lecture 7: convolution and network architectures deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2019 - Jan. 2020

outline

fun
convolution
definition and properties
variants and their derivatives
pooling
more fun
network architectures

fun

CIFAR10 dataset

 \bullet 10 classes, 50k training images, 10k test images, 32 \times 32 images

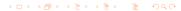
pipeline

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set *e.g.* into $n_{\rm train}=45000$ training samples and $n_{\rm val}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- train for 10 epochs on the full training set for the chosen hyperparameters
- evaluate accuracy on the test set



pipeline

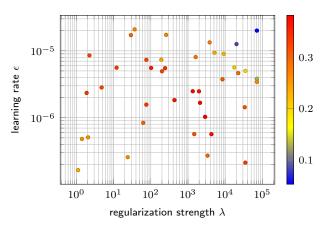
prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set *e.g.* into $n_{\rm train}=45000$ training samples and $n_{\rm val}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- \bullet train for 10 epochs on the full training set for the chosen hyperparameters
- evaluate accuracy on the test set

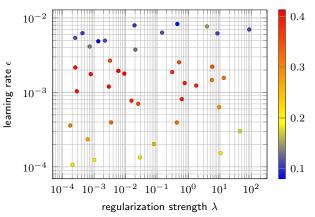
linear classifier validation accuracy



- classes k=10, samples $n_{\rm train}=45000, n_{\rm val}=5000$, mini-batch m=200, learning rate $\epsilon=10^{-6}$, regularization strength $\lambda=5\times10^2$
- test accuracy: 38%

linear classifier weights

2-layer classifier validation accuracy



- classes k=10, samples $n_{\rm train}=45000, n_{\rm val}=5000$, mini-batch m=200, learning rate $\epsilon=2\times 10^{-3}$, regularization strength $\lambda=2\times 10^{-1}$
- hidden layer width: 100; test accuracy: 51%

layer 1 weights 0-49

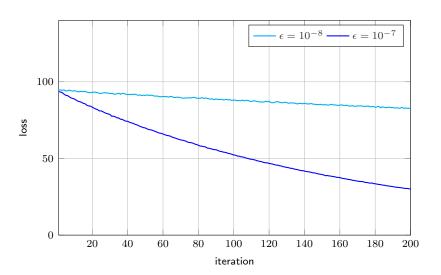


layer 1 weights 50-99

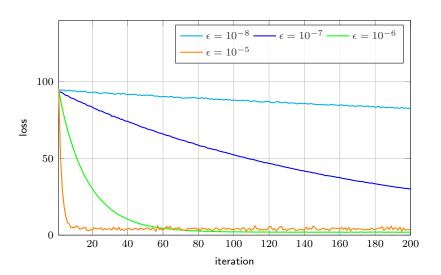
layer 1 weights 100-149

layer 1 weights 150-199

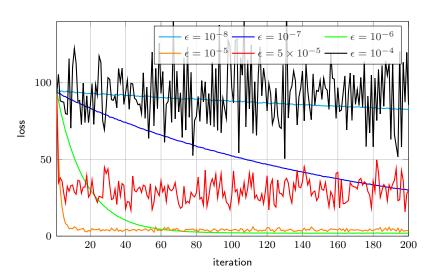
learning rate



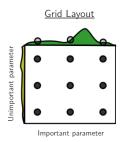
learning rate

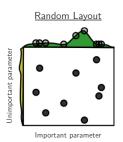


learning rate



setting hyperparameters



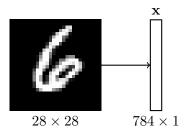


pared to grid search, random search allows to explore more va

- compared to grid search, random search allows to explore more values of an important parameter regardless of unimportant parameters
- when the search spans orders of magnitude, draw samples uniformly at random in log space
- start with coarse range and few iterations, gradually move to finer range and more iterations

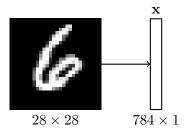
convolution

input image representation

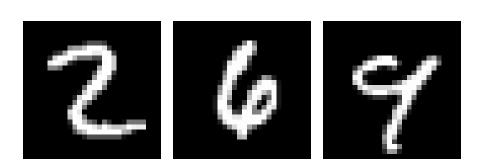


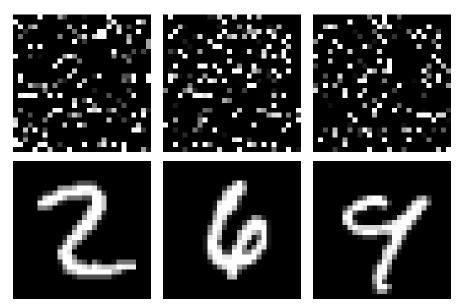
- the two-layer network we have learned on MNIST can easily classify digits with less that 3% error, but learns more than actually required
- remember that for both MNIST and CIFAR10, we flattened images (1-channel or 3-channel) into vectors, and the order of the elements (pixels) plays no role in learning
- so what if we permute the elements in all images, both training and test set?

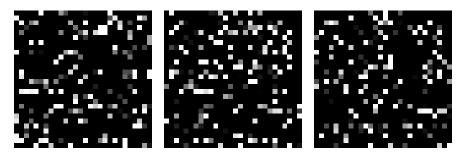
input image representation



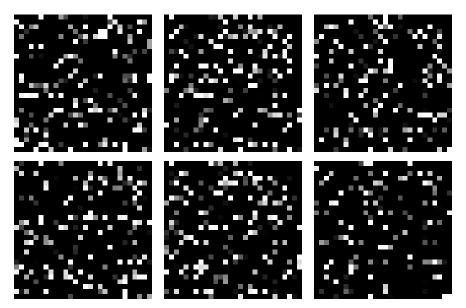
- the two-layer network we have learned on MNIST can easily classify digits with less that 3% error, but learns more than actually required
- remember that for both MNIST and CIFAR10, we flattened images (1-channel or 3-channel) into vectors, and the order of the elements (pixels) plays no role in learning
- so what if we permute the elements in all images, both training and test set?



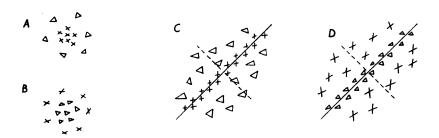




- this is what the computer sees
- it must make more sense when you start looking at more than one samples per class

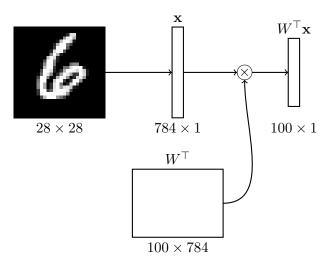


remember receptive fields?

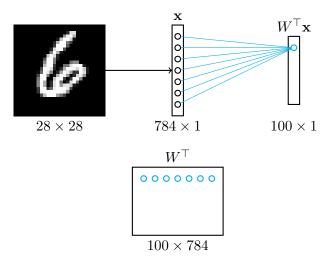


- A: 'on'-center LGN; B: 'off'-center LGN; C, D: simple cortical
- each cell only has a localized response over a receptive field
- ×: excitatory ('on'), △: inhibitory ('off') responses
- topographic mapping: there is one cell with the same response pattern centered at each position

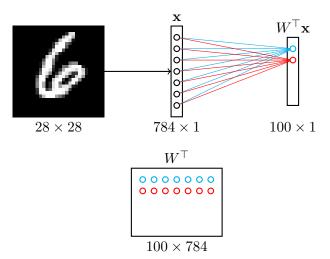
matrix multiplication



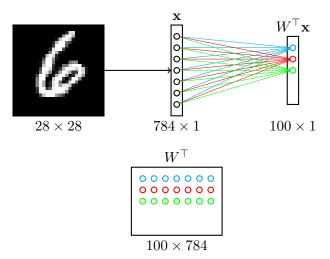
- inputs ${\bf x}$ are mapped to activations $W^{\top}{\bf x}$
- ullet columns/rows of $W^{ op}$ correspond to input/activation elements



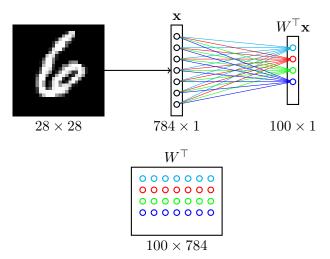
- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements



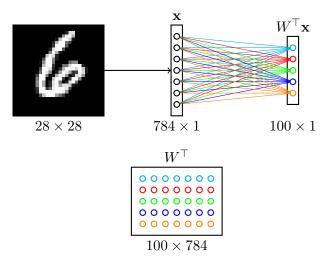
- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements



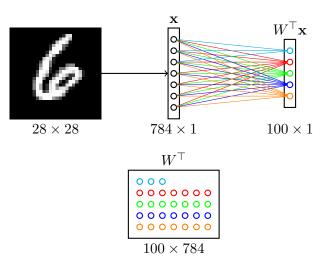
- ullet each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements



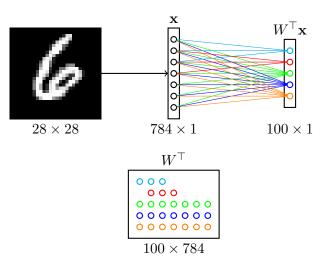
- ullet each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements



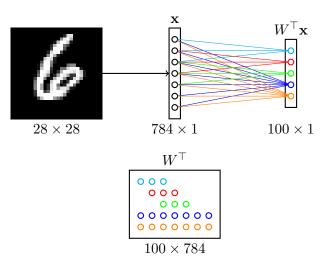
- each row of W^{\top} yields one activation element (cell)
- each cell is fully connected to all input elements



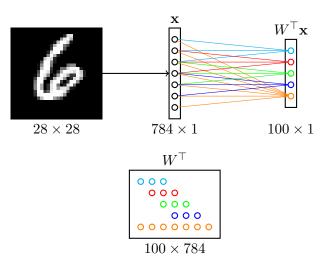
- now, we only keep a sparse set of connections
- ullet and matrix W becomes sparse as well



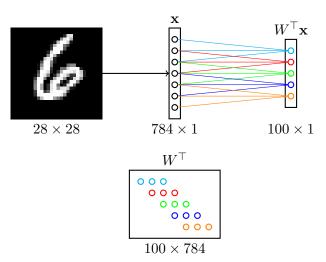
- now, we only keep a sparse set of connections
- ullet and matrix W becomes sparse as well



- now, we only keep a sparse set of connections
- ullet and matrix W becomes sparse as well

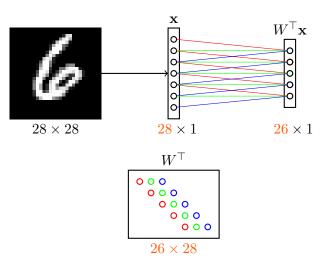


- now, we only keep a sparse set of connections
- ullet and matrix W becomes sparse as well

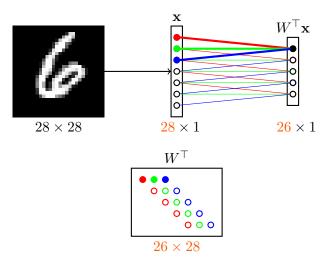


- now, we only keep a sparse set of connections
- ullet and matrix W becomes sparse as well

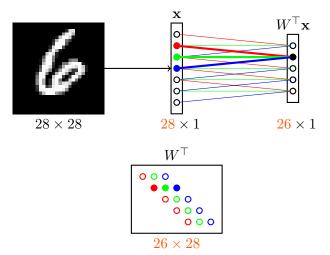
Toeplitz matrix



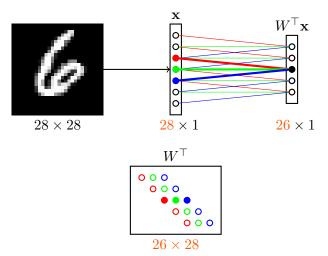
- now, we only refer to one input column; we will repeat
- and all weights having the same color are made equal (shared)



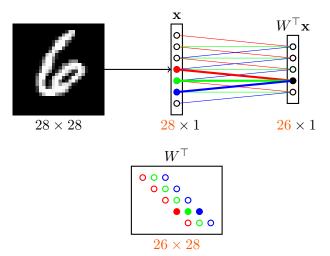
- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field



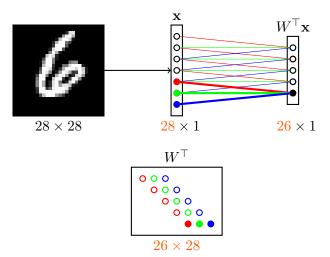
- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field



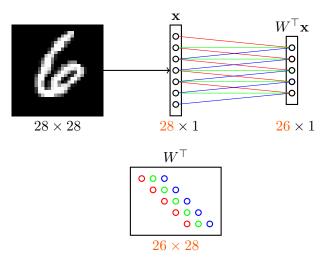
- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field



- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field



- this can be seen as shifting the same weight triplet (kernel)
- the set of inputs seen by each cell is its receptive field



