lecture 2: visual representation deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2018 - Jan. 2019

logistics

- course website updated: https://sif-dlv.github.io/
- piazza: https://piazza.com/inria.fr/fall2018/dlv
- planning: to be updated gradually
- oral presentations: to be done

logistics

- course website updated: https://sif-dlv.github.io/
- piazza: https://piazza.com/inria.fr/fall2018/dlv
- planning: to be updated gradually
- oral presentations: to be done
- material marked as XXXX * is optional

outline

introduction
receptive fields
visual descriptors feature hierarchy
introduction

image retrieval challenges

image retrieval challenges

- scale
- viewpoint
- occlusion
- background clutter
- lighting
- distinctiveness
- distractors

image classification challenges

image classification challenges

- scale
- viewpoint
- occlusion
- background clutter
- lighting
- number of instances
- texture/color
- pose
- deformability
- intra-class variability

data-driven approach

receptive fields

topographic mapping: translation equivariance

- as you move along the retina, the corresponding points in the cortex trace a continuous path
- each column represents a two-dimensional array of cells
- a translation in the input causes a translation in the representation

receptive fields

[Hubel and Wiesel 1962]

- A: 'on'-center LGN; B: 'off'-center LGN; C, D: simple cortical
- \times : excitatory ('on'), \triangle : inhibitory ('off') responses
- localized responses, orientation selectivity

linearity

- simple cells perform linear spatial summation over their receptive fields
- spatial response (by oriented bars of varying position)
- frequency response (by oriented gratings of varying frequency)

linear time-invariant (LTI) systems

- discrete-time signal: $x[n], n \in \mathbb{Z}$
- translation (or shift, or delay): $s_{k}(x)[n]=x[n-k], k \in \mathbb{Z}$
- linear system (or filter): system commutes with linear combination

- time-invariant (or translation equivariant): system commutes with translation

$$
f\left(s_{k}(x)\right)=s_{k}(f(x))
$$

linear time-invariant (LTI) systems

- discrete-time signal: $x[n], n \in \mathbb{Z}$
- translation (or shift, or delay): $s_{k}(x)[n]=x[n-k], k \in \mathbb{Z}$
- linear system (or filter): system commutes with linear combination

$$
f\left(\sum_{i} a_{i} x_{i}\right)=\sum_{i} a_{i} f\left(x_{i}\right)
$$

- time-invariant (or translation equivariant): system commutes with translation

$$
f\left(s_{k}(x)\right)=s_{k}(f(x))
$$

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$.

$$
f(x)[n]=f\left(\frac{1}{\sum_{k} x[k] s_{k}(\delta)}[n]=\sum_{k} x[k] s_{k}(f(\delta))[n]\right.
$$

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

$$
f(x)[n]=f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n]
$$

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

$$
f(x)[n]=f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n]
$$

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$,

$$
\begin{aligned}
f(x)[n] & =f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n] \\
& =\sum_{k} x[k[h[n-k]
\end{aligned}
$$

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$, then $f(x)=x * h$:

$$
\begin{aligned}
f(x)[n] & =f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n] \\
& =\sum_{k} x[k] h[n-k]:=(x * h)[n]
\end{aligned}
$$

convolution

- unit impulse $\delta[n]=\mathbb{1}[n=0]$
- every signal x expressed as

$$
x[n]=\sum_{k} x[k] \delta[n-k]=\sum_{k} x[k] s_{k}(\delta)[n]
$$

- if f is LTI with impulse response $h=f(\delta)$, then $f(x)=x * h$:

$$
\begin{aligned}
f(x)[n] & =f\left(\sum_{k} x[k] s_{k}(\delta)\right)[n]=\sum_{k} x[k] s_{k}(f(\delta))[n] \\
& =\sum_{k} x[k] h[n-k]:=(x * h)[n]
\end{aligned}
$$

- Q: what is $\delta * h$ for any h ? what is $s_{k}(\delta) * h$?

