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CIFAR10 dataset
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plane car bird cat deer dog frog horse ship truck

e 10 classes, 50k training images, 10k test images, 32 x 32 images

Krizhevsky and Hinton 2009. Learning Multiple Layers of Features From Tiny Images.



pipeline

prepare
e vectorize 32 x 32 x 3 images into 3072 x 1

e split training set e.g. into Nyrain = 45000 training samples and
nyal = D000 samples to be used for validation

e center vectors by subtracting mean over the training samples

o initialize network weights as Gaussian with standard deviation 1074



pipeline

prepare
e vectorize 32 x 32 x 3 images into 3072 x 1

e split training set e.g. into Nyrain = 45000 training samples and
nyal = D000 samples to be used for validation

e center vectors by subtracting mean over the training samples
o initialize network weights as Gaussian with standard deviation 1074
learn

e train for a few iterations and evaluate accuracy on the validation set
for a number of learning rates € and regularization strengths A

e train for 10 epochs on the full training set for the chosen
hyperparameters

e evaluate accuracy on the test set



linear classifier validation accuracy
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regularization strength A\

o classes k = 10, samples nrain = 45000, ny5 = 5000, mini-batch
m = 200, learning rate e = 1075, regularization strength A = 5 x 10?

e test accuracy: 38%



linear classifier weights

plane car bird cat deer

frog horse ship truck



2-layer classifier validation accuracy
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e classes k = 10, samples nrain = 45000, ny,5 = 5000, mini-batch
m = 200, learning rate e = 2 x 1073, regularization strength

A=2x10"1
o hidden layer width: 100; test accuracy: 51%



two-layer classifier weights

layer 1 weights 0-49
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two-layer classifier weights

layer 1 weights 50-99
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two-layer classifier weights

layer 1 weights 100-149
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two-layer classifier weights

layer 1 weights 150-199
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setting hyperparameters

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

e compared to grid search, random search allows to explore more values
of an important parameter regardless of unimportant parameters

e when the search spans orders of magnitude, draw samples uniformly at
random in log space

e start with coarse range and few iterations, gradually move to finer
range and more iterations

Bergstra and Bengio. JMLR 2012. Random Search for Hyper-Parameter Optimization.



convolution



input image representation

X

28 x 28 784 x 1

e the two-layer network we have learned on MNIST can easily classify
digits with less that 3% error, but learns more than actually required

e remember that for both MNIST and CIFAR10, we flattened images
(1-channel or 3-channel) into vectors, and the order of the elements
(pixels) plays no role in learning



input image representation

X

28 x 28 784 x 1

e the two-layer network we have learned on MNIST can easily classify
digits with less that 3% error, but learns more than actually required

e remember that for both MNIST and CIFAR10, we flattened images
(1-channel or 3-channel) into vectors, and the order of the elements
(pixels) plays no role in learning

e so what if we permute the elements in all images, both training and
test set?



shuffling the dimensions







shuffling the dimensions

e this is what the computer sees

e it must make more sense when you start looking at more than one
samples per class






remember receptive fields?

>3
A
A x
=
4 x::b
< 4
B #
> av
v > X
> o>

e A: ‘on’-center LGN; B: ‘off’-center LGN; C, D: simple cortical

each cell only has a localized response over a receptive field

e x: excitatory (‘on’), A: inhibitory (‘off’) responses

topographic mapping: there is one cell with the same response pattern
centered at each position

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex.



matrix multiplication

X

o
|

28 x 28 784 x 1 100 x 1

WT

100 x 784

* inputs x are mapped to activations W 'x

o columns/rows of W correspond to input/activation elements



matrix multiplication — fully connected

28 x 28 784 x 1 100 x 1
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100 x 784

o each row of W yields one activation element (cell)

e each cell is fully connected to all input elements



matrix multiplication — fully connected
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o each row of W yields one activation element (cell)

e each cell is fully connected to all input elements
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matrix multiplication — fully connected
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o each row of W yields one activation element (cell)

e each cell is fully connected to all input elements



sparse connections

28 x 28
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e now, we only keep a sparse set of connections

e and matrix W becomes sparse as well
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e and matrix W becomes sparse as well



sparse connections
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e now, we only keep a sparse set of connections

e and matrix W becomes sparse as well



Toeplitz matrix

X

28 x 28 28 x1 26 x1
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26 x 28

e now, we only refer to one input column; we will repeat

* and all weights having the same color are made equal (shared)



Toeplitz matrix — convolution
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e this can be seen as shifting the same weight triplet (kernel)

e the set of inputs seen by each cell is its receptive field
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Toeplitz matrix — convolution

28 x 28 28 x1 26 x1
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26 x 28

e this can be seen as shifting the same weight triplet (kernel)

e the set of inputs seen by each cell is its receptive field



Toeplitz matrix — convolution

X

W Tx

28 x 28

26 x1

(o6}
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26 x 28

e this is an 1d convolution and generalizes to 2d

e this new mapping is a convolutional layer



convolutional networks

convolutional layer
1 still linear, still matrix multiplication, just constrained
2 local receptive fields — sparse connections between units

3 translation equivariant — shared weights
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3 translation equivariant — shared weights

4 sparse + shared — regularized: less parameters to learn



convolutional networks

convolutional layer
1 still linear, still matrix multiplication, just constrained
2 local receptive fields — sparse connections between units
3 translation equivariant — shared weights

4 sparse + shared — regularized: less parameters to learn

convolutional network

e a network of convolutional layers, optionally followed by
fully-connected layers