- this is an 1d convolution and generalizes to 2d
- this new mapping is a convolutional layer

convolutional networks

convolutional layer

- 1 still linear, still matrix multiplication, just constrained
- **2** local receptive fields \rightarrow sparse connections between units
- **3** translation equivariant → shared weights
- **4** sparse + shared → regularized: less parameters to learn

convolutional network

- a network of convolutional layers, optionally followed by fully-connected layers
- performs better (less than 1% error on MNIST), but not on shuffled input

convolutional networks

convolutional layer

- 1 still linear, still matrix multiplication, just constrained
- **2** local receptive fields \rightarrow sparse connections between units
- **3** translation equivariant → shared weights
- 4 sparse + shared \rightarrow regularized: less parameters to learn

convolutional network

- a network of convolutional layers, optionally followed by fully-connected layers
- performs better (less than 1% error on MNIST), but not on shuffled input

convolutional networks

convolutional layer

- 1 still linear, still matrix multiplication, just constrained
- **2** local receptive fields \rightarrow sparse connections between units
- **3** translation equivariant → shared weights
- **4** sparse + shared \rightarrow regularized: less parameters to learn

convolutional network

- a network of convolutional layers, optionally followed by fully-connected layers
- performs better (less than 1% error on MNIST), but not on shuffled input

definition and properties

linear time-invariant (LTI) system

- discrete-time signal: x[n], $n \in \mathbb{Z}$
- system (filter): f(x)[n], $n \in \mathbb{Z}$
- translation (or shift, or delay): $s_k(x)[n] = x[n-k], k \in \mathbb{Z}$
- linear system: commutes with linear combination

$$f\left(\sum_{i} a_{i} x_{i}\right) = \sum_{i} a_{i} f(x_{i})$$

time-invariant system: commutes with translation

$$f(s_k(x)) = s_k(f(x))$$

linear time-invariant (LTI) system

- discrete-time signal: x[n], $n \in \mathbb{Z}$
- system (filter): $f(x)[n], n \in \mathbb{Z}$
- translation (or shift, or delay): $s_k(x)[n] = x[n-k], k \in \mathbb{Z}$
- linear system: commutes with linear combination

$$f\left(\sum_{i} a_{i} x_{i}\right) = \sum_{i} a_{i} f(x_{i})$$

• time-invariant system: commutes with translation

$$f(s_k(x)) = s_k(f(x))$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- \bullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] = (x+h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x*h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- \bullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

$$f(x)[n] = f\left(\sum_{k} x[k]s_{k}(\delta)\right)[n] = \sum_{k} x[k]s_{k}(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x+h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

$$f(x)[n] = f\left(\sum_{k} x[k]s_{k}(\delta)\right)[n] = \sum_{k} x[k]s_{k}(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x + h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

$$f(x)[n] = f\left(\sum_{k} x[k]s_{k}(\delta)\right)[n] = \sum_{k} x[k]s_{k}(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x + h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

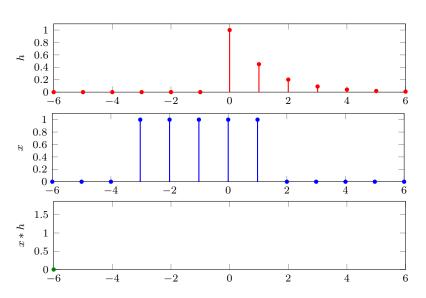
$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

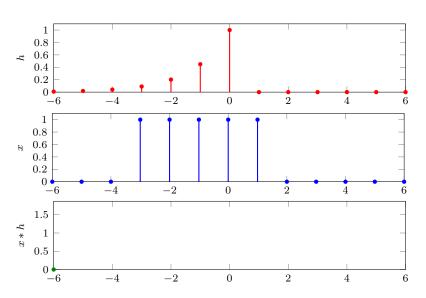
$$f(x)[n] = f\left(\sum_{k} x[k]s_{k}(\delta)\right)[n] = \sum_{k} x[k]s_{k}(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] = (x*h)[n]$$

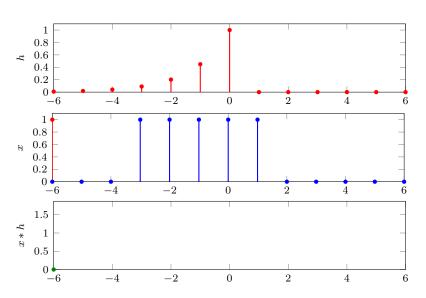
- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

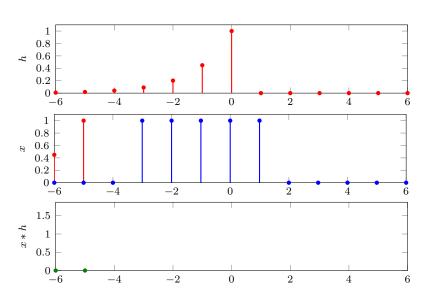
$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

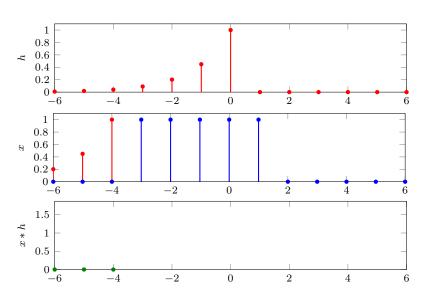
$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x*h)[n]$$

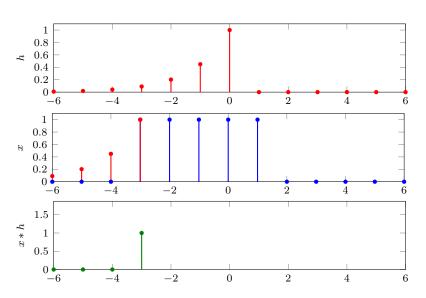


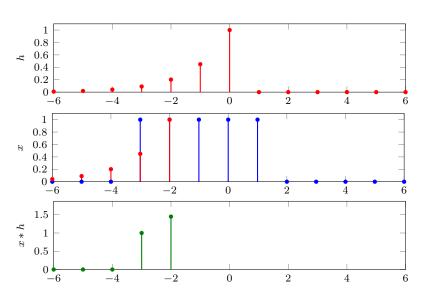


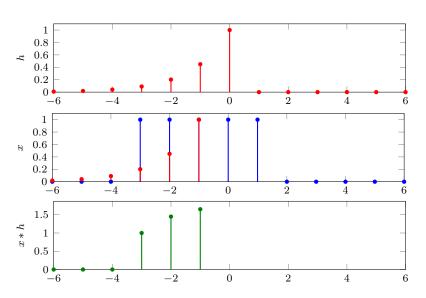


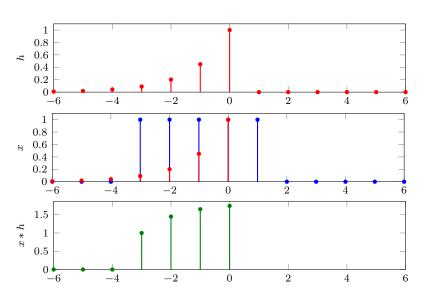


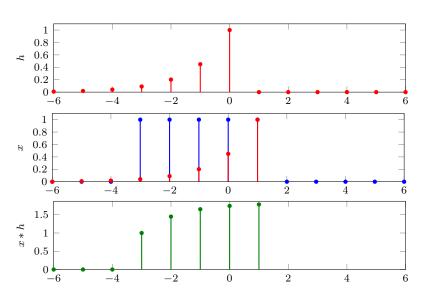


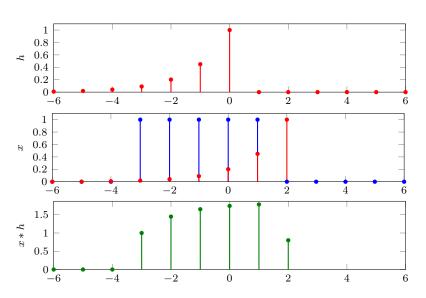


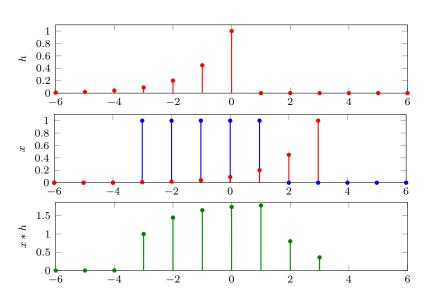


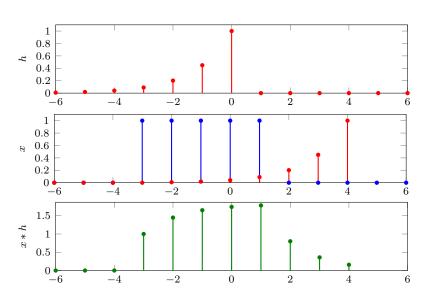


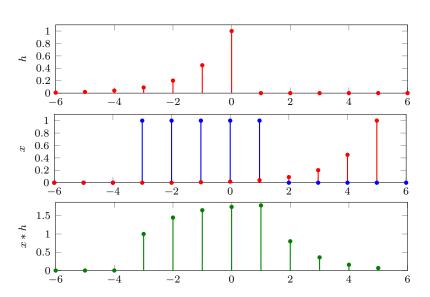


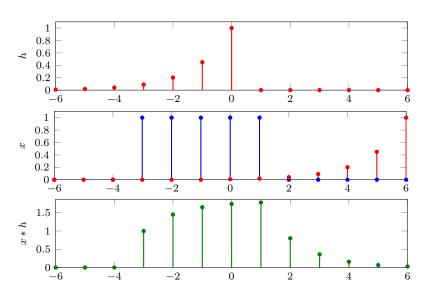












invariance vs. equivariance

- time invariance: invariance to absolute time (or position)
- translation (or shift) equivariance: equivariance to relative time (or position)
- despite confusion, both mean the same thing: system commutes with translation

$$f(s_k(x)) = s_k(f(x))$$

however

translation (or shift) invariance, means that for all k,

$$f(s_k(x)) = f(x)$$

 each convolutional layer is translation equivariant; but pooling makes a network translation invariant, e.g.

$$\sum_{n} s_k(x)[n] = \sum_{n} x[n-k] = \sum_{n} x[n]$$

invariance vs. equivariance

- time invariance: invariance to absolute time (or position)
- translation (or shift) equivariance: equivariance to relative time (or position)
- despite confusion, both mean the same thing: system commutes with translation

$$f(s_k(x)) = s_k(f(x))$$

however

translation (or shift) invariance, means that for all k,

$$f(s_k(x)) = f(x)$$

• each convolutional layer is translation equivariant; but pooling makes a network translation invariant, e.g.

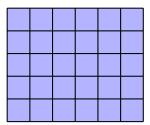
$$\sum_{n} s_k(x)[n] = \sum_{n} x[n-k] = \sum_{n} x[n]$$

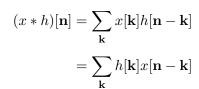
finite impulse response (FIR)

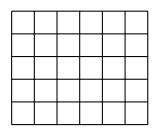
- an FIR system has impulse response h of finite duration (or spatial extent), because it settles to zero in finite time (extent) from the input impulse
- "sparse connections and local receptive fields" mean exactly that h is of finite duration (extent)
- we assume this in the following, starting with a 2d extension, where we write $x[\mathbf{n}], \ \mathbf{n} \in \mathbb{Z}^2$

1	2	3
4	5	6
7	8	9

h





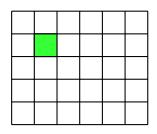


1	2	3
4	5	6
7	8	9

h

9	8	7		
6	5	4		
3	2	1		

$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



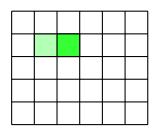
1	2	3
4	5	6
7	8	9

h

9	8	7	
6	5	4	
3	2	1	

 \boldsymbol{x}

$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$

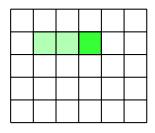


1	2	3
4	5	6
7	8	9

h

	9	8	7	
	6	5	4	
	3	2	1	

$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



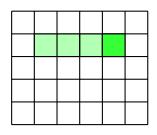
1	2	3
4	5	6
7	8	9

h

9	8	7
6	5	4
3	2	1

x

$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



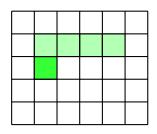
x * h

1	2	3
4	5	6
7	8	9

h

9	8	7		
6	5	4		
3	2	1		

$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



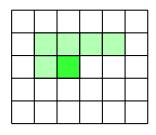
1	2	3
4	5	6
7	8	9

h

9	8	7	
6	5	4	
3	2	1	

x

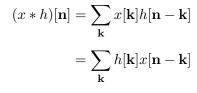
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$

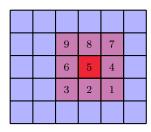


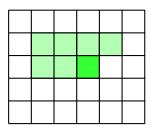
x * h

1	2	3
4	5	6
7	8	9

h





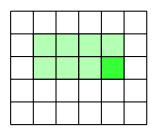


1	2	3
4	5	6
7	8	9

h

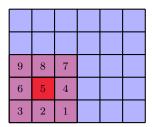
	9	8	7
	6	5	4
	3	2	1

$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$

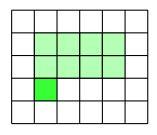


1	2	3
4	5	6
7	8	9

h

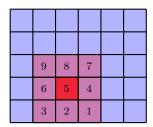


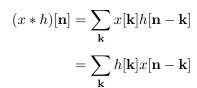
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$