convolution

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

2d convolution

$$
\begin{aligned}
(x * h)[\mathbf{n}] & =\sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{n}-\mathbf{k}] \\
& =\sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{n}-\mathbf{k}]
\end{aligned}
$$

continuous time

- continuous-time signal: $x(t), t \in \mathbb{R}$
- translation (or shift, or delay): $s_{\tau}(x)(t)=x(t-\tau), \tau \in \mathbb{R}$
- LTI system definition: same
- Dirac delta "function" δ : every signal x expressed as

$$
x(t)=\int x(\tau) \delta(t-\tau) \mathrm{d} \tau
$$

- convolution: f LTI, impulse response $h=f(\delta)$ implies

$$
f(x)(t)=(x * h)(t):=\int x(\tau) h(t-\tau) \mathrm{d} \tau
$$

continuous time

- continuous-time signal: $x(t), t \in \mathbb{R}$
- translation (or shift, or delay): $s_{\tau}(x)(t)=x(t-\tau), \tau \in \mathbb{R}$
- LTI system definition: same
- Dirac delta "function" δ : every signal x expressed as

$$
x(t)=\int x(\tau) \delta(t-\tau) \mathrm{d} \tau
$$

- convolution: f LTI, impulse response $h=f(\delta)$ implies

continuous time

- continuous-time signal: $x(t), t \in \mathbb{R}$
- translation (or shift, or delay): $s_{\tau}(x)(t)=x(t-\tau), \tau \in \mathbb{R}$
- LTI system definition: same
- Dirac delta "function" δ : every signal x expressed as

$$
x(t)=\int x(\tau) \delta(t-\tau) \mathrm{d} \tau
$$

- convolution: f LTI, impulse response $h=f(\delta)$ implies

$$
f(x)(t)=(x * h)(t):=\int x(\tau) h(t-\tau) \mathrm{d} \tau
$$

Fourier transform

- time (or space) \rightarrow frequency

$$
X(f)=\int x(t) e^{-j 2 \pi f t} \mathrm{~d} t
$$

- frequency \rightarrow time (or space)

$$
x(t)=\int X(f) e^{j 2 \pi f t} \mathrm{~d} f
$$

- measurements

Fourier transform

- time (or space) \rightarrow frequency

$$
X(f)=\int x(t) e^{-j 2 \pi f t} \mathrm{~d} t
$$

- frequency \rightarrow time (or space)

$$
x(t)=\int X(f) e^{j 2 \pi f t} \mathrm{~d} f
$$

- measurements

bar (+)

bar (-)

grating

Fourier transform

- time (or space) \rightarrow frequency

$$
X(f)=\int x(t) e^{-j 2 \pi f t} \mathrm{~d} t
$$

- frequency \rightarrow time (or space)

$$
x(t)=\int X(f) e^{j 2 \pi f t} \mathrm{~d} f
$$

- measurements

Fourier transform

- time (or space) \rightarrow frequency

$$
X(f)=\int x(t) e^{-j 2 \pi f t} \mathrm{~d} t
$$

- frequency \rightarrow time (or space)

$$
x(t)=\int X(f) e^{j 2 \pi f t} \mathrm{~d} f
$$

- measurements

bar (+)

bar (-)

grating

Fourier transform

- time (or space) \rightarrow frequency

$$
X(f)=\int x(t) e^{-j 2 \pi f t} \mathrm{~d} t
$$

- frequency \rightarrow time (or space)

$$
x(t)=\int X(f) e^{j 2 \pi f t} \mathrm{~d} f
$$

- measurements

bar (+)

bar (-)

grating

mathematical model

symmetric

antisymmetric

$$
e^{-a^{2}\left(x-x_{0}\right)^{2}} \cos \left(2 \pi f_{0}\left(x-x_{0}\right)\right) \quad e^{-a^{2}\left(x-x_{0}\right)^{2}} \sin \left(2 \pi f_{0}\left(x-x_{0}\right)\right)
$$

- (thin) experimental: inverse Fourier of grating stimuli responses
- (thick) least-squares fit of Gabor elementary signal

Gabor elementary signals

- "effective duration"

$$
\Delta t=\left[2 \pi \overline{(t-\bar{t})^{2}}\right]^{1 / 2}
$$

- "effective bandwidth"

$$
\Delta f=\left[2 \pi \overline{(f-\bar{f})^{2}}\right]^{1 / 2}
$$

- uncertainty principle

$$
\Delta t \Delta f \geq \frac{1}{2}
$$

- minimal solution

$$
\psi(t)=e^{-a^{2}\left(t-t_{0}\right)^{2}} e^{j 2 \pi f_{0}\left(t-t_{0}\right)}
$$

convolution theorem \& modulation

convolution theorem \& modulation

convolution theorem \& modulation

2d space/frequency considerations

- responses to gratings at different frequencies and orientations
- localized in space and frequency, in both dimensions