* performs better (less than 1% error on MNIST), but not on shuffled
input



definition and properties



linear time-invariant (LTI) system

o discrete-time signal: x[n], n € Z
o system (filter): f(z)[n], n € Z
e translation (or shift, or delay): sx(x)[n] =z[n —k], k€ Z



linear time-invariant (LTI) system

discrete-time signal: z[n], n € Z
system (filter): f(x)[n], n € Z
translation (or shift, or delay): si(z)[n] =x[n — k], k € Z

linear system: commutes with linear combination

f (Z aiﬂﬁi) = aif(x)
i i
time-invariant system: commutes with translation

f(sk(x)) = sk(f(7))



LTI system = convolution

e unit impulse §[n| = 1[n = 0]
e every signal x expressed as

z[n] =) alkldln — k] = x[k]si(8)[n]

k k



LTI system = convolution

e unit impulse d[n] = 1[n = 0]

e every signal x expressed as
x[n] = Z [k]o[n — Z x[k
k k

o if fis LTI with impulse response h = f(9),

f(@)[n]
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LTI system = convolution

e unit impulse d[n] = 1[n = 0]
e every signal x expressed as

z[n] =) alkldln — k] = x[k]si(8)[n]

k k

o if fis LTI with impulse response h = f(9),

f(@)n] = f (Z z[k]sx(0)

k



LTI system = convolution

e unit impulse d[n] = 1[n = 0]

e every signal x expressed as

a[n]

= x[klo[n — K]
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LTI system = convolution

e unit impulse d[n] = 1[n = 0]
e every signal x expressed as

z[n] =) alkldln — k] = x[k]si(8)[n]

k k

o if fis LTI with impulse response h = f(9), then| f(z) = x x h:

f(@)n] = f <Z w[k]Sk(5)> [n] =) x[ksk(f(6))[n]

k k

= > a[klhln — k] := (z  h)[n]

k




z*xh

1d convolution
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1d convolution
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1d convolution
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z*xh

1d convolution
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invariance vs. equivariance

e time invariance: invariance to absolute time (or position)

e translation (or shift) equivariance: equivariance to relative time (or
position)

e despite confusion, both mean the same thing: system commutes with
translation

f(se(@)) = si(f(2))



invariance vs. equivariance

e time invariance: invariance to absolute time (or position)

e translation (or shift) equivariance: equivariance to relative time (or

position)
o despite confusion, both mean the same thing: system commutes with
translation
f(se(@)) = si(f(2))
however

e translation (or shift) invariance, means that for all k&,

fsk(2)) = f()

e each convolutional layer is translation equivariant; but pooling makes
a network translation invariant, e.g.

> se(@)n] =Y aln—k = z[n]

n n n



finite impulse response (FIR)

* an FIR system has impulse response h of finite duration (or spatial
extent), because it settles to zero in finite time (extent) from the
input impulse

e ‘“sparse connections and local receptive fields” mean exactly that h is
of finite duration (extent)

e we assume this in the following, starting with a 2d extension, where
we write z[n], n € Z>



2d convolution

(z * h)[n] z[k]h[n — K]

2
k

Z hlk]z[n — K]
k




2d convolution
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2d convolution
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cross-correlation

e convolution is commutative

(zxh)[n] == z[klh[n — k] =Y hk|z[n — k| = (h*z)[n|

k k

e cross-correlation is not

(h*z)[n] := Zh Jz[k +n] =) " z[klh[k —n] = (z+ h)[-n
k



cross-correlation

convolution is commutative

(zxh)[n] == z[Khn - k] =Y hk|zn—k| = (h*z)[n|

k k

cross-correlation is not

(hx )] Zh +n] =) z[Klh[k —n] = (z*h)[-n]|
k

both are LTI; the only difference is that in cross-correlation, h refers
to the flipped impulse response

but if i is even (h[n] = h[—n]), then hxz =z xh=h=x*x



cross-correlation

convolution is commutative

(zxh)[n] == z[Khn - k] =Y hk|zn—k| = (h*z)[n|

k k

cross-correlation is not

(hx )] Zh +n] =) z[Klh[k —n] = (z*h)[-n]|
k

both are LTI; the only difference is that in cross-correlation, h refers
to the flipped impulse response

but if i is even (h[n] = h[—n]), then hxz =z xh=h=x*x

in the following, we use cross-correlation w * x or convolution x * h,
where h[n] = w[—n] is the impulse response

we call w the kernel of the operation



2d convolution, again
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2d convolution, again

(w* ) wlk]z[k + n]
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features

e something is still missing: so far we had activations a and outputs y
of the form

a=W'x+b, y=h(a)=h(W'x+Db)

where x is the input, W = (wy,..., W) a weight matrix and b a bias

o the elements of x, a, b and y were representing features (or cells);
the elements of W were representing connections

e now we have x as a 2d array, w as a 2d kernel, but no features yet



feature maps

e now b remains a vector but x, a, y become 3d tensors with input
feature ¢ and output feature j at spatial position n denoted by

zin], aj[n],  b;, y;n]
e x; and y; are 2d arrays we call feature maps, each corresponding to

one feature; and a; a 2d array we call activation map

e if x; refers to the input image, there is just one feature that is the
image intensity of a grayscale image, or three features corresponding
to the three channels of a color image



feature maps

now b remains a vector but x, a, y become 3d tensors with input
feature ¢ and output feature j at spatial position n denoted by

zi[n], ajn], b;, y;[n]
x; and y; are 2d arrays we call feature maps, each corresponding to

one feature; and a; a 2d array we call activation map

if x; refers to the input image, there is just one feature that is the
image intensity of a grayscale image, or three features corresponding
to the three channels of a color image