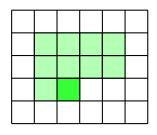


1	2	3
4	5	6
7	8	9

h

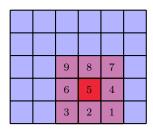






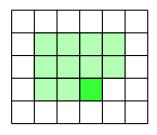
1	2	3
4	5	6
7	8	9

h



x

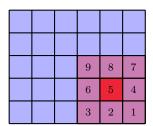
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



x * h

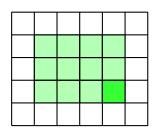
1	2	3
4	5	6
7	8	9

h



 \boldsymbol{x}

$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



cross-correlation

convolution is commutative

$$(x*h)[\mathbf{n}] := \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}] = \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}] = (h*x)[\mathbf{n}]$$

cross-correlation is not

$$(h\star x)[\mathbf{n}]:=\sum_{\mathbf{k}}h[\mathbf{k}]x[\mathbf{k}+\mathbf{n}]=\sum_{\mathbf{k}}x[\mathbf{k}]h[\mathbf{k}-\mathbf{n}]=(x\star h)[-\mathbf{n}]$$

- both are LTI; the only difference is that in cross-correlation, h refers to the flipped impulse response
- but if h is even (h[n] = h[-n]), then $h \star x = x * h = h * x$
- in the following, we use cross-correlation $w \star x$ or convolution $x \star h$, where h[n] = w[-n] is the impulse response
- we call w the kernel of the operation

cross-correlation

convolution is commutative

$$(x*h)[\mathbf{n}] := \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}] = \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}] = (h*x)[\mathbf{n}]$$

cross-correlation is not

$$(h \star x)[\mathbf{n}] := \sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{k} + \mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{k} - \mathbf{n}] = (x \star h)[-\mathbf{n}]$$

- ullet both are LTI; the only difference is that in cross-correlation, h refers to the flipped impulse response
- but if h is even (h[n] = h[-n]), then $h \star x = x * h = h * x$
- in the following, we use cross-correlation $w \star x$ or convolution $x \star h$, where h[n] = w[-n] is the impulse response
- we call w the kernel of the operation

cross-correlation

convolution is commutative

$$(x*h)[\mathbf{n}] := \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}] = \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}] = (h*x)[\mathbf{n}]$$

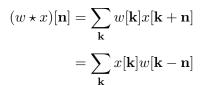
cross-correlation is not

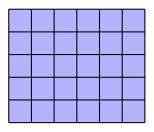
$$(h \star x)[\mathbf{n}] := \sum_{\mathbf{k}} h[\mathbf{k}] x[\mathbf{k} + \mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}] h[\mathbf{k} - \mathbf{n}] = (x \star h)[-\mathbf{n}]$$

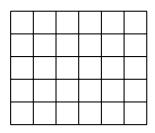
- ullet both are LTI; the only difference is that in cross-correlation, h refers to the flipped impulse response
- but if h is even (h[n] = h[-n]), then $h \star x = x * h = h * x$
- in the following, we use cross-correlation $w \star x$ or convolution x * h, where h[n] = w[-n] is the impulse response
- we call w the kernel of the operation

1	2	3
4	5	6
7	8	9

w







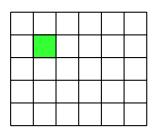
1	2	3
4	5	6
7	8	9

w

1	2	3		
4	5	6		
7	8	9		

 \boldsymbol{x}

$$\begin{split} (w \star x)[\mathbf{n}] &= \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}] \\ &= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}] \end{split}$$

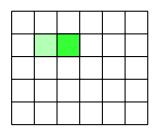


1	2	3
4	5	6
7	8	9

w

1	2	3	
4	5	6	
7	8	9	

$$\begin{split} (w \star x)[\mathbf{n}] &= \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}] \\ &= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}] \end{split}$$

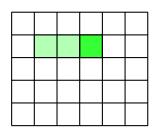


1	2	3
4	5	6
7	8	9

w

	1	2	3	
	4	5	6	
	7	8	9	

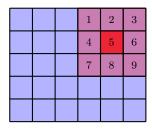
$$\begin{split} (w \star x)[\mathbf{n}] &= \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}] \\ &= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}] \end{split}$$



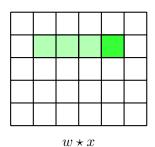
1	2	3
4	5	6
7	8	9

w

$(w \star x)[\mathbf{n}] = \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}]$	ι]
$= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}]$	1]



 \boldsymbol{x}



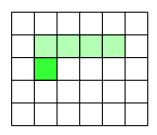
1	2	3
4	5	6
7	8	9

w

1	2	3		
4	5	6		
7	8	9		

$$\boldsymbol{x}$$

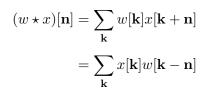
$$\begin{split} (w \star x)[\mathbf{n}] &= \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}] \\ &= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}] \end{split}$$

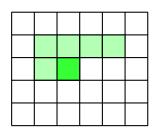


1	2	3
4	5	6
7	8	9

w

1	2	3	
4	5	6	
7	8	9	





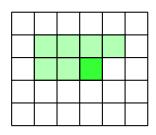
1	2	3
4	5	6
7	8	9

w

	1	2	3	
	4	5	6	
	7	8	9	

x

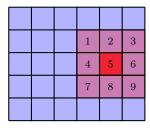
$$(w \star x)[\mathbf{n}] = \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}]$$
$$= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}]$$



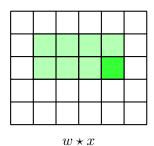
1	2	3
4	5	6
7	8	9

w

$(w \star x)[\mathbf{n}] = \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}]$
$= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}]$



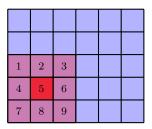
 \boldsymbol{x}



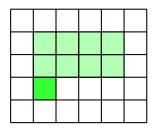
1	2	3
4	5	6
7	8	9

w

$(w \star x)[\mathbf{n}] = \sum_{\mathbf{k}} w[\mathbf{k}]x[\mathbf{k} + \mathbf{n}]$
$= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}]$

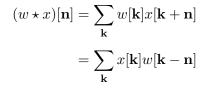


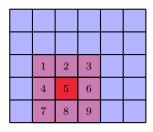
 \boldsymbol{x}



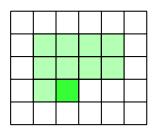
1	2	3
4	5	6
7	8	9

w



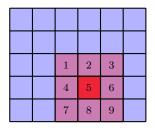


x



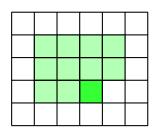
1	2	3
4	5	6
7	8	9

w



x

$$(w \star x)[\mathbf{n}] = \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}]$$
$$= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}]$$

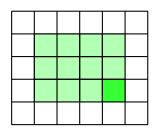


1	2	3
4	5	6
7	8	9

w

x

$$(w \star x)[\mathbf{n}] = \sum_{\mathbf{k}} w[\mathbf{k}] x[\mathbf{k} + \mathbf{n}]$$
$$= \sum_{\mathbf{k}} x[\mathbf{k}] w[\mathbf{k} - \mathbf{n}]$$



features

ullet something is still missing: so far we had activations ${f a}$ and outputs ${f y}$ of the form

$$\mathbf{a} = W^{\mathsf{T}} \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\mathsf{T}} \mathbf{x} + \mathbf{b})$$

where ${\bf x}$ is the input, $W=({\bf w}_1,\ldots,{\bf w}_k)$ a weight matrix and ${\bf b}$ a bias

- the elements of x, a, b and y were representing features (or cells); the elements of W were representing connections
- ullet now we have x as a 2d array, w as a 2d kernel, but no features yet

feature maps

• now b remains a vector but x, a, y become 3d tensors with input feature i and output feature j at spatial position n denoted by

$$x_i[\mathbf{n}], \quad a_j[\mathbf{n}], \quad b_j, \quad y_j[\mathbf{n}]$$

- x_i and y_j are 2d arrays we call feature maps, each corresponding to one feature; and a_j a 2d array we call activation map
- if x_i refers to the input image, there is just one feature that is the image intensity of a grayscale image, or three features corresponding to the three channels of a color image
- W becomes a 4d tensor with a connection from input feature i to output feature j at spatial position \mathbf{k} represented by

$$w_{ij}[\mathbf{k}]$$

feature maps

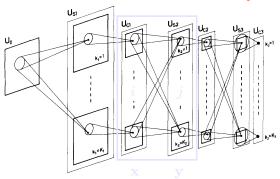
• now b remains a vector but x, a, y become 3d tensors with input feature i and output feature j at spatial position n denoted by

$$x_i[\mathbf{n}], \quad a_j[\mathbf{n}], \quad b_j, \quad y_j[\mathbf{n}]$$

- x_i and y_j are 2d arrays we call feature maps, each corresponding to one feature; and a_j a 2d array we call activation map
- if x_i refers to the input image, there is just one feature that is the image intensity of a grayscale image, or three features corresponding to the three channels of a color image
- W becomes a 4d tensor with a connection from input feature i to output feature j at spatial position k represented by

$$w_{ij}[\mathbf{k}]$$

convolution on feature maps



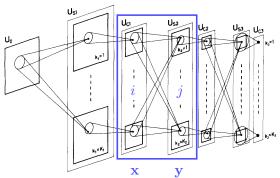
matrix multiplication and convolution combined

$$\mathbf{a} = W^{\top} \star \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\top} \star \mathbf{x} + \mathbf{b})$$

$$(W^{\top} \star \mathbf{x})_j[\mathbf{n}] = (\mathbf{w}_j^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_i (w_{ij} \star x_i)[\mathbf{n}] = \sum_{\mathbf{k}} w_{ij}[\mathbf{k}] x_i[\mathbf{k} + \mathbf{n}]$$

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

convolution on feature maps

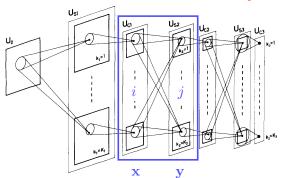


matrix multiplication and convolution combined

$$\mathbf{a} = W^{\top} \star \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\top} \star \mathbf{x} + \mathbf{b})$$

$$(W^{\top} \star \mathbf{x})_j[\mathbf{n}] = (\mathbf{w}_j^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_i (w_{ij} \star x_i)[\mathbf{n}] = \sum_{\mathbf{k}} w_{ij}[\mathbf{k}] x_i[\mathbf{k} + \mathbf{n}]$$

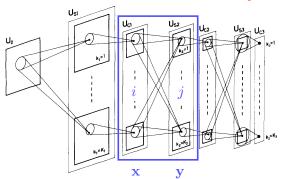
Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.



matrix multiplication and convolution combined

$$\mathbf{a} = W^{\top} \star \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\top} \star \mathbf{x} + \mathbf{b})$$
$$(W^{\top} \star \mathbf{x})_{j}[\mathbf{n}] = (\mathbf{w}_{j}^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_{i} (w_{ij} \star x_{i})[\mathbf{n}] = \sum_{i \in \mathbf{k}} w_{ij}[\mathbf{k}] x_{i}[\mathbf{k} + \mathbf{n}]$$

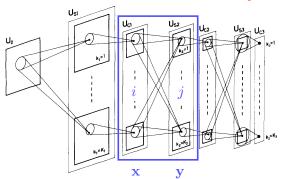
Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.



• matrix multiplication and convolution combined

$$\mathbf{a} = W^{\top} \star \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\top} \star \mathbf{x} + \mathbf{b})$$
$$(W^{\top} \star \mathbf{x})_{j}[\mathbf{n}] = (\mathbf{w}_{j}^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_{i} (w_{ij} \star x_{i})[\mathbf{n}] = \sum_{i} w_{ij}[\mathbf{k}]x_{i}[\mathbf{k} + \mathbf{n}]$$

 $Fukushima. \ BC\ 1980. \ Neocognitron:\ A\ Self-Organizing\ Neural\ Network\ Model\ for\ a\ Mechanism\ of\ Pattern\ Recognition\ Unaffected\ By\ Shift\ in\ Position.$

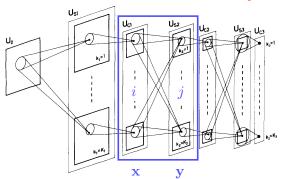


• matrix multiplication and convolution combined

$$\mathbf{a} = W^{\top} \star \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\top} \star \mathbf{x} + \mathbf{b})$$

$$(W^{\top} \star \mathbf{x})_j[\mathbf{n}] = (\mathbf{w}_j^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_i (\mathbf{w}_{ij} \star \mathbf{x}_i)[\mathbf{n}] = \sum_{i \mid \mathbf{k}} w_{ij}[\mathbf{k}] x_i[\mathbf{k} + \mathbf{n}]$$

 $Fukushima. \ BC\ 1980. \ Neocognitron:\ A\ Self-Organizing\ Neural\ Network\ Model\ for\ a\ Mechanism\ of\ Pattern\ Recognition\ Unaffected\ By\ Shift\ in\ Position.$



• matrix multiplication and convolution combined

$$\mathbf{a} = W^{\top} \star \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\top} \star \mathbf{x} + \mathbf{b})$$

$$(W^{\top} \star \mathbf{x})_{j}[\mathbf{n}] = (\mathbf{w}_{j}^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_{i} (w_{ij} \star x_{i})[\mathbf{n}] = \sum_{i} w_{ij}[\mathbf{k}]x_{i}[\mathbf{k} + \mathbf{n}]$$

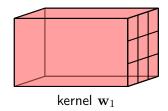
Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

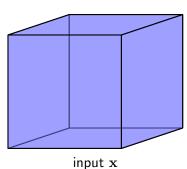


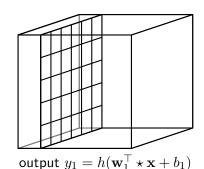
• matrix multiplication and convolution combined