2d space/frequency considerations

(a) Excitability profile

(b) 2-D Fourier transform of profile

- spatial frequency and orientation are separable
- by inverse Fourier, hypothesize a 2 d spatial 'receptive field profile'

2d Gabor filters

- 2d uncertainty principle

$$
\Delta \mathrm{x} \Delta \mathbf{u} \geq \frac{1}{4}
$$

- minimal solution

$$
\begin{aligned}
f(\mathbf{x}) & =e^{-\pi w_{\mathbf{x}_{0}, A}(\mathbf{x})} e^{j 2 \pi c_{\mathbf{x}_{0}, \mathbf{u}_{0}}(\mathbf{x})} \\
F(\mathbf{u}) & =e^{-\pi w_{\mathbf{u}_{0}, A^{-1}}(\mathbf{u})} e^{j 2 \pi c_{\mathbf{u}_{0}, \mathbf{x}_{0}}(\mathbf{u})}
\end{aligned}
$$

- envelope \& carrier signals

$$
\begin{aligned}
w_{\mathbf{x}_{0}, A}(\mathbf{x}) & =\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} A^{2}\left(\mathbf{x}-\mathbf{x}_{0}\right) \\
c_{\mathbf{x}_{0}, \mathbf{u}_{0}}(\mathbf{x}) & =\mathbf{u}_{0}^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right) \\
A & =\operatorname{diag}(a, b)
\end{aligned}
$$

Gabor hypothesis verified

Space Domain

Frequency Domain

- compare spatial data to Gabor fitted to inverse Fourier of frequency data, and vice versa
- error unstructured and indistinguishable from random

texture segmentation

- sample image on spatial uniform cartesian grid
- filter each spatial cell at different frequencies and orientations

"textons"

- see filter bank as frequency sampling on log-polar grid
- cluster filter (vector) responses into "textons"
- apply to iris recognition

visual descriptors

texture descriptors

[Manjunath and Ma 1996]

- same frequency sampling scheme
- filtering and global pooling in space domain
- popularized as part of MPEG-7 standard

global descriptors

- sampling scheme adapted to power spectrum statistics
- filtering and global pooling in frequency domain

sampling the frequency plane

space

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ
scaling envelope (A) and carrier (u_{0}) together
4d representation: position, scale, orientation

sampling the frequency plane

space

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ
scaling envelope (A) and carrier $\left(\mathrm{u}_{0}\right)$ together
4d representation: position, scale, orientation

sampling the frequency plane

frequency
space

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ scaling envelope (A) and carrier (u_{0}) together 4d representation: position, scale, orientation

sampling the frequency plane

frequency

space

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ scaling envelope (A) and carrier (u_{0}) together

4d representation: position, scale, orientation

sampling the frequency plane

frequency

space

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ scaling envelope (A) and carrier (u_{0}) together

4d representation: position, scale, orientation

sampling the frequency plane

frequency

space

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ
- scaling envelope (A) and carrier $\left(\mathbf{u}_{0}\right)$ together
- 4d representation: position, scale, orientation

sampling the frequency plane

frequency

space

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ
- scaling envelope (A) and carrier $\left(\mathbf{u}_{0}\right)$ together

[^0]
sampling the frequency plane

frequency

- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ
- scaling envelope (A) and carrier $\left(\mathbf{u}_{0}\right)$ together
- 4d representation: position, scale, orientation

from images to vectors

- suppose an image $f(\mathbf{x})$ is represented in frequency by $|F(\mathbf{u})|^{2}$
- suppose a template $h(\mathbf{x})$ (another image or an attribute) is also represented in frequency by

$$
|H(\mathbf{u})|^{2}=\sum_{n=1}^{N} h_{n}\left|G_{n}(\mathbf{u})\right|^{2}
$$

where $\left\{G_{n}\right\}$ is a Gabor filter bank; let $\mathbf{h}=\left[h_{1}, \ldots, h_{N}\right]$
now define the vector $\mathrm{f}=\left[f_{1}, \ldots, f_{N}\right]$ with