W becomes a 4d tensor with a connection from input feature 7 to
output feature j at spatial position k represented by

wi; k]



convolution on feature maps

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.
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Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



convolution on feature maps

i N
— =
X y

e matrix multiplication and convolution combined

a=W'+x+b, y=~h(a)=h(W' xx+b)

(WTxx); = (W] *x) = Z(wij * ;)

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



convolution on feature maps

U —

e matrix multiplication and convolution combined
a=W'+x+b, y=~h(a)=h(W' xx+b)
(W' xx);n] = (w *x)[n] := > (w;;*x;)[n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



convolution on feature maps

i N
— =
X y

e matrix multiplication and convolution combined
a=W'+x+b, y=~h(a)=h(W' xx+b)

(wij * IEZ) [n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



convolution on feature maps

U —

J J
A
X y

e matrix multiplication and convolution combined
a=W'+x+b, y=~h(a)=h(W' xx+b)

(wij *z;)[n] = > wi;[Klzi[k + )
k

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



convolution on feature maps
U —

e matrix multiplication and convolution combined
a=W'+x+b, y=~h(a)=h(W' xx+b)
(W' xx);n] = (w;r *x)[n] := Z (wij * ;) [n] = Z w;j K]z [k + n]

% i,k

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



convolution on feature maps
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convolution on feature maps

new kernel, but still shared
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convolution on feature maps

different kernel for
= each output dimension

kernel wg
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\
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input x output y3 = h(w3 * x + b3)
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convolution on feature maps

different kernel for
= each output dimension

kernel ws

\N=S

|

|~

//

input x output y5 = h(wJ * x + bs)
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1 x 1 convolution

e if W has no spatial extent, it becomes a 2d matrix again
(W;r *X) [Il] = Z(ww *LEZ')[II] = Z’wi]’ [k]a?z[k + Il]
ik

= Z WijTq [Il] = WIX[H]

o the operation becomes a matrix multiplication just as in
fully-connected layers, but now it is performed independently at each
spatial location

(WT xx)[n] = W "x[n]
Whax=WT"x
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new kernel, but still shared
among all spatial positions

kernel wo
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input x output y2 = h(wg * X + by)
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1 x 1 convolution

new kernel, but still shared
among all spatial positions

kernel wo

input x output y2 = h(wg * X + by)



1 x 1 convolution

different kernel for
each output dimension

kernel ws

1

1

1

|~

input x output y3 = h(w3 * X + b3)



1 x 1 convolution

different kernel for

- each output dimension

kernel wy

_—

input x output yy = h(w,] *x + by)



1 x 1 convolution

different kernel for
each output dimension

kernel wj

—1— |

input x output y5 = h(w, *x + bs)



convolution as regularization

e suppose a fully connected layer is given by

wp w2 W3
a= X
w4 W5 We



convolution as regularization

suppose a fully connected layer is given by

wyp w2 w3
a= X
W4 W5  We
now if we add the following term to our error function

A
5 ((we — wy)? + (ws — wy)? 4+ w3 + wi)

then, as A — oo, the weight matrix tends to the constrained Toeplitz

form
w; wy 0
0 w1 W9

and the layer becomes convolutional



convolution as Gaussian mixture prior*

e remember, weight decay is equivalent to a zero-centered Gaussian
prior if the weight vector/matrix is considered a random variable

e in this analogy, error term

A
5 ((w6 — w2)2 + (ws — wl)2 + w§ + wi)

corresponds to two Gaussian priors centered at wy, ws for ws, wg and
one zero-centered Gaussian for ws, wy

e that is, a Gaussian mixture prior



structured convolution®
[Jacobsen et al. 2016]

ol

(
-

-
Omi*e | = Wb T [ ‘n

ol
e we can constrain parameters even more by considering a fixed basis of
streerable filters consisting of separable Gaussian derivatives

e the network then only learns the parameters needed to construct a
filter as a linear combination of the basis filters

o this applies to all layers

Jacobsen, van Gemert, Lou and Smeulders. CVPR 2016. Structured Receptive Fields in CNNs.



variants and their derivatives



convolution variants

e we will examine a number of variants of convolution, each only in one
dimension

* this leaves an extension to one more spatial dimension (convolution),
and one more feature dimension (matrix multiplication)

e in each case, we will write convolution as matrix multiplication, where
the matrix has some special structure: derivatives are then
straightforward
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e input size n, kernel size r, output size n’
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standard convolution

e input size n, kernel size r, output size n’

e written as matrix multiplication

a=W' x
r1
a w; w2 w3 z2
a2 wyp w2 w3 T3
as = wp w2 w3 : T4
Q4 wp w2 w3 T5
as wp w2 w3 Ze

T




standard convolution: input derivative

o in general, C = AB — dA = (dC)B",dB = ATdC
o here, a = W 'x: derivative with respect to input x

dx =W -da
(ol w1
T9 wo Wi ay
X3 w3 w2 w1 a9
d|l x4 = w3 Wy Wi -d| as
xIs w3 wy W1 ayg
Ze w3 w2 as

i w3



standard convolution: weight derivative

e in general, C = AB — dA = (dC)B",dB = ATdC

e here, a = W x: derivative with respect to weights W

dW =x -

dWw =

da’

T
T2
T3
T4
L5
L6
L7

'd(dl a2 az a4 a5)



standard convolution: weight derivative

o in general, C = AB — dA = (dC)B",dB = ATdC

o here, a = W Tx: derivative with respect to weights W

e thisis

wz w1
w3 w2 Wi
w3 w2 W
w3 w2
w3

dW =x-

w1
w2
w3

da’