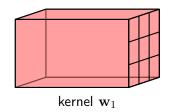
$$\mathbf{a} = W^{\top} \star \mathbf{x} + \mathbf{b}, \quad \mathbf{y} = h(\mathbf{a}) = h(W^{\top} \star \mathbf{x} + \mathbf{b})$$
$$(W^{\top} \star \mathbf{x})_{j}[\mathbf{n}] = (\mathbf{w}_{j}^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_{i} (w_{ij} \star x_{i})[\mathbf{n}] = \sum_{i,\mathbf{k}} w_{ij}[\mathbf{k}] x_{i}[\mathbf{k} + \mathbf{n}]$$

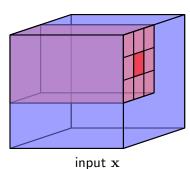
 $Fukushima. \ BC\ 1980. \ Neocognitron:\ A\ Self-Organizing\ Neural\ Network\ Model\ for\ a\ Mechanism\ of\ Pattern\ Recognition\ Unaffected\ By\ Shift\ in\ Position.$

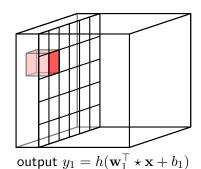


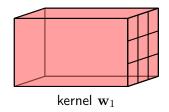


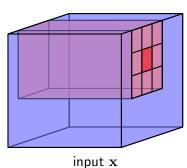


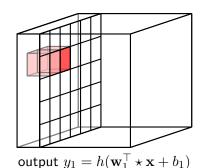


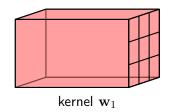


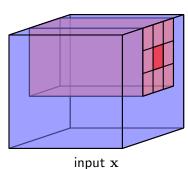


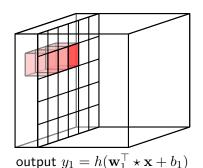


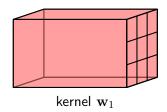


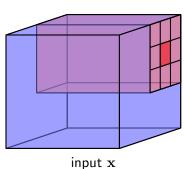


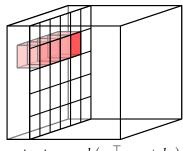






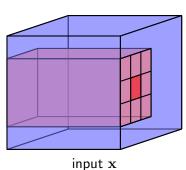


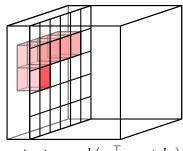


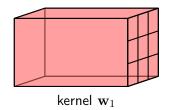




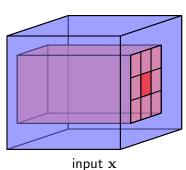
kernel weights shared among all spatial positions

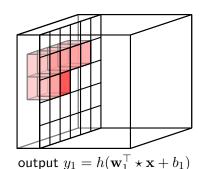






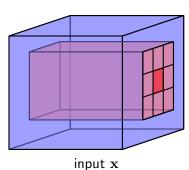
kernel weights shared among all spatial positions



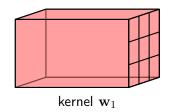


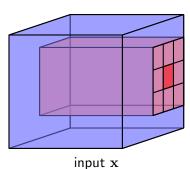


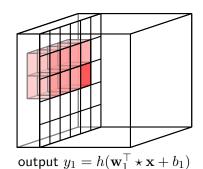
kernel weights shared among all spatial positions



output $y_1 = h(\mathbf{w}_1^\top \star \mathbf{x} + b_1)$

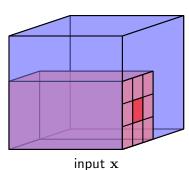


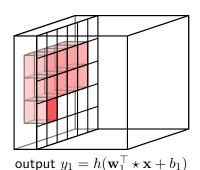


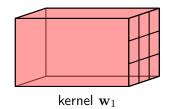


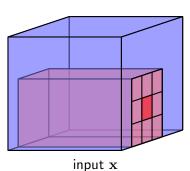


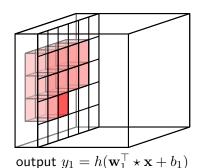
kernel weights shared among all spatial positions

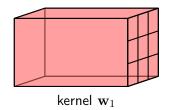




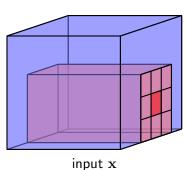


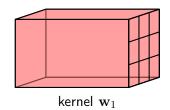


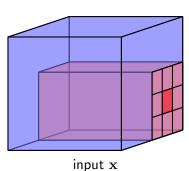


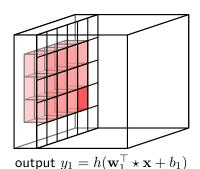


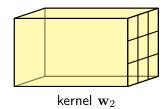
kernel weights shared among all spatial positions

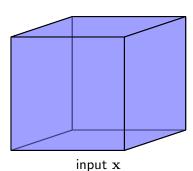


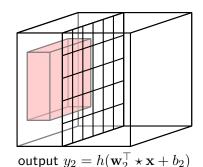


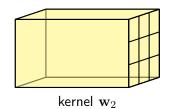


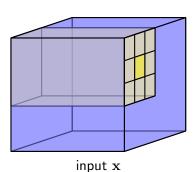


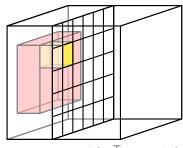


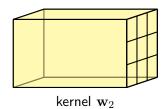


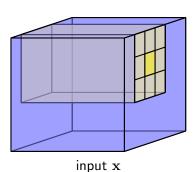


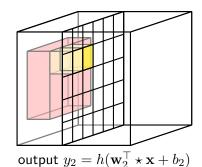


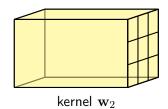


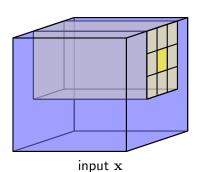


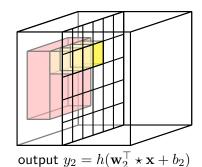


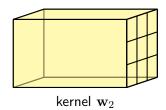


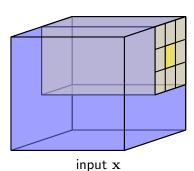


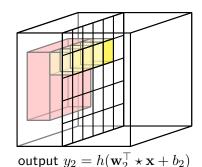


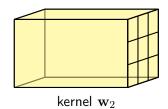


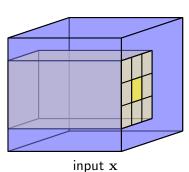


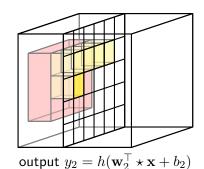


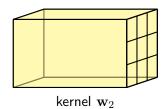


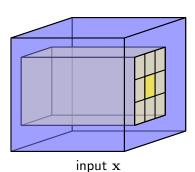


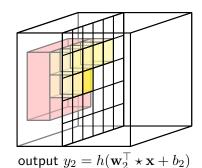


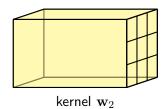


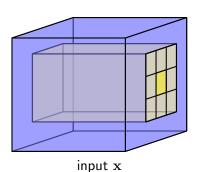


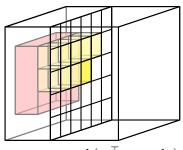


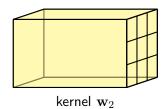


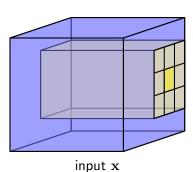


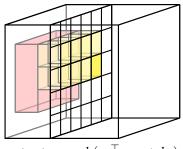


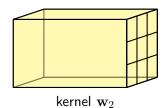


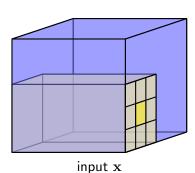


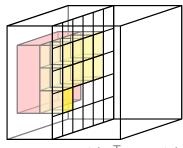


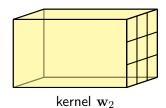


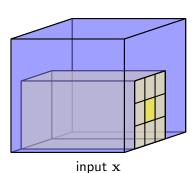


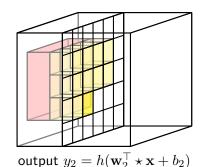


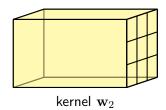


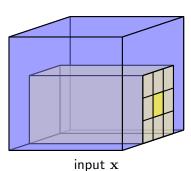


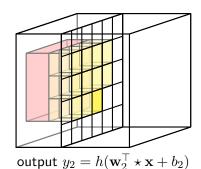


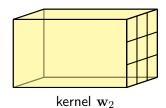


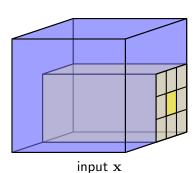


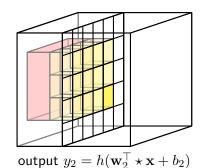


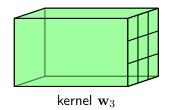




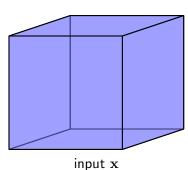


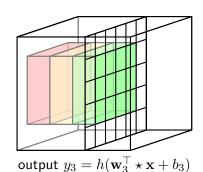


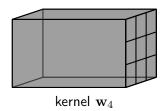




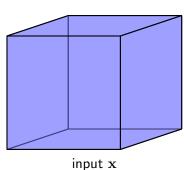
different kernel for each output dimension

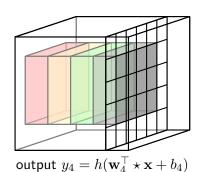


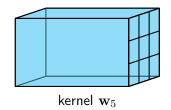




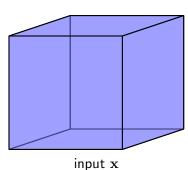
different kernel for each output dimension

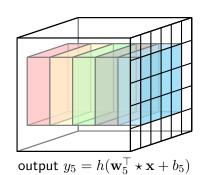






different kernel for each output dimension





1×1 convolution

ullet if W has no spatial extent, it becomes a $\operatorname{2d}$ matrix again

$$(\mathbf{w}_{j}^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_{i} (w_{ij} \star x_{i})[\mathbf{n}] = \sum_{i,\mathbf{k}} w_{ij}[\mathbf{k}] x_{i}[\mathbf{k} + \mathbf{n}]$$
$$= \sum_{i} w_{ij} x_{i}[\mathbf{n}] = \mathbf{w}_{j}^{\top} \mathbf{x}[\mathbf{n}]$$

 the operation becomes a matrix multiplication just as in fully-connected layers, but now it is performed independently at each spatial location

$$(W^{\top} \star \mathbf{x})[\mathbf{n}] = W^{\top} \mathbf{x}[\mathbf{n}]$$

 $W^{\top} \star \mathbf{x} = W^{\top} \mathbf{x}$

1×1 convolution

ullet if W has no spatial extent, it becomes a $\operatorname{2d}$ matrix again

$$(\mathbf{w}_j^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_i (w_{ij} \star x_i)[\mathbf{n}] = \sum_{i,\mathbf{k}} w_{ij}[\mathbf{k}] x_i[\mathbf{k} + \mathbf{n}]$$
$$= \sum_i w_{ij} x_i[\mathbf{n}] = \mathbf{w}_j^{\top} \mathbf{x}[\mathbf{n}]$$

 the operation becomes a matrix multiplication just as in fully-connected layers, but now it is performed independently at each spatial location

$$(W^{\top} \star \mathbf{x})[\mathbf{n}] = W^{\top} \mathbf{x}[\mathbf{n}]$$

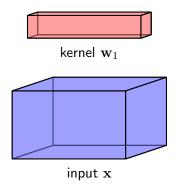
 $W^{\top} \star \mathbf{x} = W^{\top} \mathbf{x}$

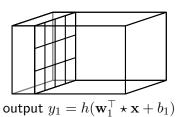
ullet if W has no spatial extent, it becomes a $\operatorname{\mathsf{2d}}$ matrix again

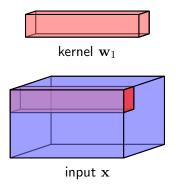
$$(\mathbf{w}_{j}^{\top} \star \mathbf{x})[\mathbf{n}] := \sum_{i} (w_{ij} \star x_{i})[\mathbf{n}] = \sum_{i,\mathbf{k}} w_{ij}[\mathbf{k}] x_{i}[\mathbf{k} + \mathbf{n}]$$
$$= \sum_{i} w_{ij} x_{i}[\mathbf{n}] = \mathbf{w}_{j}^{\top} \mathbf{x}[\mathbf{n}]$$

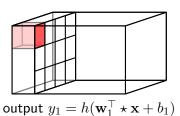
 the operation becomes a matrix multiplication just as in fully-connected layers, but now it is performed independently at each spatial location

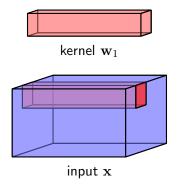
$$(W^{\top} \star \mathbf{x})[\mathbf{n}] = W^{\top} \mathbf{x}[\mathbf{n}]$$
$$W^{\top} \star \mathbf{x} = W^{\top} \mathbf{x}$$