$$
f_{n}=\int|F(\mathbf{u})|^{2}\left|G_{n}(\mathbf{u})\right|^{2} \mathrm{~d} \mathbf{u}
$$

and measure the similarity of f, h by the inner product

from images to vectors

- suppose an image $f(\mathbf{x})$ is represented in frequency by $|F(\mathbf{u})|^{2}$
- suppose a template $h(\mathbf{x})$ (another image or an attribute) is also represented in frequency by

$$
|H(\mathbf{u})|^{2}=\sum_{n=1}^{N} h_{n}\left|G_{n}(\mathbf{u})\right|^{2}
$$

where $\left\{G_{n}\right\}$ is a Gabor filter bank; let $\mathbf{h}=\left[h_{1}, \ldots, h_{N}\right]$

- now define the vector $\mathbf{f}=\left[f_{1}, \ldots, f_{N}\right]$ with

$$
f_{n}=\int|F(\mathbf{u})|^{2}\left|G_{n}(\mathbf{u})\right|^{2} \mathrm{~d} \mathbf{u}
$$

and measure the similarity of f, h by the inner product

from images to vectors

- suppose an image $f(\mathbf{x})$ is represented in frequency by $|F(\mathbf{u})|^{2}$
- suppose a template $h(\mathbf{x})$ (another image or an attribute) is also represented in frequency by

$$
|H(\mathbf{u})|^{2}=\sum_{n=1}^{N} h_{n}\left|G_{n}(\mathbf{u})\right|^{2}
$$

where $\left\{G_{n}\right\}$ is a Gabor filter bank; let $\mathbf{h}=\left[h_{1}, \ldots, h_{N}\right]$

- now define the vector $\mathbf{f}=\left[f_{1}, \ldots, f_{N}\right]$ with

$$
f_{n}=\int|F(\mathbf{u})|^{2}\left|G_{n}(\mathbf{u})\right|^{2} \mathrm{~d} \mathbf{u}
$$

- and measure the similarity of f, h by the inner product

$$
\int|F(\mathbf{u})|^{2}|H(\mathbf{u})|^{2} \mathrm{~d} \mathbf{u}=\sum_{n=1}^{N} f_{n} h_{n}=\langle\mathbf{f}, \mathbf{h}\rangle
$$

global vs. local receptive fields

- pool filter responses only locally
- next level in hierarchy can apply different spatial weights

the gist descriptor

- apply filter bank to entire image in frequency domain
- partition image in 4×4 cells
- average pooling of filter responses per cell

gist pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 4 scales $\times 8$ orientations
- average pooling on 4×4 cells \rightarrow descriptor of length 512

gist pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 4 scales $\times 8$ orientations
- average pooling on 4×4 cells \rightarrow descriptor of length 512

gist pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 4 scales $\times 8$ orientations
- average pooling on 4×4 cells \rightarrow descriptor of length 512

scale-invariant feature transform

[Lowe 1999]

- detect a sparse set of "stable" features (rectangular patches), equivariant to translation, scale and rotation

scale-invariant feature transform

- for each patch
- normalize with respect to scale and orientation
- construct a histogram of gradient orientations

the SIFT descriptor

Keypoint descriptor

- votes in 8-bin orientation histograms weighted by magnitude and by Gaussian window on patch
- histograms pooled over 4×4 cells, trilinear interpolation
- 128-dimensional descriptor, normalized, clipped at 0.2 , normalized

histogram of oriented gradients

[Dalal and Triggs 2005]

- applied to person detection by sliding window and SVM
- classifier learns positive and negative weights on positions and orientations
- shifts focus back to dense features for classification

the HOG descriptor

- applied densely to adjacent cells of 8×8 pixels
- no scale or orientation normalization; just single-scale
- normalized by overlapping blocks of 3×3 cells—redundant

so what is a histogram?

