathered}
\zeta(x)=\log \left(1+e^{x}\right) \\
\text { softplus }
\end{gathered}
$$

activation functions

- tanh and sigmoid model exactly what a classifier makes (a decision), but they are smooth unlike sgn whose derivative is zero everywhere: indeed, they have been standard choices for decades.
relu and its "soft" version softplus are like which functions we have seen?

activation functions

- tanh and sigmoid model exactly what a classifier makes (a decision), but they are smooth unlike sgn whose derivative is zero everywhere: indeed, they have been standard choices for decades.
- relu and its "soft" version softplus are like which functions we have seen?

back to loss functions

- $\operatorname{relu}(x)=[x]_{+}$and $\zeta(x)=\log \left(1+e^{x}\right)$ are the flipped versions of the perceptron and logistic loss functions, respectively
- also shown is the 0-1 misclassification loss, which is what we actually evaluate during testing
- because it's difficult: its derivative is zero everywhere

back to loss functions

- $\operatorname{relu}(x)=[x]_{+}$and $\zeta(x)=\log \left(1+e^{x}\right)$ are the flipped versions of the perceptron and logistic loss functions, respectively
- also shown is the 0-1 misclassification loss, which is what we actually evaluate during testing

back to loss functions

- $\operatorname{relu}(x)=[x]_{+}$and $\zeta(x)=\log \left(1+e^{x}\right)$ are the flipped versions of the perceptron and logistic loss functions, respectively
- also shown is the $0-1$ misclassification loss, which is what we actually evaluate during testing: and why didn't we optimize that instead?
- because it's difficult: its derivative is zero everywhere

back to loss functions

- $\operatorname{relu}(x)=[x]_{+}$and $\zeta(x)=\log \left(1+e^{x}\right)$ are the flipped versions of the perceptron and logistic loss functions, respectively
- also shown is the 0-1 misclassification loss, which is what we actually evaluate during testing: and why didn't we optimize that instead?
- because it's difficult: its derivative is zero everywhere

surrogate loss functions

- all three loss functions we have seen are surrogate (proxy) for the 0-1 loss: their derivative is constant for $x \rightarrow-\infty$
we could have used sigmoid at least, which is the smooth version of the 0-1 loss, but we didn't: its derivative tends to zero for $x \rightarrow-\infty$ so if just one sigmoid is harder than relu, softplus etc. in a linear classifier,

surrogate loss functions

- all three loss functions we have seen are surrogate (proxy) for the 0-1 loss: their derivative is constant for $x \rightarrow-\infty$
- we could have used sigmoid at least, which is the smooth version of the 0-1 loss, but we didn't: its derivative tends to zero for $x \rightarrow-\infty$ so if just one sigmoid is harder than relu, softplus etc. in a linear classifier,

surrogate loss functions

- all three loss functions we have seen are surrogate (proxy) for the 0-1 loss: their derivative is constant for $x \rightarrow-\infty$
- we could have used sigmoid at least, which is the smooth version of the 0-1 loss, but we didn't: its derivative tends to zero for $x \rightarrow-\infty$
- so if just one sigmoid is harder than relu, softplus etc. in a linear classifier, why use 100 of those in the hidden units of a two-layer network?

two-layer classifier

linear
epoch 000

two-layer

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

two-layer classifier

- \#classes $k=3$, \#samples $n=300$, mini-batch size $m=100$
- learning rate $\epsilon=10^{0}$, weight decay coefficient $\lambda=10^{-3}$

MNIST digits dataset

$$
\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 9 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

- 10 classes, 60 k training images, 10 k test images, 28×28 images

two-layer classifier on raw pixels

28×28

84×1

100×1

10×1

100×10

10×1

$10 \times 1 \quad 10 \times 1$

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax
- parameter learning using cross-entropy on \mathbf{y} (or rather, directly on \mathbf{a}_{2})

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax
- parameter learning using cross-entropy on \mathbf{y} (or rather, directly on \mathbf{a}_{2})

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax
- parameter learning using cross-entropy on \mathbf{y} (or rather, directly on \mathbf{a}_{2})

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax
- parameter learning using cross-entropy on y (or rather, directly on \mathbf{a}_{2})

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function weights and bias - softmax
- parameter learning using cross-entropy on \mathbf{y} (or rather, directly on \mathbf{a}_{2})

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax
- parameter learning using cross-entropy on y (or rather, directly on \mathbf{a}_{2})

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax
- parameter learning using cross-entropy on y (or rather, directly on a_{2})

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax

two-layer classifier on raw pixels

- input - layer 1 weights and bias - relu activation function - layer 2 weights and bias - softmax
- parameter learning using cross-entropy on \mathbf{y} (or rather, directly on \mathbf{a}_{2})

what is being learned?

- the columns of W_{1} are multiplied with \mathbf{x}; they live in the same space, as in the linear classifier
- we can reshape each one back from 784×1 to 28×28 : but now it shouldn't look like a digit; rather, like a pattern that might help in recognizing digits
- these patterns are shared: once the activations are computed, they can be used in the next layer to score any of the digits
- the columns of W_{2} are in an 100-dimensional space that we can't make much sense of now; but we'll revisit this later

MNIST: two-layer classifier

layer 1 weights 00-09

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 10-19

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 30-39

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 40-49

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 50-59

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 60-69

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 70-79

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 80-89

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

MNIST: two-layer classifier

layer 1 weights 90-99

- \#classes $k=10$, \#samples $n=60000$, mini-batch size $m=6000$
- learning rate $\epsilon=10^{-1}$, weight decay coefficient $\lambda=10^{-4}$
- hidden layer width 100 ; test error 2.54%

summary

- only care about learning features: so, not interested e.g. in nearest neighbor search or dual SVM formulation
- three different linear classifiers, perceptron, SVM and logistic regression, only differ slightly in their loss function, which is similar to relu in all cases
- stochastic gradient descent optimization
- multi-class classification, softmax and MNIST
- linear regression*, overfitting*, validation*, hyperparameter optimization, basis functions
- learning basis functions, two-layer networks, activation functions, connection to classifier loss functions
- why relu makes sense