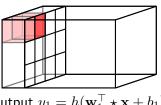


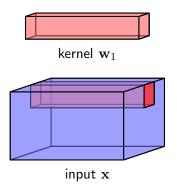


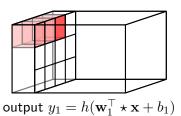


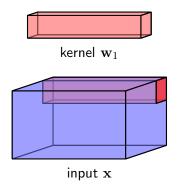


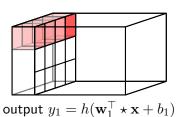


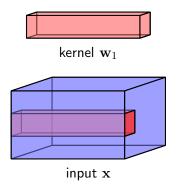


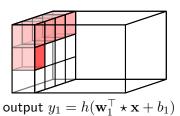


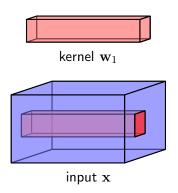


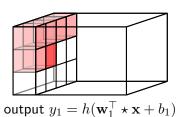


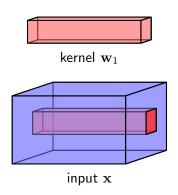


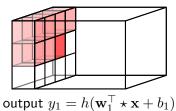


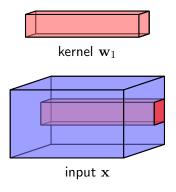


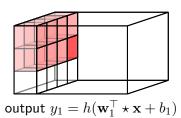


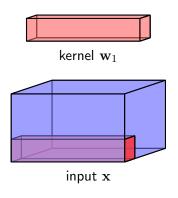


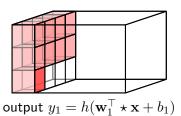


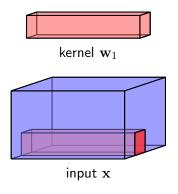


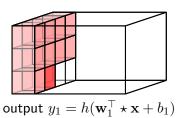


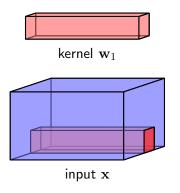


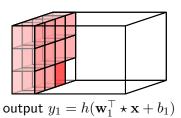


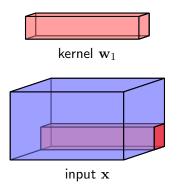


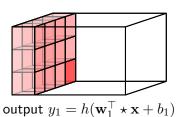


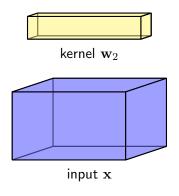


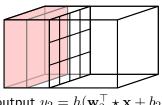




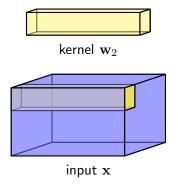


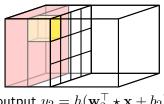


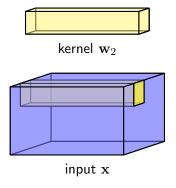


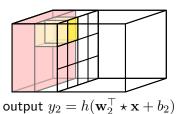


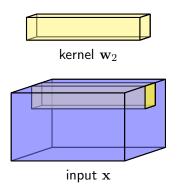
output
$$y_2 = h(\mathbf{w}_2^{\top} \star \mathbf{x} + b_2)$$

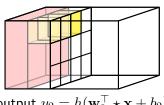




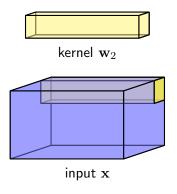


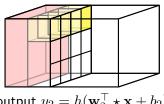




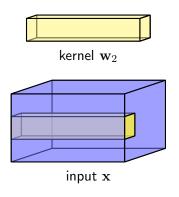


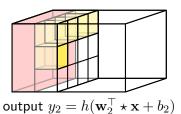
output
$$y_2 = h(\mathbf{w}_2^{\top} \star \mathbf{x} + b_2)$$

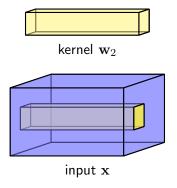


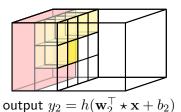


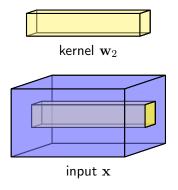
output
$$y_2 = h(\mathbf{w}_2^{\top} \star \mathbf{x} + b_2)$$

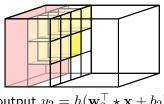


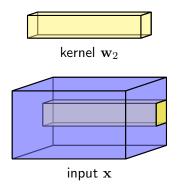


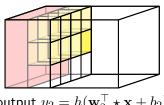




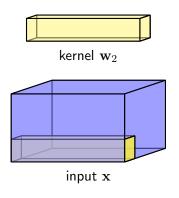


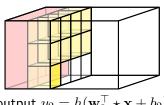


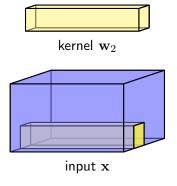


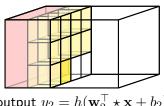


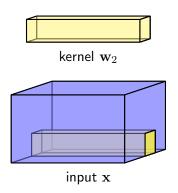
output
$$y_2 = h(\mathbf{w}_2^{\top} \star \mathbf{x} + b_2)$$

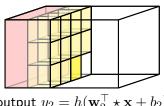




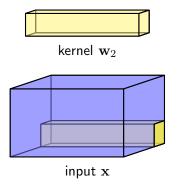


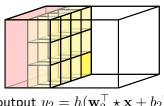




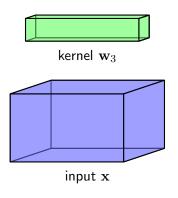


output
$$y_2 = h(\mathbf{w}_2^{\top} \star \mathbf{x} + b_2)$$

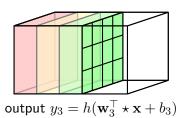


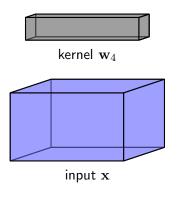


output
$$y_2 = h(\mathbf{w}_2^{\top} \star \mathbf{x} + b_2)$$

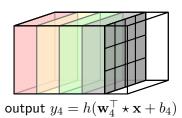


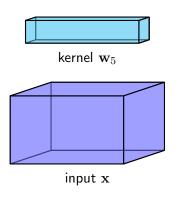
different kernel for each output dimension



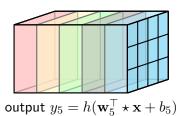


different kernel for each output dimension





different kernel for each output dimension



convolution as regularization

suppose a fully connected layer is given by

$$\mathbf{a} = \left(\begin{array}{ccc} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \end{array} \right) \mathbf{x}$$

now if we add the following term to our error function

$$\frac{\lambda}{2} \left((w_6 - w_2)^2 + (w_5 - w_1)^2 + w_3^2 + w_4^2 \right)$$

then, as $\lambda \to \infty$, the weight matrix tends to the constrained Toeplitz form

$$\left(\begin{array}{ccc} w_1 & w_2 & 0 \\ 0 & w_1 & w_2 \end{array}\right)$$

and the layer becomes convolutiona

convolution as regularization

suppose a fully connected layer is given by

$$\mathbf{a} = \left(\begin{array}{ccc} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \end{array} \right) \mathbf{x}$$

now if we add the following term to our error function

$$\frac{\lambda}{2} \left((w_6 - w_2)^2 + (w_5 - w_1)^2 + w_3^2 + w_4^2 \right)$$

then, as $\lambda \to \infty$, the weight matrix tends to the constrained Toeplitz form

$$\left(\begin{array}{ccc} w_1 & w_2 & 0 \\ 0 & w_1 & w_2 \end{array}\right)$$

and the layer becomes convolutional

convolution as Gaussian mixture prior*

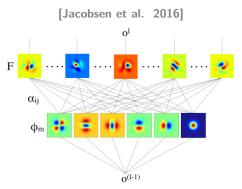
- remember, weight decay is equivalent to a zero-centered Gaussian prior if the weight vector/matrix is considered a random variable
- in this analogy, error term

$$\frac{\lambda}{2} \left((w_6 - w_2)^2 + (w_5 - w_1)^2 + w_3^2 + w_4^2 \right)$$

corresponds to two Gaussian priors centered at w_1 , w_2 for w_5 , w_6 and one zero-centered Gaussian for w_3 , w_4

• that is, a Gaussian mixture prior

structured convolution*



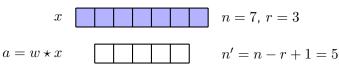
- we can constrain parameters even more by considering a fixed basis of streerable filters consisting of separable Gaussian derivatives
- the network then only learns the parameters needed to construct a filter as a linear combination of the basis filters
- this applies to all layers

variants and their derivatives

convolution variants

- we will examine a number of variants of convolution, each only in one dimension
- this leaves an extension to one more spatial dimension (convolution),
 and one more feature dimension (matrix multiplication)
- in each case, we will write convolution as matrix multiplication, where the matrix has some special structure: derivatives are then straightforward

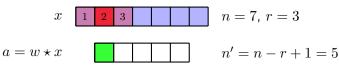
• input size n, kernel size r, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

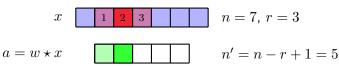
• input size n, kernel size r, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{array} \right) = \left(\begin{array}{ccccc} w_1 & w_2 & w_3 & & & & \\ & w_1 & w_2 & w_3 & & & \\ & & w_1 & w_2 & w_3 & & \\ & & & w_1 & w_2 & w_3 & \\ & & & & w_1 & w_2 & w_3 \end{array} \right) \cdot \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{array} \right)$$

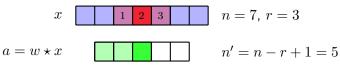
• input size n, kernel size r, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

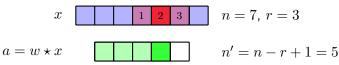
• input size n, kernel size r, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

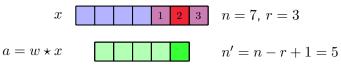
• input size n, kernel size r, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

- in general, $C = AB \rightarrow dA = (dC)B^{\top}, dB = A^{\top}dC$
- here, $\mathbf{a} = W^{\top} \mathbf{x}$: derivative with respect to input \mathbf{x}

$$d\mathbf{x} = W \cdot d\mathbf{a}$$

$$d\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 & w_1 \\ w_3 & w_2 & w_1 \\ & w_3 & w_2 & w_1 \\ & & w_3 & w_2 & w_1 \\ & & & w_3 & w_2 \\ & & & & w_3 \end{pmatrix} \cdot d \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix}$$

- in general, $C = AB \rightarrow dA = (dC)B^{\top}, dB = A^{\top}dC$
- here, $\mathbf{a} = W^{\top} \mathbf{x}$: derivative with respect to weights W

$$dW = \mathbf{x} \cdot d\mathbf{a}^{\top}$$

$$dW = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} \cdot d(a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5)$$

- this is not convenient: we really want $d\mathbf{w} = (dw_1, dw_2, dw_3)$
- if $da_i = \mathbb{1}[i=4]$, then $d\mathbf{w} = (x_4, x_5, x_6)$: we learn the pattern that generated the activation

- in general, $C = AB \rightarrow dA = (dC)B^{\top}, dB = A^{\top}dC$
- here, $\mathbf{a} = W^{\top} \mathbf{x}$: derivative with respect to weights W

$$dW = \mathbf{x} \cdot d\mathbf{a}^{\top}$$

$$d\begin{pmatrix} w_1 & & & \\ w_2 & w_1 & & \\ w_3 & w_2 & w_1 & & \\ & w_3 & w_2 & w_1 & \\ & & w_3 & w_2 & w_1 \\ & & & w_3 & w_2 & w_1 \\ & & & & w_3 & w_2 \\ & & & & & w_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} \cdot d(a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5)$$

- this is not convenient: we really want $d\mathbf{w} = (dw_1, dw_2, dw_3)$
- if $da_i = \mathbb{1}[i=4]$, then $d\mathbf{w} = (x_4, x_5, x_6)$: we learn the pattern that generated the activation

- in general, $C = AB \rightarrow dA = (dC)B^{\top}, dB = A^{\top}dC$
- here, $\mathbf{a} = W^{\top} \mathbf{x}$: derivative with respect to weights W

$$dw = da \star x$$

$$d\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = d\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \\ & a_1 & a_2 & a_3 & a_4 & a_5 \\ & & a_1 & a_2 & a_3 & a_4 & a_5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

- sharing in forward \equiv adding in backward
- if $da_i = \mathbb{1}[i=4]$, then $d\mathbf{w} = (x_4, x_5, x_6)$: we learn the pattern that generated the activation

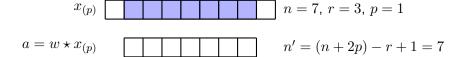
- in general, $C = AB \rightarrow dA = (dC)B^{\top}, dB = A^{\top}dC$
- here, $\mathbf{a} = W^{\top} \mathbf{x}$: derivative with respect to weights W

$$dw = da \star x$$

$$d\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = d\begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \\ & a_1 & a_2 & a_3 & a_4 & a_5 \\ & & a_1 & a_2 & a_3 & a_4 & a_5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

- sharing in forward ≡ adding in backward
- if $da_i = \mathbb{1}[i=4]$, then $d\mathbf{w} = (x_4, x_5, x_6)$: we learn the pattern that generated the activation

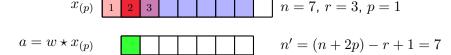
• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} w_2 & w_3 \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} w_2 & w_3 \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & w_1 & w_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

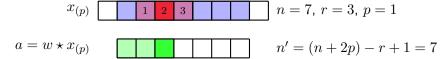
• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'

$$x_{(p)}$$
 1 2 3 $n = 7, r = 3, p = 1$ $a = w \star x_{(p)}$ $n' = (n + 2p) - r + 1 = 7$

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} w_2 & w_3 \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & w_1 & w_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} w_2 & w_3 \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & w_1 & w_2 & w_3 \\ \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'