- consider a histogram h over integers $C=\{0,1,2,3,4\}$, computed from the following samples:

C	$=$		0	1	2	3	4			
3	\rightarrow		0	0	0	1	0			
2	\rightarrow	(0	0	1	0	0			
0	\rightarrow		1	0	0	0	0			
3	\rightarrow	(0	0	0	1	0			
2	\rightarrow	(0	0	1	0	0			
2	\rightarrow	(0	0	1	0	0		+	
h	$=$		1	0	3	2	0		/	6

- each sample is encoded (hard-assigned) into a vector in \mathbb{R}^{5}; all such vectors are pooled (averaged) into one vector $h \in \mathbb{R}^{5}$
- encoding is always nonlinear and pooling is orderless

so what is a histogram?

- consider a histogram h over integers $C=\{0,1,2,3,4\}$, computed from the following samples:

- each sample is encoded (hard-assigned) into a vector in \mathbb{R}^{5}; all such vectors are pooled (averaged) into one vector $h \in \mathbb{R}^{5}$
- encoding is always nonlinear and pooling is orderless

so what is a histogram?

- consider a histogram h over integers $C=\{0,1,2,3,4\}$, computed from the following samples:

C	$=$		0	1	2	3	4	\}		
3	\rightarrow	(0	0	0	1	0)		
2	\rightarrow	(0	0	1	0	0)		
0	\rightarrow	(1	0	0	0	0)		
3	\rightarrow	(0	0	0	1	0)		
2	\rightarrow	(0	0	1	0	0)		
2	\rightarrow		0	0	1	0	0)	$+$	
h	$=$		1	0	3	2	0)		6

- each sample is encoded (hard-assigned) into a vector in \mathbb{R}^{5}; all such vectors are pooled (averaged) into one vector $h \in \mathbb{R}^{5}$
- encoding is always nonlinear and pooling is orderless
- C is a codebook or vocabulary

SIFT (HOG) pipeline

- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude \& orientation
- encode into $b=8$ (9) orientation bins
- average pooling on $c=4 \times 4(|w / 8| \times|h / 8|)$ cells
- descriptor of length $c \times b=128$ (block-normalize $\rightarrow c \times(3 \times 3) \times b)$

SIFT (HOG) pipeline

- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude \& orientation
- encode into $b=8$ (9) orientation bins
- average pooling on $c=4 \times 4(\lfloor w / 8\rfloor \times\lfloor h / 8\rfloor)$ cells
- descriptor of length $c \times b=128$

SIFT (HOG) pipeline

- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude \& orientation
- encode into $b=8$ (9) orientation bins
- average pooling on $c=4 \times 4(\lfloor\omega / 8\rfloor \times\lfloor h / 8\rfloor)$ cells
- descriptor of length $c \times b=128$

SIFT (HOG) pipeline

- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude \& orientation
- encode into $b=8$ (9) orientation bins
- average pooling on $c=4 \times 4(\lfloor w / 8\rfloor \times\lfloor h / 8\rfloor)$ cells
- descriptor of length $c \times b=128$ (block-normalize $\rightarrow c \times(3 \times 3) \times b$)

feature hierarchy

back to Gabor

- let us use the following edge pattern

- rotate it by all $\theta \in[0,2 \pi]$
- for each θ, filter (take dot product) with a bank of antisymmetric Gabor filters at 5 orientations, single scale
- turns out, the filter bank provides an encoding of θ in \mathbb{R}^{5} : soft assignment
- then, spatial pooling gives nothing but an orientation histogram

back to Gabor

- let us use the following edge pattern

- rotate it by all $\theta \in[0,2 \pi]$
- for each θ, filter (take dot product) with a bank of antisymmetric Gabor filters at 5 orientations, single scale
- turns out, the filter bank provides an encoding of θ in \mathbb{R}^{5} : soft assignment
- then, spatial pooling gives nothing but an orientation histogram

back to Gabor

back to Gabor

nonlinear mappings

- Q: we said convolution is linear; now, once we have a gradient orientation measurement, why do we need a nonlinear function?
- convolution is linear in the image; but if the image is rotated by θ, itself is a nonlinear function of θ
- what we are doing is, mapping to another space where scaling and rotation of the image behave like translation

nonlinear mappings

- Q: we said convolution is linear; now, once we have a gradient orientation measurement, why do we need a nonlinear function?
- convolution is linear in the image; but if the image is rotated by θ, itself is a nonlinear function of θ
what we are doing is, mapping to another space where scaling and rotation of the image behave like translation