1
)
T3
T4
T5
Ze
X7

-d(a1 as2 as a4 a5)

not convenient: we really want dw = (dw,, dws, dws)



standard convolution: weight derivative

e in general, C = AB — dA = (dC)B",dB = ATdC

e here, a = W x: derivative with respect to weights W

dw = da*x

w1 ai az a3z a4 as
d| ws =d ai az a3 a4 as
w3 ay a2 a3 a4 as

e sharing in forward = adding in backward

x1
€2
x3
X4
T5
Z6
X7




standard convolution: weight derivative

e in general, C = AB — dA = (dC)B",dB = ATdC

e here, a = W x: derivative with respect to weights W

dw =da*zx

1
x2

w1 a; a2 as a4 as T3
dl wy | =d ap a2 as as as N

w3 ay ag a3 a4 as Is5
ZIe
x7

e sharing in forward = adding in backward

o if da; = 1[i = 4], then dw = (x4, x5, x¢): we learn the pattern that
generated the activation



padded convolution®

e input size n, kernel size r, padding p, padded input x(,) = (0,;%;0,),
output size n/

o TTTTTIT] Jn=7r=3p=1

o=wery [TTTTTT] =+ -r+1=1




padded convolution®

e input size n, kernel size r, padding p, padded input x(,) = (0,;%;0,),
output size n/

) (BT Jn=7r=3p=1

o=weay ELITTTT] w=+2)-r+1=1
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e input size n, kernel size r, padding p, padded input x(,) = (0,;x;0,),
output size n/

v (B ] »=7. =3 p=1

a=wxzp | [ | [ [ [ | #w=@w+2p)-r+1=7
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padded convolution®
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padded convolution®

e input size n, kernel size r, padding p, padded input x(,) = (0,;x;0,),
output size n/
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padded convolution®

e input size n, kernel size r, padding p, padded input x(,) = (0,;x;0,),
output size n/

vy (T ] » = 7. 7 =, p =1

a=wxzy | | | [ [ [ ]| #w=@w+2p)-r+1=7




padded convolution®

e input size n, kernel size r, padding p, padded input x(,) = (0,;%;0,),
output size n/

o | || | | |1n:7,7‘:3,p:1

o=wery (LTI o=@+2)-r+1=1

e written as matrix multiplication

a=W".x
ai wo W3 I
as w1 wy wWs T2
as w1, w2 wWs I3
a4 = w1, w2 wWs . Ty
as w1 w2 ws xIs5
ag w1 wy wWs T6

ar Wi W2 T7



padding preserves size

o if kernel sizer =2¢+1andp=2/,thenn'=n+2p—r+1=mn and
the size is preserved

e over several layers:
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padding preserves size

o if kernel sizer =2¢+1andp=2/,thenn'=n+2p—r+1=mn and
the size is preserved

e over several layers:




strided convolution (down-sampling)*
e input size n, kernel size r, stride s, output size n’

e LTI n=rr=38s=2

a=(w*xx) |s |:|:|:| n=|n—r)/s|]+1=3

o like standard convolution followed by down-sampling, but efficient
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strided convolution (down-sampling)*

e input size n, kernel size r, stride s, output size n’

a=(w*xx) |s D:D n=|n—r)/s|]+1=3

o like standard convolution followed by down-sampling, but efficient

e written as matrix multiplication (rows sub-sampled)

a=W" x
I
Z2
al w1 wy wWs I3
a9 = w1 W2 wWs . T4
as w1 wy wWs ZT5
T6

T



strided convolution: input derivative®

o in general, C = AB — dA = (dC)B",dB = ATdC

o here, a = W 'x: derivative with respect to input x

dx =W -da
€1 w1
€2 w2
I3 w3 wq aj
dl z4 | = w9 d| as
T5 w3  wq az
Te w2

T w3



strided convolution: weight derivative*

o in general, C = AB — dA = (dC)B",dB = ATdC

o here, a = W Tx: derivative with respect to weights W

dW =x-da’

x1

2

w1 ai a2 as T3

d| we =d al as as | x4
w3 ai az ag Ts5

Te

Ty

e again e.g. by writing W as a function of w = (w1, w2, w3) and
applying the chain rule, or by just observing the moving pattern




dilated convolution (up-sampling)*

e input size n, kernel size r, dilation factor ¢, effective kernel size
7 =71+ (r—1)(t—1), output size n/

a=wtt*x |:|:|:| n=n-7+1=3
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dilated convolution (up-sampling)*

input size n, kernel size r, dilation factor t, effective kernel size
7 =71+ (r—1)(t—1), output size n/

a=wtt*x D:D n=n-7+1=3

written as matrix multiplication (like strided backward!)

a=W" x
T
T2
a w1 w2 w3 3
az = wi w2 w3 : Ty
as w1 w2 w3 5
Te

i




dilated convolution (up-sampling)

e suppose a filter has been trained at a given resolution

HEEEEEN
(T TT]

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.
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dilated convolution (up-sampling)

e suppose a filter has been trained at a given resolution
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e 2 trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.
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dilated convolution (up-sampling)

e suppose a filter has been trained at a given resolution

LTI T]
[T T TT]

e 2 trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2
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dilated convolution (up-sampling)

e suppose a filter has been trained at a given resolution

LTI T]
[T T TT]

e 2 trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.



dilated convolution (up-sampling)

e suppose a filter has been trained at a given resolution

LTI T]
[T T TT]

e 2 trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

T T TT TT A0 B
HNEEEEEEN

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.