$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} \mathbf{w_2} & \mathbf{w_3} \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & & & & & & & \\ \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} w_2 & w_3 \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & w_1 & w_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} w_2 & w_3 \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & w_1 & w_2 & w_3 \\ \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

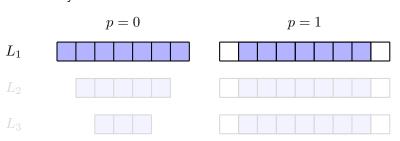
• input size n, kernel size r, padding p, padded input $\mathbf{x}_{(p)}=(\mathbf{0}_p;\mathbf{x};\mathbf{0}_p)$, output size n'

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{pmatrix} = \begin{pmatrix} \mathbf{w_2} & \mathbf{w_3} \\ w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \\ & & & & w_1 & w_2 & w_3 \\ & & & & & w_1 & w_2 & w_3 \\ & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & w_1 & w_2 & w_3 \\ & & & & & & & & & & & & & & & & \\ \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

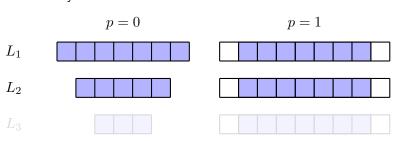
padding preserves size

- if kernel size $r=2\ell+1$ and $p=\ell$, then n'=n+2p-r+1=n and the size is preserved
- over several layers:



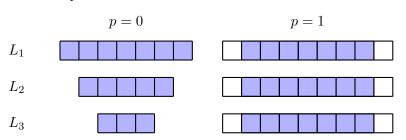
padding preserves size

- if kernel size $r=2\ell+1$ and $p=\ell$, then n'=n+2p-r+1=n and the size is preserved
- over several layers:



padding preserves size

- if kernel size $r=2\ell+1$ and $p=\ell$, then n'=n+2p-r+1=n and the size is preserved
- over several layers:



• input size n, kernel size r, stride s, output size n^\prime

$$x \qquad \qquad n = 7, r = 3, s = 2$$

$$a = (w \star x) \downarrow_s \qquad \qquad n' = |(n-r)/s| + 1 = 3$$

- like standard convolution followed by down-sampling, but efficient
- written as matrix multiplication (rows sub-sampled)

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, stride s, output size n'

$$x = 1 = 3, s = 2$$

$$a = (w \star x) \downarrow_s$$

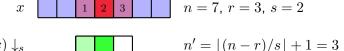
$$n' = \lfloor (n-r)/s \rfloor + 1 = 3$$

- like standard convolution followed by down-sampling, but efficient
- written as matrix multiplication (rows sub-sampled)

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, stride s, output size n^\prime



- $a = (w \star x) \downarrow_s \qquad \qquad \qquad n$
- like standard convolution followed by down-sampling, but efficient
- written as matrix multiplication (rows sub-sampled)

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, stride s, output size n^\prime

$$x \qquad \boxed{1 \quad 2 \quad 3} \quad n = 7, \ r = 3, \ s = 2$$

$$a = (w \star x) \downarrow_s \qquad \boxed{n' = \lfloor (n-r)/s \rfloor + 1 = 3}$$

- like standard convolution followed by down-sampling, but efficient
- written as matrix multiplication (rows sub-sampled)

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \\ & & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

strided convolution: input derivative*

- in general, $C = AB \rightarrow dA = (dC)B^{\top}, dB = A^{\top}dC$
- here, $\mathbf{a} = W^{\top} \mathbf{x}$: derivative with respect to input \mathbf{x}

$$d\mathbf{x} = W \cdot d\mathbf{a}$$

$$d\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 & w_1 \\ & w_2 \\ & w_3 & w_1 \\ & & w_2 \\ & & w_3 & w_1 \\ & & & w_2 \\ & & & w_3 \end{pmatrix} \cdot d \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

strided convolution: weight derivative*

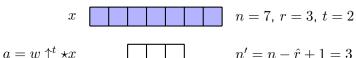
- in general, $C = AB \rightarrow dA = (dC)B^{\top}, dB = A^{\top}dC$
- here, $\mathbf{a} = W^{\top} \mathbf{x}$: derivative with respect to weights W

$$dW = \mathbf{x} \cdot d\mathbf{a}^{\top}$$

$$d\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = d\begin{pmatrix} a_1 & a_2 & a_3 \\ & a_1 & a_2 & a_3 \\ & & a_1 & a_2 & a_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• again e.g. by writing W as a function of $\mathbf{w} = (w_1, w_2, w_3)$ and applying the chain rule, or by just observing the moving pattern

• input size n, kernel size r, dilation factor t, effective kernel size $\hat{r} = r + (r-1)(t-1)$, output size n'

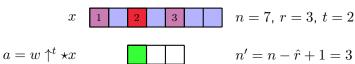


written as matrix multiplication (like strided backward!)

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, dilation factor t, effective kernel size $\hat{r} = r + (r-1)(t-1)$, output size n'

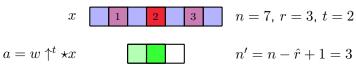


written as matrix multiplication (like strided backward!)

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

• input size n, kernel size r, dilation factor t, effective kernel size $\hat{r} = r + (r-1)(t-1)$, output size n'



written as matrix multiplication (like strided backward!)

$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

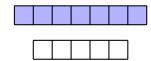
• input size n, kernel size r, dilation factor t, effective kernel size $\hat{r} = r + (r-1)(t-1)$, output size n'

• written as matrix multiplication (like strided backward!)

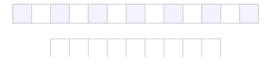
$$\mathbf{a} = W^{\top} \cdot \mathbf{x}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} w_1 & w_2 & w_3 \\ & w_1 & w_2 & w_3 \\ & & w_1 & w_2 & w_3 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$$

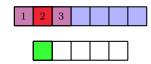
suppose a filter has been trained at a given resolution



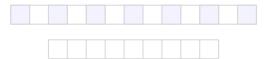
• à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2



suppose a filter has been trained at a given resolution

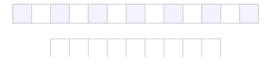


 à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2

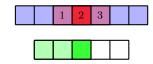


suppose a filter has been trained at a given resolution

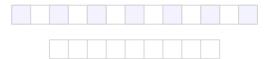
• à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2



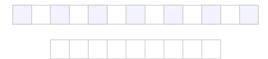
suppose a filter has been trained at a given resolution



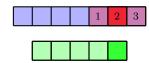
• à trous algorithm: given an input at twice the resolution, apply the same filter dilated by a factor of 2



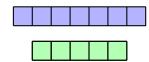
suppose a filter has been trained at a given resolution



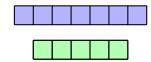
suppose a filter has been trained at a given resolution

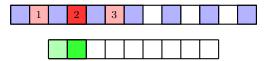


suppose a filter has been trained at a given resolution

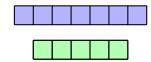


suppose a filter has been trained at a given resolution

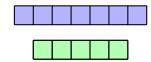




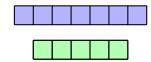
suppose a filter has been trained at a given resolution



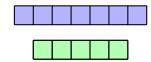
suppose a filter has been trained at a given resolution

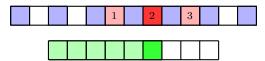


suppose a filter has been trained at a given resolution

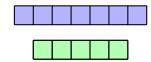


suppose a filter has been trained at a given resolution

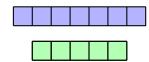


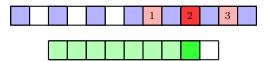


suppose a filter has been trained at a given resolution



suppose a filter has been trained at a given resolution





suppose a filter has been trained at a given resolution

convolutional layer arithmetic*

- input volume $v = w \times h \times k$
- hyperparameters k^\prime filters, kernel size r, padding p, stride s, dilation factor t
- effective kernel size $\hat{r} = r + (r-1)(t-1)$
- output volume $v' = w' \times h' \times k'$ with

$$w' = \lfloor (w + 2p - \hat{r})/s \rfloor + 1$$

$$h' = \lfloor (h + 2p - \hat{r})/s \rfloor + 1$$

- r^2kk' weights, k' biases, $(r^2k+1)k'$ parameters in total
- $(r^2k+1)v'=(r^2k+1)k'\times w'\times h'$ operations in total

convolutional layer arithmetic*

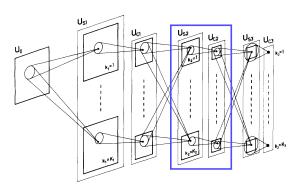
- input volume $v = w \times h \times k$
- hyperparameters k^\prime filters, kernel size r, padding p, stride s, dilation factor t
- effective kernel size $\hat{r} = r + (r-1)(t-1)$
- output volume $v' = w' \times h' \times k'$ with

$$w' = \lfloor (w + 2p - \hat{r})/s \rfloor + 1$$

$$h' = \lfloor (h + 2p - \hat{r})/s \rfloor + 1$$

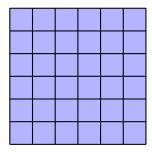
- r^2kk' weights, k' biases, $(r^2k+1)k'$ parameters in total
- $(r^2k+1)v' = (r^2k+1)k' \times w' \times h'$ operations in total

pooling



- the deeper a layer is, the larger becomes the receptive field of each cell and the density of cells decreases accordingly
- gradually introduces translation and deformation invariance
- pooling is independent per feature map and connections are fixed

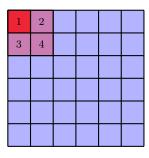
Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

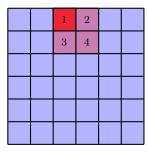
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

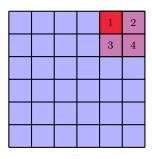
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

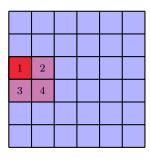
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

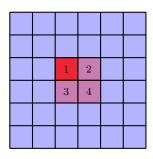
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

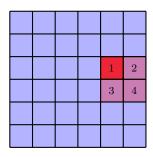
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

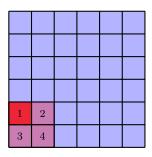
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

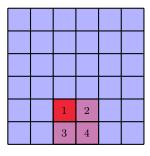
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

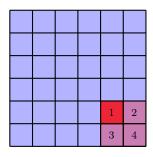
- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$



$$n = 6, r = 2, s = 2$$

$$n' = \lfloor n/s \rfloor = 3$$

- same "sliding window" as in convolution, only has no parameters and performs orderless pooling rather than dot product per neighborhood, e.g. average or max
- no padding but usually stride s>1
- typically, r=s such that $n'=\lfloor (n-r)/s \rfloor +1=\lfloor n/s \rfloor$

feature pooling e.g. maxout

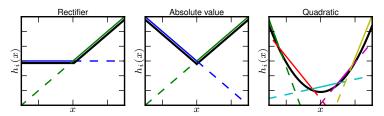


• unlike most activation functions that are element-wise, maxout groups several $(e.g.\ k)$ activations together and takes their maximum

$$a = \max_{j} \mathbf{w}_{j}^{\top} \mathbf{x} + b_{j}$$

- ullet does not saturate or "die", but increases the cost by k
- can approximate any convex function
- two such units can approximate any smooth function!

feature pooling e.g. maxout

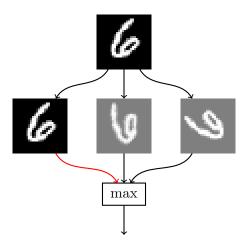


• unlike most activation functions that are element-wise, maxout groups several $(e.g.\ k)$ activations together and takes their maximum

$$a = \max_{j} \mathbf{w}_{j}^{\top} \mathbf{x} + b_{j}$$

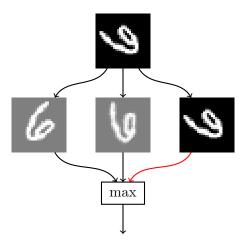
- ullet does not saturate or "die", but increases the cost by k
- can approximate any convex function
- two such units can approximate any smooth function!

feature pooling: pose invariance



 if each activation responds to a different pose or view, maxout will respond to any

feature pooling: pose invariance



 if each activation responds to a different pose or view, maxout will respond to any

more fun

			MNIST			CIFAR10			
			param		volume	param		volume	
$\mathbf{x} =$	input		0	0	$28\times28\times1$	0	0	$32\times32\times3$	
$\mathbf{z}_1 =$	conv(5, 32)	(\mathbf{x})	832	479232	$24\times24\times32$	2432	1906688	$28\times28\times32$	
$\mathbf{p}_1 =$	pool(2)	(\mathbf{z}_1)	0	18432	$12\times12\times32$	0	25088	$14\times14\times32$	
$\mathbf{z}_2 =$	conv(5, 64)	(\mathbf{p}_1)	51264	3280896	$8\times8\times64$	51264	5126400	$10\times10\times64$	
$\mathbf{p}_2 =$	pool(2)	(\mathbf{z}_2)	0	4096	$4\times4\times64$	0	6400	$5\times5\times64$	
$\mathbf{z}_3 =$	fc(100)	(\mathbf{p}_2)	102500	102500	100	160100	160100	100	
$\mathbf{a}_4 =$	fc(10)	(\mathbf{z}_3)	1010	1010	10	1010	1010	10	
$\mathbf{y} =$	softmax	(\mathbf{a}_4)	0	0	10	0	0	10	