nonlinear mappings

- Q: we said convolution is linear; now, once we have a gradient orientation measurement, why do we need a nonlinear function?
- convolution is linear in the image; but if the image is rotated by θ, itself is a nonlinear function of θ
- what we are doing is, mapping to another space where scaling and rotation of the image behave like translation

on manifolds

- an image of resolution 320×200 is a vector in $\mathcal{I}=\mathbb{R}^{64,000}$; are all such vectors equally likely?
- an object seen at different scales and orientations only spans a 2-dimensional smooth manifold in \mathcal{I}
and we would like to express scale and orientation as two natural coordinates
- how would we go about expressing perspective transformation? attributes of handwritten characters? poses of a human body? occluded surfaces? species of dogs?

on manifolds

- an image of resolution 320×200 is a vector in $\mathcal{I}=\mathbb{R}^{64,000}$; are all such vectors equally likely?
- an object seen at different scales and orientations only spans a 2-dimensional smooth manifold in \mathcal{I}

and we would like to express scale and orientation as two natural coordinates
how would we go about expressing perspective transformation? attributes of handwritten characters? poses of a human body? occluded surfaces? species of dogs?

on manifolds

- an image of resolution 320×200 is a vector in $\mathcal{I}=\mathbb{R}^{64,000}$; are all such vectors equally likely?
- an object seen at different scales and orientations only spans a 2-dimensional smooth manifold in \mathcal{I}

and we would like to express scale and orientation as two natural coordinates
- how would we go about expressing perspective transformation? attributes of handwritten characters? poses of a human body? occluded surfaces? species of dogs?

feature hierarchy

- at each level, nonlinearly encode each local (e.g. pixel) representation according to a codebook, followed by pooling
- scale and orientation are just two dimensions; a codebook is just a dense grid
- a 3-scale, 6-orientation filter response is 18-dimensional; a dense grid is not an option
- learn the codebook from data!

feature hierarchy

- at each level, nonlinearly encode each local (e.g. pixel) representation according to a codebook, followed by pooling
- scale and orientation are just two dimensions; a codebook is just a dense grid
- a 3 -scale, 6 -orientation filter response is 18 -dimensional; a dense grid is not an option
- learn the codebook from data!

feature hierarchy

- at each level, nonlinearly encode each local (e.g. pixel) representation according to a codebook, followed by pooling
- scale and orientation are just two dimensions; a codebook is just a dense grid
- a 3 -scale, 6 -orientation filter response is 18 -dimensional; a dense grid is not an option
- learn the codebook from data!

back to textons

[Daugman 1988]

- see filter bank as frequency sampling on log-polar grid
- cluster 3×6 filter (vector) responses into "textons"
- apply to iris recognition

back to textons

[Daugman 1988]

- see filter bank as frequency sampling on log-polar grid
- cluster 3×6 filter (vector) responses into "textons"
- apply to iris recognition

textons

[Malik et al. 1999]

oriented filter bank

texture segmentation

- textons (re-)defined as clusters of filter responses
- regions described by texton histograms

textons

- each pixel mapped to a filter response vector of length 3×12
- vectors clustered by k-means into $k=25$ "texton" centroids
- each pixel assigned to a texton
- each texton has a "channel" of pixel assignments

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.

textons

- each pixel mapped to a filter response vector of length 3×12
- vectors clustered by k-means into $k=25$ "texton" centroids
- each pixel assigned to a texton
- each texton has a "channel" of pixel assignments

texton pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 3 scales $\times 12$ orientations
- point-wise encoding (hard assignment) on $k=25$ textons - stride-1 average pooling on overlapping neighborhoods

texton pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 3 scales $\times 12$ orientations
- point-wise encoding (hard assignment) on $k=25$ textons
- stride-1 average pooling on overlapping neighborhoods

texton pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 3 scales $\times 12$ orientations
- point-wise encoding (hard assignment) on $k=25$ textons
- stride-1 average pooling on overlapping neighborhoods

texton pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 3 scales $\times 12$ orientations
- point-wise encoding (hard assignment) on $k=25$ textons
- stride-1 average pooling on overlapping neighborhoods

bag of words (BoW)