convolutional layer arithmetic*

input volume v =w X h X k

hyperparameters k' filters, kernel size v, padding p, stride s, dilation
factor t

effective kernel size # =7+ (r — 1)(t — 1)

output volume v/ = w’ x h' x k' with

w' = [(w+2p—7)/s] +1
B =|(h+2p—7)/s]+1


http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

convolutional layer arithmetic*

e input volume v =w X h X k

o hyperparameters k’ filters, kernel size r, padding p, stride s, dilation
factor t

o effective kernel size 7 = r + (r — 1)(t — 1)

e output volume v/ = w’ x b/ x k' with

w = |(w+2p—7)/s] +1

B =|(h+2p—7)/s]+1
o r2kk’ weights, k' biases, (r’k + 1)k’ parameters in total
(r?k + 1)v" = (r?k + 1)K’ x w' x h' operations in total

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html


http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

pooling



spatial pooling

e the deeper a layer is, the larger becomes the receptive field of each
cell and the density of cells decreases accordingly

e gradually introduces translation and deformation invariance

e pooling is independent per feature map and connections are fixed

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



spatial pooling

n=06r=2s=2 n' =|n/s] =3

e same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max
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performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

no padding but usually stride s > 1
typically, r = s such that n’ = [(n — r)/s] + 1 = |n/s]



spatial pooling

2

3|4

n=06r=2s=2 n' =|n/s] =3

same “sliding window" as in convolution, only has no parameters and

performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

no padding but usually stride s > 1
typically, r = s such that n’ = [(n — r)/s] + 1 = |n/s]



feature pooling e.g. maxout

Rectifier Absolute value Quadratic
T T T T
0 N RO B ] d
S 2 1 <L RN ] \ |
-/ 1 [~ . - 7
1 1 1 1 1 |\ L\ K 1
T T T

e unlike most activation functions that are element-wise, maxout groups
several (e.g. k) activations together and takes their maximum

a= maxw;rx +b;
j

e does not saturate or “die”, but increases the cost by &

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.



feature pooling e.g. maxout

Rectifier Absolute value Quadratic
T T T T
0 N RO B ] d
S 2 1 <L RN ] \ |
-/ 1 [~ . - 7
1 1 1 1 1 |\ L\ K 1
T T T

unlike most activation functions that are element-wise, maxout groups
several (e.g. k) activations together and takes their maximum

a= maxw;rx +b;
j

does not saturate or “die”, but increases the cost by k

e can approximate any convex function

two such units can approximate any smooth function!

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.



feature pooling: pose invariance

&
7 R

max

e if each activation responds to a different pose or view, maxout will
respond to any

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.



feature pooling: pose invariance

e if each activation responds to a different pose or view, maxout will
respond to any

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.



more fun



convolutional network

X = input 0 0 28 x 28 x 1
z1 = conv(5,32) (x) 832 179232 24 x 24 x 32
p1= pool(2) (z1) 0 18432 12 x 12 x 32
zo = conv(5,64) (p1) 01200 3280890 2801

p2= pool(2) (z2) 0 1096 I x 4 x 64

z3 = fc(100) (p2) 102500 102500 100

ay = fc(10) (z3) 1010 1010 10

y = softmax (aq) 0 0 10

conv(r, k[, p = 0], s = 1]); (max)-pool(r[, s = 7][, p = 0]);

51264
0
160100
1010
0

0
1906688

25088

5126400

6400
160100
1010

32x32x3
28 x 28 x 32
14 x 14 x 32
10 x 10 x 64
5 X H x 64
100
10

10



convolutional network

_ 0 0 28 x 28 x 1 0 0 32 %32 %3
conv (5, 32) 832 479232 24 x 24 x 32 2432 1906688 28 x 28 x 32
pool(2) 0 18432 12 x 12 x 32 0 25088 14 x 14 x 32
conv(5,64) 51264 3280896 8 x 8 x 64 51264 5126400 10 x 10 x 64
pool(2) 0 1096 I x 4 x 64 0 6400 5 x5 x 64
102500 102500 100 160100 160100 100
1010 1010 10 1010 1010 10
[ softmax | 0 0 10 0 0 10

e RelLU nonlinearity after each convolutional and FC layer

conv(r, k[, p = 0], s = 1]); (max)-pool(r[, s = 7][, p = 0]);



convolutional network

MNIST CIFAR10
param ops volume param ops volume
0 0 28 x 28 x 1 0 0 32%32x3
conv (5, 32) 832 479232 24 x 24 x 32 2432 1906688 28 x 28 x 32
pool(2) 0 18432 12 x 12 x 32 0 25088 14 x 14 x 32
conv (5, 64) 51264 3280896 8 x 8 x 64 51264 5126400 10 x 10 x 64
pool(2) 0 4096 4x4x64 0 6400 5 x5 x64
fc(100) 102500 102500 100 160100 160100 100
fc(10) 1010 1010 10 1010 1010 10
0 0 10 0 0 10

o RelLU nonlinearity after each convolutional and FC layer

conv(r, k', p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);



convolutional network

MNIST CIFAR10
param ops volume param ops volume
0 0 28 x 28 x 1 0 0 32%32x3
conv (5, 32) 832 479232 24 x 24 x 32 2432 1906688 28 x 28 x 32
pool(2) 0 18432 12 x 12 x 32 0 25088 14 x 14 x 32
conv (5, 64) 51264 3280896 8 x 8 x 64 51264 5126400 10 x 10 x 64
pool(2) 0 4096 4 x4 x 64 0 6400 5 x5 x 64
fc(100) 102500 102500 100 160100 160100 100
fc(10) 1010 1010 10 1010 1010 10
0 0 10 0 0 10

o RelLU nonlinearity after each convolutional and FC layer
e most parameters in first fully connected layer

e most operations in second convolutional layer

e most memory in first convolutional layer

conv(r, k'[, p = 0][, s = 1]); (max)-pool(r[,s = r][, p = 0]);