- ReLU nonlinearity after each convolutional and FC layer
- most parameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional layer

conv(r, k'[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

		MNIST ops			CIFAR10	volume
input	0	0	$28 \times 28 \times 1$	0	0	$32 \times 32 \times 3$
conv(5, 32)	832	479232	$24\times24\times32$	2432	1906688	$28 \times 28 \times 3$
pool(2)	0	18432	$12\times12\times32$	0	25088	$14 \times 14 \times 3$
conv(5, 64)	51264	3280896	$8\times8\times64$	51264	5126400	$10 \times 10 \times 6$
pool(2)	0	4096	$4\times4\times64$	0	6400	$5 \times 5 \times 64$
fc(100)	102500	102500	100	160100	160100	100
fc(10)	1010	1010	10	1010	1010	10
softmax	0	0	10	0	0	10

- ReLU nonlinearity after each convolutional and FC layer
- most parameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional layer

	param	MNIST ops	volume	param	CIFAR10 ops	volume
input	0	0	$28\times28\times1$	0	0	$32\times32\times3$
conv(5, 32)	832	479232	$24\times24\times32$	2432	1906688	$28\times28\times32$
pool(2)	0	18432	$12\times12\times32$	0	25088	$14\times14\times32$
conv(5, 64)	51264	3280896	$8\times8\times64$	51264	5126400	$10\times10\times64$
pool(2)	0	4096	$4\times4\times64$	0	6400	$5\times5\times64$
fc(100)	102500	102500	100	160100	160100	100
fc(10)	1010	1010	10	1010	1010	10
softmax	0	0	10	0	0	10

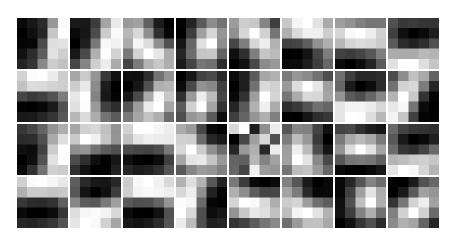
- ReLU nonlinearity after each convolutional and FC layer
- most parameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional layer

conv(r, k'[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

		MNIST	volume		CIFAR10	volume
input	param 0	ops 0	$28 \times 28 \times 1$	param 0	ops 0	$32 \times 32 \times 3$
conv(5, 32)	832	479232	$24\times24\times32$	2432	1906688	$28 \times 28 \times 32$
pool(2)	0	18432	$12\times12\times32$	0	25088	$14\times14\times32$
conv(5, 64)	51264	3280896	$8\times8\times64$	51264	5126400	$10\times10\times64$
pool(2)	0	4096	$4\times4\times64$	0	6400	$5\times5\times64$
fc(100)	102500	102500	100	160100	160100	100
fc(10)	1010	1010	10	1010	1010	10
softmax	0	0	10	0	0	10

- ReLU nonlinearity after each convolutional and FC layer
- most parameters in first fully connected layer
- most operations in second convolutional layer
- most memory in first convolutional layer

MNIST layer 1 filters



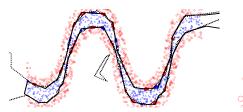
- mini-batch m=128, learning rate $\epsilon=10^{-2}$, regularization strength $\lambda=10^{-2}$, Gaussian initialization $\sigma=0.1$
- test error: 1.2%

CIFAR10 layer 1 filters

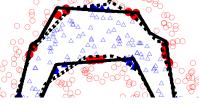
- mini-batch m=128, learning rate $\epsilon=10^{-2}$, regularization strength $\lambda=10^{-2}$, Gaussian initialization $\sigma=0.1$
- test error: 28%

towards deeper networks

[Montufar et al. 2014]



2-layer: solid; 3-layer: dashed (20 hidden units each)



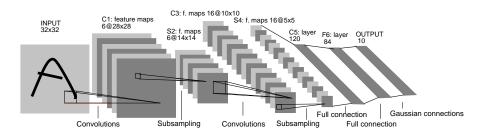
close-up

 "deep networks are able to separate their input space into exponentially more linear response regions than their shallow counterparts, despite using the same number of computational units"

network architectures

LeNet-5

[LeCun et al. 1998]



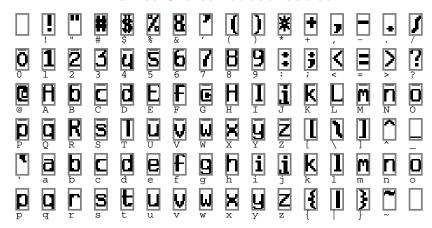
- first convolutional neural network to use back-propagation
- applied to character recognition

LeNet-5

	parameters	operations	volume
input(32,1)	0	0	$32\times32\times1$
conv(5,6)	156	122,304	$28\times28\times6$
avg(2)	0	4,704	$14\times14\times6$
conv(5, 16)	2,416	241,600	$10 \times 10 \times 16$
avg(2)	0	1,600	$5\times5\times16$
conv(5, 120)	48,120	48,120	$1\times1\times120$
fc(84)	10, 164	10, 164	84
RBF(10)	850	850	10
softmax	0	10	10

- subsampling by average pooling with learnable global weight and bias
- ullet scaled anh nonlinearity after first pooling layer and FC layer
- last convolutional layer allows variable-sized input
- \bullet output RBF units: Euclidean distance to 7×12 distributed codes
- loss function similar to softmax + cross-entropy

LeNet-5 distributed codes



- 7×12 character bitmaps
- chosen by hand to initialize the FC-RBF connections
- structured output

LeNet-5 connections between convolutional layers

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	Χ	Χ	Χ		Χ	X
1	X	X				X	X	X			X	X	X	X		X
2	X	X	X				X	X	X			X		X	X	X
3		X	X	X			X	X	X	X			X		X	Χ
4			X	X	X			X	X	X	X		X	X		X
5				X	X	X			X	X	X	X		Χ	X	Χ

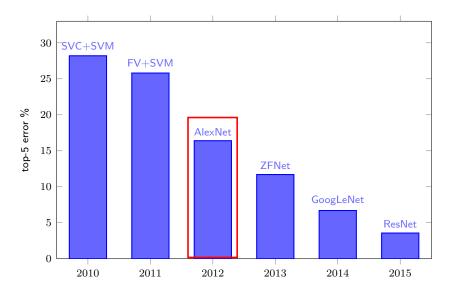
- number of connections limited
- forces break of symmetry

ImageNet

[Russakovsky et al. 2014]

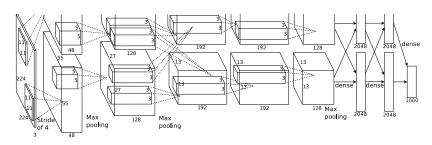
- 22k classes, 15M samples
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000 classes, 1.2M training images, 50k validation images, 150k test images

ImageNet classification performance



AlexNet

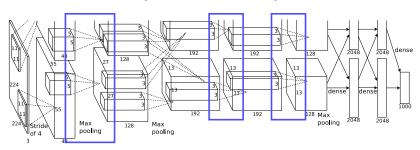
[Krizhevsky et al. 2012]



- 16.4% top-5 error on on ILSVRC'12, outperformed all by 10%
- 8 layers
- ReLU, local response normalization, data augmentation, dropout
- stochastic gradient descent with momentum
- implementation on two GPUs; connectivity between the two subnetworks is limited

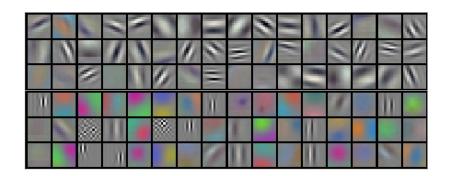
AlexNet

[Krizhevsky et al. 2012]



- 16.4% top-5 error on on ILSVRC'12, outperformed all by 10%
- 8 layers
- ReLU, local response normalization, data augmentation, dropout
- stochastic gradient descent with momentum
- implementation on two GPUs; connectivity between the two subnetworks is limited

learned layer 1 kernels



- 96 kernels of size $11 \times 11 \times 3$
- top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

AlexNet (CaffeNet)

	parameters	operations	volume
input(227,3)	0	0	$227 \times 227 \times 3$
$\operatorname{conv}(11, 96, s4)$	34,944	105,705,600	$55\times55\times96$
pool(3, 2)	0	290,400	$27\times27\times96$
norm	0	69,984	$27\times27\times96$
$\mathrm{conv}(5,256,p2)$	614,656	448,084,224	$27 \times 27 \times 256$
pool(3, 2)	0	186,624	$13 \times 13 \times 256$
norm	0	43,264	$13 \times 13 \times 256$
$\mathrm{conv}(3,384,p1)$	885, 120	149,585,280	$13 \times 13 \times 384$
$\mathrm{conv}(3,384,p1)$	1,327,488	224, 345, 472	$13 \times 13 \times 384$
$\mathrm{conv}(3,256,p1)$	884,992	149, 563, 648	$13 \times 13 \times 256$
pool(3, 2)	0	43,264	$6\times6\times256$
fc(4096)	37,752,832	37,752,832	4,096
fc(4096)	16,781,312	16,781,312	4,096
fc(1000)	4,097,000	4,097,000	1,000
softmax	0	1,000	1,000

- ReLU follows each convolutional and fully connected layer
- CaffeNet: input size modified from 224×224 , pool/norm switched

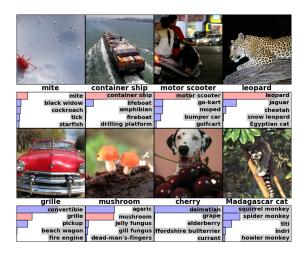
conv(r, k'[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

AlexNet (CaffeNet)

	parameters	operations	volume
input(227,3)	0	0	$227 \times 227 \times 3$
$\mathrm{conv}(11, 96, s4)$	34,944	105,705,600	$55\times55\times96$
pool(3, 2)	0	290,400	$27\times27\times96$
norm	0	69,984	$27\times27\times96$
$\mathrm{conv}(5, 256, p2)$	614,656	448,084,224	$27 \times 27 \times 256$
pool(3, 2)	0	186,624	$13 \times 13 \times 256$
norm	0	43,264	$13 \times 13 \times 256$
$\mathrm{conv}(3,384,p1)$	885, 120	149,585,280	$13 \times 13 \times 384$
$\mathrm{conv}(3,384,p1)$	1,327,488	224,345,472	$13 \times 13 \times 384$
$\mathrm{conv}(3,256,p1)$	884,992	149, 563, 648	$13 \times 13 \times 256$
pool(3, 2)	0	43,264	$6\times 6\times 256$
fc(4096)	37,752,832	37,752,832	4,096
fc(4096)	16,781,312	16,781,312	4,096
fc(1000)	4,097,000	4,097,000	1,000
softmax	0	1,000	1,000

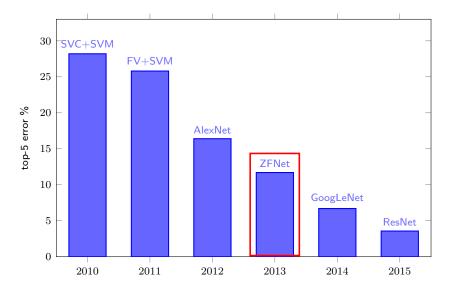
- ReLU follows each convolutional and fully connected layer
- ullet CaffeNet: input size modified from 224×224 , pool/norm switched

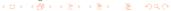
AlexNet: classification examples



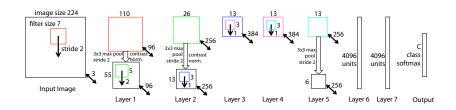
correct label on top; its predicted probability with red if visible

ImageNet classification performance





ZFNet*



- 11.7% top-5 error on ILSVRC'13
- 8 layers, refinement of AlexNet
- layer 1 kernel size (stride) reduced from 11(4) to 7(2) to reduce aliasing artifacts
- conv3,4,5 width increased to 512, 1024, 512

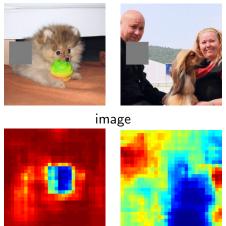
ZFNet*

	parameters	operations	volume
input(224,3)	0	0	$224\times224\times3$
$\mathrm{conv}(7,96,s2,p1)$	14,208	171,916,800	$110\times110\times96$
pool(3, 2, p1)	0	1,161,600	$55\times55\times96$
norm	0	290,400	$55\times55\times96$
$\mathrm{conv}(5, 256, s2)$	614,656	415, 507, 456	$26\times26\times256$
pool(3, 2, p1)	0	173,056	$13\times13\times256$
norm	0	43,264	$13\times13\times256$
$\mathrm{conv}(3,512,p1)$	1,180,160	199,447,040	$13\times13\times512$
$\mathrm{conv}(3,1024,p1)$	4,719,616	797,615,104	$13\times13\times1024$
$\mathrm{conv}(3,512,p1)$	4,719,104	797, 528, 576	$13\times13\times512$
pool(3,2)	0	86,528	$6\times 6\times 512$
fc(4096)	75,501,568	75,501,568	4,096
fc(4096)	16,781,312	16,781,312	4,096
fc(1000)	4,097,000	4,097,000	1,000
softmax	0	1,000	1,000

• layer widths adjusted by cross-validation; depth matters

conv(r, k'[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

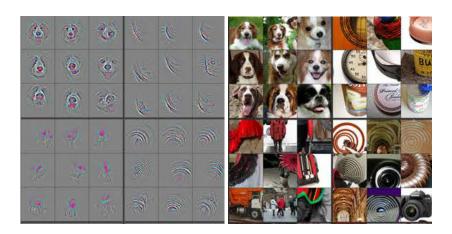
ZFNet: occlusion sensitivity



correct class probability

- image occluded by gray square
- correct class probability as a function of the position of the square