[Sivic and Zisserman 2003]

- two types of sparse features detected
- SIFT descriptors extracted from a dataset of video frames

bag of words: retrieval

[Sivic and Zisserman 2003]

Harris affine 6k words

maximally stable 10k words

- "visual words" defined as clusters of SIFT descriptors learned from the dataset
- images described by visual word histograms
- matching is reduced to sparse dot product \rightarrow fast retrieval

bag of words: classification

[Csurka et al. 2004]

features

visual words

- same representation, $k=1000$ words, naive Bayes or SVM classifier
- features soon to be replaced dense multiscale HOG or SIFT

bag of words pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 10^{4}$ visual words
- global sum pooling, ℓ^{2} normalization

bag of words pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 10^{4}$ visual words
- global sum pooling, ℓ^{2} normalization

bag of words pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 10^{4}$ visual words
- global sum pooling, ℓ^{2} normalization

bag of words pipeline

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 10^{4}$ visual words
- global sum pooling, ℓ^{2} normalization

vector of locally aggregated descriptors (VLAD)*

[Jégou et al. 2010]

- encoding yields a vector per visual word, rather than a scalar frequency
- this vector is 128 -dimensional like SIFT descriptors

VLAD definition*

- input vectors: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
- vector quantizer: $q: \mathbb{R}^{d} \rightarrow C \subset \mathbb{R}^{d}, C=\left\{c_{1}, \ldots, c_{k}\right\}$

$$
q(x)=\arg \min _{c \in C}\|x-c\|^{2}
$$

- residual vector

$$
r(x)=x-q(x)
$$

- residual pooling per cell

- VLAD vector (up to normalization)

VLAD definition*

- input vectors: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
- vector quantizer: $q: \mathbb{R}^{d} \rightarrow C \subset \mathbb{R}^{d}, C=\left\{c_{1}, \ldots, c_{k}\right\}$

$$
q(x)=\arg \min _{c \in C}\|x-c\|^{2}
$$

- residual vector

$$
r(x)=x-q(x)
$$

- residual pooling per cell

- VLAD vector (up to normalization)

VLAD definition*

- input vectors: $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$
- vector quantizer: $q: \mathbb{R}^{d} \rightarrow C \subset \mathbb{R}^{d}, C=\left\{c_{1}, \ldots, c_{k}\right\}$

$$
q(x)=\arg \min _{c \in C}\|x-c\|^{2}
$$

- residual vector

$$
r(x)=x-q(x)
$$

- residual pooling per cell

$$
V_{c}(X)=\sum_{\substack{x \in X \\ q(x)=c}} r(x)=\sum_{\substack{x \in X \\ q(x)=c}} x-q(x)
$$

- VLAD vector (up to normalization)

$$
\mathcal{V}(X)=\left(V_{c_{1}}(X), \ldots, V_{c_{k}}(X)\right)
$$

VLAD geometry*

- input vectors - codebook - residuals - pooling

VLAD geometry*

- input vectors - codebook - residuals - pooling

VLAD geometry*

- input vectors - codebook - residuals - pooling

VLAD geometry*

- input vectors - codebook - residuals - pooling

VLAD pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote
- global sum pooling, ℓ^{2} normalization

VLAD pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote
- global sum pooling, ℓ^{2} normalization

VLAD pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote

VLAD pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times 128$-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k \sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote
- global sum pooling, ℓ^{2} normalization

probabilistic interpretation*

- if $p(X \mid C)$ is the likelihood of i.i.d observations X under a uniform isotropic Gaussian mixture model with component means C

$$
p(X \mid C) \propto \prod_{x \in X} e^{-\frac{1}{2}\|x-q(x)\|^{2}}
$$

- then the VLAD vector is proportional the gradient of $\ln p(X \mid C)$ with respect to the model parameters C

$$
\vartheta(X) \propto \nabla_{C} \ln p(X \mid C)=\left[\nabla_{C_{1}} \ln p(X \mid C), \ldots, \nabla_{c_{k}} \ln p(X \mid C)\right]
$$