MNIST layer 1 filters

PP ™
m P E"d
Va1
= T

 mini-batch m = 128, learning rate ¢ = 102, regularization strength
A = 1072, Gaussian initialization o = 0.1

o test error: 1.2%



CIFAR1O layer 1 filters

BT
S=DREEE—
i [T WIS 50
A="=ETRE

e mini-batch m = 128, learning rate ¢ = 1072, regularization strength
A = 1072, Gaussian initialization o = 0.1

o test error: 28%



towards deeper networks
[Montufar et al. 2014]

2-layer: solid; 3-layer: dashed close-up
(20 hidden units each)

e ‘“deep networks are able to separate their input space into
exponentially more linear response regions than their shallow
counterparts, despite using the same number of computational units”

Montufar, Pascanu, Cho and Bengio. NIPS 2014. On the Number of Linear Regions of Deep Neural Networks.



network architectures



LeNet-5

[LeCun et al. 1998]

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32%32 6@28x28

S2: f. maps
6@14x14

Full conAection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

e first convolutional neural network to use back-propagation

e applied to character recognition

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



LeNet-5

parameters

!
conv(5, 6) 156
avg(2) 0
conv(5,16) 2,416
avg(2) 0

conv (5, 120) 48,120
fc(84) 10,164
RBF(10) 850

:

operations
0

122,304
4,704
241,600
1,600
48,120
10,164
850

10

volume
32x32x1

28 x 28 X 6
14x14x6
10 x 10 x 16
5x5x16
1x1x120

84

10

10

subsampling by average pooling with learnable global weight and bias

scaled tanh nonlinearity after first pooling layer and FC layer

last convolutional layer allows variable-sized input
output RBF units: Euclidean distance to 7 x 12 distributed codes

loss function similar to softmax + cross-entropy



a c e gﬁ ]
b
hosen by hand to initialize the FC-RBF connections

e 7 x 12 character bitmaps

e structured output

2
B

~~ o

Qo © L4 2]



LeNet-5 connections between convolutional layers

0123 45 6 7 89 101112131415
01X X X X XX XX X X
11X X X X X X X X X X
21X X X X XX X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X XX X X X X X XX

e number of connections limited

e forces break of symmetry

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



ImageNet
[Russakovsky et al. 2014]

e 22k classes, 156M samples

* ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000
classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



ImageNet classification performance

30 rsvC+svm i
FV-+SVM

25 |-

20 -

AlexNet

top-5 error %

GoogleNet

ResNet

2010 2011 2012 2013 2014 2015

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



AlexNet

[Krizhevsky et al. 2012]

{

dense’

128 Max
Max 128 Max pooling
pooling pooling

204! 2048

e 16.4% top-5 error on on ILSVRC'12, outperformed all by 10%

e 8 layers

e RelU, local response normalization, data augmentation, dropout
e stochastic gradient descent with momentum

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



AlexNet

[Krizhevsky et al. 2012]

(

128

dense’

192

Max 128 Max
pooling pooling

28 Max

pooling 204

2048

e 16.4% top-5 error on on ILSVRC'12, outperformed all by 10%

e 8 layers

e RelU, local response normalization, data augmentation, dropout

e stochastic gradient descent with momentum

e implementation on two GPUs; connectivity between the two

subnetworks is limited

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



learned layer 1 kernels

e 96 kernels of size 11 x 11 x 3
o top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



AlexNet

parameters operations volume

0 0 227 x227x3
conv(11,96, s4) 34,944 105,705,600 55 x 55 x 96
pool(3,2) 0 290,400 27 x 27 x 96

0 69,984 27 x 27 x 96
conv (5, 256, p2) 614,656 448,084,224 27 x 27 x 256
pool(3,2) 0 186,624 13 x 13 x 256

0 43,264 13 x 13 x 256
conv(3, 384, p1) 885,120 149,585,280 13 x 13 x 384

conv(3,384,p1) | 1,327,488 224,345,472 13 x 13 x 384

conv(3,256, p1) 884,992 149,563,648 13 x 13 x 256
pool(3,2) 0 43,264 6% 6 x 256
fo(4096) 37,752,832 37,752,832 4,096

fo(4096) 16,781,312 16,781,312 4,096
fo(1000) 4,097,000 4,097,000 1,000

softmax 0 1,000 1,000

o RelLU follows each convolutional and fully connected layer

conv(r, k[, p = 0][, s = 1]); (max)-pool(r[, s = r][,p = 0));



AlexNet (CaffeNet)

parameters operations volume
0 0 227 x227x3
conv(11, 96, s4) 34,944 105,705,600 55 x 55 x 96
pool(3,2) 0 290,400 27 x 27 x 96
0 69,984 27 x 27 x 96
conv(5, 256, p2) 614,656 448,084,224 27 x 27 x 256
pool(3,2) 0 186,624 13 x 13 x 256
norm 0 43,264 13 x 13 x 256
conv(3, 384, pl) 885,120 149,585,280 13 x 13 x 384

conv(3,384,p1) | 1,327,488 224,345,472 13 x 13 x 384

conv(3,256, p1) 884,992 149,563,648 13 x 13 x 256
pool(3,2) 0 43,264 6% 6 x 256
37,752,832 37,752,832 4,096
16,781,312 16,781,312 4,096
fc(1000) 4,097,000 4,097,000 1,000

softmax 0 1,000 1,000

o RelLU follows each convolutional and fully connected layer

o CaffeNet: input size modified from 224 x 224, pool/norm switched

conv(r, k[, p = 0][, s = 1]); (max)-pool(r[, s = r][,p = 0]);