ZFNet: visualizing intermediate layers*



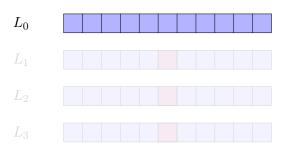
 reconstructed patterns from top 9 activations of selected features of layer 4 and corresponding image patches

VGG

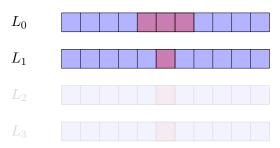
[Simonyan and Zisserman 2014]

ConvNet Conf	figuration						
A A-I DN B	C						
A A-LKI B		D	E				
11 weight 11 weight 13 weight 1	16 weight	16 weight	19 weight				
layers layers layers	layers	layers	layers				
input (224 × 224 RGB image)							
conv3-64 conv3-64 conv3-64 c	conv3-64	conv3-64	conv3-64				
LRN conv3-64	conv3-64	conv3-64	conv3-64				
maxpo							
	onv3-128	conv3-128	conv3-128				
conv3-128 c	onv3-128	conv3-128	conv3-128				
maxpo							
	onv3-256	conv3-256	conv3-256				
conv3-256 conv3-256 conv3-256 c	onv3-256	conv3-256	conv3-256				
l c	onv1-256	conv3-256	conv3-256				
			conv3-256				
maxpo							
	onv3-512	conv3-512	conv3-512				
	onv3-512	conv3-512	conv3-512				
C C	onv1-512	conv3-512	conv3-512				
			conv3-512				
maxpool							
	onv3-512	conv3-512	conv3-512				
	onv3-512	conv3-512	conv3-512				
c	onv1-512	conv3-512	conv3-512				
			conv3-512				
maxpo	ol						

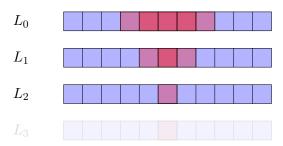
- 7.3% top-5 error on ILSVRC'14
- ullet depth increased up to 19 layers, kernel sizes (strides) reduced to 3(1)
- local response normalization doesn't do anything
- top/bottom layers of deep models pre-initialized by trained model A



- is the part of the visual input that affects a given cell indirectly through previous layers



- is the part of the visual input that affects a given cell indirectly through previous layers



- is the part of the visual input that affects a given cell indirectly through previous layers
- grows linearly with depth
- stack of three 3×3 kernels of stride 1 has the same effective receptive field as a single 7×7 kernel, but fewer parameters

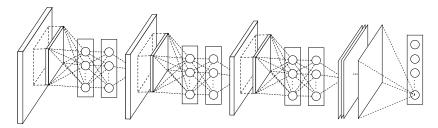
- is the part of the visual input that affects a given cell indirectly through previous layers
- grows linearly with depth
- stack of three 3×3 kernels of stride 1 has the same effective receptive field as a single 7×7 kernel, but fewer parameters

VGG-16

	parameters	operations	volume
input(224, 3)	0	0	$224\times224\times3$
conv(3, 64, p1)	1,792	89,915,390	$224\times224\times64$
conv(3, 64, p1)	36,928	1,852,899,328	$224\times224\times64$
pool(2)	0	3,211,264	$112\times112\times64$
$\mathrm{conv}(3,128,p1)$	73,856	926,449,664	$112\times112\times128$
$\mathrm{conv}(3,128,p1)$	147,584	1,851,293,696	$112\times112\times128$
pool(2)	0	1,605,632	$56\times 56\times 128$
$\operatorname{conv}(3, 256, p1)$	295, 168	925,646,848	$56\times 56\times 256$
$\operatorname{conv}(3, 256, p1)$	590,080	1,850,490,880	$56\times 56\times 256$
$\operatorname{conv}(3, 256, p1)$	590,080	1,850,490,880	$56\times 56\times 256$
pool(2)	0	802,816	$28\times28\times256$
$\operatorname{conv}(3, 512, p1)$	1,180,160	925, 245, 440	$28\times28\times512$
$\operatorname{conv}(3, 512, p1)$	2,359,808	1,850,089,472	$28\times28\times512$
$\operatorname{conv}(3, 512, p1)$	2,359,808	1,850,089,472	$28\times28\times512$
pool(2)	0	401,408	$14\times14\times512$
$\operatorname{conv}(3, 512, p1)$	2,359,808	462, 522, 368	$14\times14\times512$
$\operatorname{conv}(3, 512, p1)$	2,359,808	462, 522, 368	$14\times14\times512$
$\operatorname{conv}(3, 512, p1)$	2,359,808	462, 522, 368	$14\times14\times512$
pool(2)	0	100,352	$7\times7\times512$
fc(4096)	102,764,544	102,764,544	4,096
fc(4096)	16,781,312	16,781,312	4,096
fc(1000)	4,097,000	4,097,000	1,000
softmax	0	1,000	1,000

network in network (NiN)*

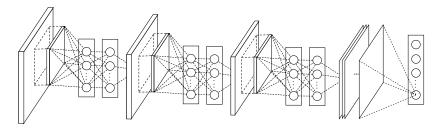
[Lin et al. 2013]



- fully connected layers are simply replaced by global average pooling
- activation functions are usually element-wise for simplicity; but here an entire 2-layer network is used as activation function
- ullet but this is nothing but convolution followed by two 1 imes 1 convolutions
- 1×1 convolutions are just like matrix multiplications and can be used for dimension reduction

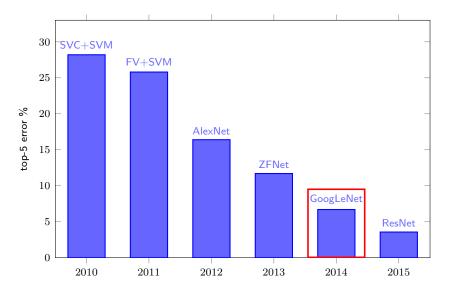
network in network (NiN)*

[Lin et al. 2013]



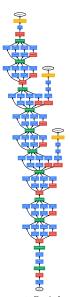
- fully connected layers are simply replaced by global average pooling
- activation functions are usually element-wise for simplicity; but here an entire 2-layer network is used as activation function
- ullet but this is nothing but convolution followed by two 1×1 convolutions
- 1×1 convolutions are just like matrix multiplications and can be used for dimension reduction

ImageNet classification performance



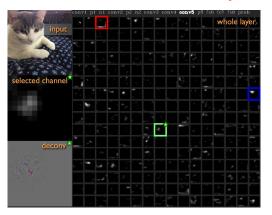
GoogLeNet

[Szegedy et al. 2015]



- 6.7% top-5 error on ILSVRC'14
- depth increased to 22 layers, kernel sizes 1×1 to 5×5
- inception module repeated 9 times
- 1 × 1 kernels used as "bottleneck" layers (dimensionality reduction)
- 25 times less parameters and faster than AlexNet
- auxiliary classifiers

convolutional features are sparse*



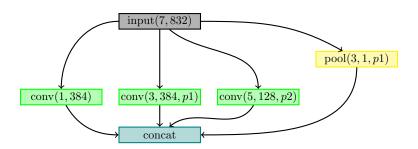
- remember, features play the role of codebooks, and bag-of-words representations can be sparse
- with relu, each feature represents a "detector" that fires when the activation is positive

convolutional features are sparse*

- deep layers have more features (e.g. 1024) and lower resolutions (e.g. 7×7)
- detected patterns in many cases are as small as 3×3 or even 1×1
- the convolution operation resembles more (sparse) matrix multiplication than convolution
- this is not as efficient as dense multiplication on parallel hardware

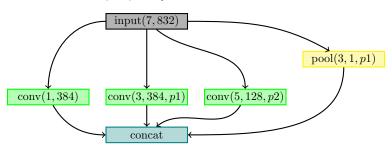
convolutional features are sparse*

- deep layers have more features (e.g. 1024) and lower resolutions (e.g. 7×7)
- detected patterns in many cases are as small as 3×3 or even 1×1
- the convolution operation resembles more (sparse) matrix multiplication than convolution
- this is not as efficient as dense multiplication on parallel hardware



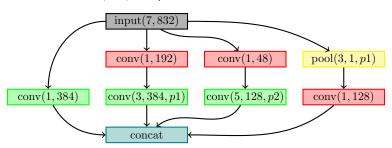
- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
- add dimension reduction to control cost, dimensions, and sparsity
- this is referred to as inception module

271, 418, 048 operations



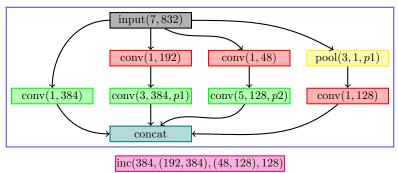
- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
- add dimension reduction to control cost, dimensions, and sparsity
- this is referred to as inception module

70,800,688 operations



- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
- add dimension reduction to control cost, dimensions, and sparsity
- this is referred to as inception module

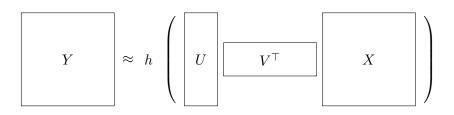
70,800,688 operations



- naive inception module simply concatenates (feature-wise) three convolutions and one max-pooling
- but this expensive and dimension keeps increasing
- add dimension reduction to control cost, dimensions, and sparsity
- this is referred to as inception module

$$Y = h \left(\left[W \right] X \right)$$

- X(Y): input (output) features (columns = spatial positions)
- ullet W: weights; h: activation function
- low-rank approximation $W \approx UV^{\top}$; V is 1×1 spatially
- X was sparse; $V^{\top}X$ is not
- (in fact, V also includes a non-linearity)



- X (Y): input (output) features (columns = spatial positions)
- ullet W: weights; h: activation function
- low-rank approximation $W \approx UV^{\top}$; V is 1×1 spatially
- X was sparse; $V^{\top}X$ is not
- (in fact, V also includes a non-linearity)

- X(Y): input (output) features (columns = spatial positions)
- ullet W: weights; h: activation function
- low-rank approximation $W \approx UV^{\top}$; V is 1×1 spatially
- ullet X was sparse; $V^{\top}X$ is not
- (in fact, V also includes a non-linearity)

- X(Y): input (output) features (columns = spatial positions)
- ullet W: weights; h: activation function
- low-rank approximation $W \approx UV^{\top}$; V is 1×1 spatially
- X was sparse; $V^{\top}X$ is not
- (in fact, V also includes a non-linearity)

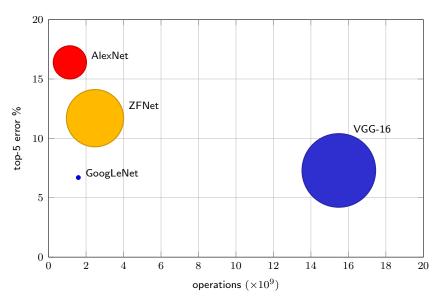
GoogLeNet

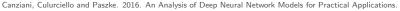
		parameters	operations	volume
	input(224,3)	0	0	$224\times224\times3$
	conv(7, 64, p3, s2)	9,472	118,816,768	$112\times112\times64$
	pool(3, 2, p1)	0	802,816	$56\times 56\times 64$
	conv(1, 64)	4,160	13,045,760	$56\times 56\times 64$
	conv(3, 192, p1)	110,784	347,418,624	$56\times 56\times 192$
	pool(3, 2, p1)	0	602, 112	$28\times28\times192$
	inc(64, (96, 128), (16, 32), 32)	163,696	128,488,192	$28\times28\times256$
	inc(128, (128, 192), (32, 96), 64)	388,736	304,969,728	$28\times28\times480$
	pool(3, 2, p1)	0	376, 320	$14\times14\times480$
	inc(192, (96, 208), (16, 48), 64)	- avg $(5, 3, p2)$ 376, 176	73,824,576	$14\times14\times512$
	inc(160, (112, 224), (24, 64), 64)	conv(1, 128) 449, 160	88, 135, 712	$14\times14\times512$
	inc(128, (128, 256), (24, 64), 64)	fc(1024) 510, 104	100,080,736	$14\times14\times512$
avg(5, 3, p2)	inc(112, (144, 288), (32, 64), 64)	fc(1000) 605, 376	118,754,048	$14\times14\times528$
conv(1, 128)	inc(256, (160, 320), (32, 128), 128)	softmax 868, 352	170,300,480	$14\times14\times832$
fc(1024)	pool(3, 2, p1)	0	163,072	$7\times7\times832$
fc(1000)	inc(256, (160, 320), (32, 128), 128)	1,043,456	51, 170, 112	$7\times7\times832$
softmax	inc(384, (192, 384), (48, 128), 128)	1,444,080	70, 800, 688	$7\times7\times1024$
	avg(7)	0	50, 176	$1\times1\times1024$
	fc(1000)	1,025,000	1,025,000	1,000
	softmax	0	1,000	1,000

GoogLeNet



network performance





summary

- convolution \equiv linearity + translation equivariance
- sparse connections, weight sharing: fully connected \rightarrow convolution
- cross-correlation
- feature maps: matrix multiplication and convolution combined
- 1 × 1 convolution
- convolution as regularization, structured convolution
- standard, padded*, strided*, dilated*; and their derivatives
- pooling and invariance
- deeper networks
- LeNet-5, AlexNet, ZFNet*, VGG-16, NiN*, GoogLeNet