- if we were to optimize C to fit the data X, then $\hat{\mathcal{V}}(X)$ would be the direction in which to modify C

probabilistic interpretation*

- if $p(X \mid C)$ is the likelihood of i.i.d observations X under a uniform isotropic Gaussian mixture model with component means C

$$
p(X \mid C) \propto \prod_{x \in X} e^{-\frac{1}{2}\|x-q(x)\|^{2}}
$$

- then the VLAD vector is proportional the gradient of $\ln p(X \mid C)$ with respect to the model parameters C

$$
\mathcal{V}(X) \propto \nabla_{C} \ln p(X \mid C)=\left[\nabla_{c_{1}} \ln p(X \mid C), \ldots, \nabla_{c_{k}} \ln p(X \mid C)\right]
$$

- if we were to optimize C to fit the data X, then $\hat{\mathcal{V}}(X)$ would be the direction in which to modify C

Fisher kernel*

- the Fisher kernel generalizes to a non-uniform diagonal Gaussian mixture model

order statistics	parameter	model
0	mixing coefficient π	BoW
1	means μ	VLAD
2	standard deviations σ	Fisher

embeddings in general*

$$
\phi\left(x_{n}\right)
$$

aggregating (nooling)
dimension
reduction

$\sum_{i} \phi\left(x_{i}\right)$

embeddings in general*

$\xrightarrow[\square \square \square]{ } \begin{aligned} & \square \square \\ & \begin{array}{l}\text { aggregating } \\ \text { (pooling) }\end{array}\end{aligned}$

dimension

reduction

embeddings in general*

dimension

reduction

embeddings in general*

embedding
(coding)

aggregating
(pooling)
dimension
reduction
$\Phi(X)$

$\sum_{i} \phi\left(x_{i}\right)$

HMAX*

[Riesenhuber and Poggio 1999]

- computational model consistent with psychophysical data
- advocates non-linear max pooling

(simplified) HMAX pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales $\times 4$ orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to $k=4.072$ prototypes $P_{i}\left(n_{i} \times n_{i}\right.$ patches at 4 orientations) extracted at random during learning: activations $Y_{i}=\exp \left(-\gamma\left\|X-P_{i}\right\|^{2}\right)$
- C2 global max pooling over positions and scales

(simplified) HMAX pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales $\times 4$ orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to $k=4072$ prototypes $P_{i}\left(n_{i} \times n_{i}\right.$ patches at 4 orientations $)$ extracted at random during learning: activations $Y_{i}=\exp \left(-\gamma\left\|X-P_{i}\right\|^{2}\right)$
- C2 global max pooling over positions and scales

(simplified) HMAX pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales $\times 4$ orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to $k=4072$ prototypes $P_{i}\left(n_{i} \times n_{i}\right.$ patches at 4 orientations) extracted at random during learning: activations $Y_{i}=\exp \left(-\gamma\left\|X-P_{i}\right\|^{2}\right)$
- C2 global max pooling over positions and scales

(simplified) HMAX pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales $\times 4$ orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to $k=4072$ prototypes $P_{i}\left(n_{i} \times n_{i}\right.$ patches at 4 orientations) extracted at random during learning: activations $Y_{i}=\exp \left(-\gamma\left\|X-P_{i}\right\|^{2}\right)$

(simplified) HMAX pipeline*

- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales $\times 4$ orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to $k=4072$ prototypes $P_{i}\left(n_{i} \times n_{i}\right.$ patches at 4 orientations) extracted at random during learning: activations $Y_{i}=\exp \left(-\gamma\left\|X-P_{i}\right\|^{2}\right)$
- C2 global max pooling over positions and scales

HMAX improvements*

[Mutch and Lowe 2006]

- image pyramid
- S1 inhibition: non-maxima suppression over orientations
- strided C1 max pooling (50\% overlap)
- C1 sparsification: dominant orientations kept

summary

- neuroscience background, convolution, Gabor filters
- texture analysis, frequency sampling, visual descriptors
- dense vs. sparse features
- gist, SIFT, HOG
- pooling Gabor filter responses as orientation histograms
- feature hierarchy, codebooks, encoding, pooling
- textons, BoW, VLAD*, Fisher kernel*, HMAX*
- hard vs. soft encoding, max vs. sum pooling

[^0]: - 4d representation: position, scale, orientation