AlexNet: classification examples

mite container ship motor scooter leop
mite container ship motor scooter pard
black widow boat go-kart Jaguar
ibi moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
. 3/
-
grille mushroom cherry Madagascar cat
‘conjvertible T agaric Squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

e correct label on top; its predicted probability with red if visible

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



ImageNet classification performance

30 FsvCc+svMm

FV+SVM
25 -

20 -

AlexNet

top-5 error %

GoogleNet

ResNet

2010 2011 2012 2013 2014 2015

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



ZFNet*

image size 224 110 26 13 13 13
filter size 7
1 k384 | W1 384 256
w256 N
stride 2 N 3x3 max c
33 max poo@;omr pool| |contrast pool 4096| | 4096 class
stride 2 o stride 2 units| | units| | softmax
w3 ss|l].°
N 2 256 6 256
Input Image Ny
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

e 11.7% top-5 error on ILSVRC'13

e 8 layers, refinement of AlexNet

e layer 1 kernel size (stride) reduced from 11(4) to 7(2) to reduce
aliasing artifacts

e conv3,4,5 width increased to 512,1024, 512

Zeiler and Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.



ZFNet*

parameters operations

input(224, 3) 0 0
conv (7,96, s2,pl) 14,208 171,916,800
pool(3,2, pl) 0 1,161, 600

0 290,400
conv(5, 256, 52) 614,656 415,507,456
pool(3,2, pl) 0 173,056
norm 0 43,264

conv(3,512, pl) 1,180,160 199,447,040
conv(3,1024, p1) 4,719,616 797,615,104
conv(3,512, pl) 4,719,104 797,528,576

pool(3,2) 0 86,528
£c(4096) 75,501,568 75,501, 568
£c(4096) 16,781,312 16,781,312

fc(1000) 4,097,000 4,097,000

softmax 0 1,000

o layer widths adjusted by cross-validation; depth matters

conv(r, k'[,p = 0][, s = 1]); (max)-pool(r[, s = r][,p = 0]);

volume

224 x 224 x 3
110 x 110 x 96
55 x 55 x 96
55 % 55 x 96
26 x 26 x 256
13 x 13 x 256
13 x 13 x 256
13 x 13 x 512
13 x 13 x 1024
13 x 13 x 512
6 x 6 x 512
4,096
4,096
1,000
1,000



ZFNet: occlusion sensitivity

correct class probability

e image occluded by gray square
e correct class probability as a function of the position of the square

Zeiler and Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.



ZFNet: visualizing intermediate layers*

e reconstructed patterns from top 9 activations of selected features of
layer 4 and corresponding image patches

Zeiler and Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.



VGG

[Simonyan and Zisserman 2014]

ConvNet Configuration
A ALRN | B C __E
TT weight ‘ T weight | 13 weight | 16 weight | 16 weight ‘ 19 weight
layers layers layers layers layers layers

input 224 x 224 RGB image)

conv3-64 [ conv3-64 [ conv3-64 | conv3-64 [ conv3-64 | conv3-64

‘ LRN conv3-64 | conv3-64 | conv3-64 | conv3-64
maxpool

conv3—128‘ conv3—128‘ conv3-128] conv3-128

conv3-128] conv3-128
conv3-128| conv3-128| conv3-128| conv3-128

maxpool
conv3-256] conv3-256| conv3-256] conv3-256| conv3-256| conv3-256
conv3-256| conv3-256| conv3-256| conv3-256| conv3-256| conv3-256
conv1-256| conv3-256| conv3-256
conv3-256

maxpool
conv3-512] conv3-512] conv3-512] conv3-512] conv3-512] conv3-512
conv3-512| conv3-512| conv3-512| conv3-512| conv3-512| conv3-512
conv1-512| conv3-512| conv3-512
conv3-512

maxpool
conv3-512] conv3-512] conv3-512] conv3-512] conv3-512] conv3-512
conv3-512 conv3-512| conv3-512| conv3-512| conv3-512| conv3-512
convl-512| conv3-512| conv3-512
conv3-512

maxpool

7.3% top-5 error on ILSVRC'14

o depth increased up to 19 layers, kernel sizes (strides) reduced to 3(1)

local response normalization doesn't do anything

top/bottom layers of deep models pre-initialized by trained model A

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.



effective receptive field

Lo [IITTTTTTTITT]

e is the part of the visual input that affects a given cell indirectly
through previous layers

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.



effective receptive field

Ly

Lo [T THEEE TTT1]

e is the part of the visual input that affects a given cell indirectly
through previous layers

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.



effective receptive field

Lo

Ly

Lo

e is the part of the visual input that affects a given cell indirectly
through previous layers

o grows linearly with depth

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.



effective receptive field

v [T T T
o (1 {1
o [T 1
Ly [ITTTTETTTITT]

e is the part of the visual input that affects a given cell indirectly
through previous layers

e grows linearly with depth

o stack of three 3 x 3 kernels of stride 1 has the same effective receptive
field as a single 7 x 7 kernel, but fewer parameters

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.



conv(3, 64, p1)
conv (3,64, pl)
pool(2)
conv(3,128, pl)
conv(3,128, pl)
pool(2)
conv(3, 256, pl)
conv(3, 256, pl)
conv(3, 256, pl)
pool(2)
conv(3,512, pl)
conv(3, 512, pl)
conv(3,512, pl)
pool(2)
conv(3, 512, pl)
conv(3,512, pl
conv(3,512, pl)
pool(2)
fc(4096)
£c(4096)
£(1000)

softmax

VGG-16

parameters
0

1,792
36,928

0

73,856
147,584

0

295, 168
590,080
590,080

0

1,180, 160
2,359,808
2,359,808
0
2,359,808
2,359,808
2,359,808
0

102, 764, 544
16,781,312
4,097,000
0

operations

0

89,915,390
1,852,899, 328
3,211,264
926,449, 664
1,851,293, 696
1,605,632
925,646, 848
1,850,490, 880
1,850,490, 880
802,816
925,245, 440
1,850,089,472
1,850,089, 472
401, 408
462,522, 368
462,522, 368
462,522, 368
100, 352
102,764, 544
16,781,312
4,097,000
1,000

volume
224 x 224 x 3
224 x 224 x 64
224 x 224 x 64
112 x 112 x 64
112 x 112 x 128
112 x 112 x 128
56 x 56 x 128
56 x 56 x 256
56 x 56 x 256
56 x 56 x 256
28 x 28 x 256
28 x 28 x 512
28 x 28 x 512
28 x 28 x 512
14 x 14 x 512
14 x 14 x 512
14 x 14 x 512
14 x 14 x 512
TxTx512
4,096
4,096
1,000
1,000



network in network (NiN)*
[Lin et al. 2013]

e fully connected layers are simply replaced by global average pooling

e activation functions are usually element-wise for simplicity; but here
an entire 2-layer network is used as activation function

Lin, Chen and Yan 2013. Network in Network.



network in network (NiN)*
[Lin et al. 2013]

fully connected layers are simply replaced by global average pooling

e activation functions are usually element-wise for simplicity; but here
an entire 2-layer network is used as activation function

but this is nothing but convolution followed by two 1 x 1 convolutions

1 x 1 convolutions are just like matrix multiplications and can be used
for dimension reduction

Lin, Chen and Yan 2013. Network in Network.
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Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.
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GoogleNet

[Szegedy et al. 2015]

6.7% top-5 error on ILSVRC'14

e depth increased to 22 layers,
kernel sizes 1 x 1 to 5 x5

e inception module repeated 9
times

e 1 x 1 kernels used as
“bottleneck” layers
(dimensionality reduction)

e 25 times less parameters and
faster than AlexNet

e auxiliary classifiers

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



convolutional features are sparse*

5 fc6 fo7 fo8 prob

whole layer

. *
selected channel” |

{e[lele) ) 2l

e remember, features play the role of codebooks, and bag-of-words
representations can be sparse

e with relu, each feature represents a “detector” that fires when the
activation is positive

Yosinski, Clune, Nguyen Fuchs and Lipson. ICMLW 2015. Understanding Neural Networks Through Deep Visualization.



convolutional features are sparse*

e deep layers have more features (e.g. 1024) and lower resolutions (e.g.
7Tx7)

o detected patterns in many cases are as small as 3 x 3 or even 1 x 1

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



convolutional features are sparse*

deep layers have more features (e.g. 1024) and lower resolutions (e.g.
7TxT)

detected patterns in many cases are as small as 3 x 3 or even 1 x 1

the convolution operation resembles more (sparse) matrix
multiplication than convolution

this is not as efficient as dense multiplication on parallel hardware

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



inception module

input(7, 832)

pool(3,1,pl1)

| conv(1,384) | |conv(3,384,pl)| |conv(5,128,p2)|

concat

e naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



inception module
271,418,048 operations

input(7, 832)

pool(3,1,pl1)

| conv(1,384) | |conv(3,384,pl)| |conv(5,128,p2)|

concat

e naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

e but this expensive and dimension keeps increasing

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



inception module
70,800, 688 operations

input(7, 832)

|conv(1,192) | | conv(1,48) | pool(3,1,pl1)

| conv(1,384) | |conv(3,384,pl)| |conv(5,128,p2) | conv(1,128) |

concat

e naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

e but this expensive and dimension keeps increasing

e add dimension reduction to control cost, dimensions, and sparsity

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



inception module
70,800, 688 operations

input(7, 832)

|conv(1,192) | | conv(1,48) | pool(3,1,pl1)

| conv(1,384) | |conv(3,384,pl)| |conv(5,128,p2) | conv(1,128) |

concat

inc(384, (192, 384), (48,128), 128)|

e naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

but this expensive and dimension keeps increasing

add dimension reduction to control cost, dimensions, and sparsity

this is referred to as inception module

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



alternatively: low-rank decomposition®

e X (Y): input (output) features (columns = spatial positions)

e W: weights; h: activation function

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



alternatively: low-rank decomposition®

e X (Y): input (output) features (columns = spatial positions)
e W: weights; h: activation function

e low-rank approximation W ~ UV T; V is 1 x 1 spatially

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



alternatively: low-rank decomposition®

X (Y): input (output) features (columns = spatial positions)

W: weights; h: activation function

low-rank approximation W ~ UV "; V is 1 x 1 spatially
o X was sparse; V' X is not

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



alternatively: low-rank decomposition®

Y ~ b UvTx

X (Y): input (output) features (columns = spatial positions)

W weights; h: activation function

low-rank approximation W ~ UV "; V is 1 x 1 spatially
o X was sparse; V' X is not

(in fact, V also includes a non-linearity)

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.



GoogleNet

parameters operations volume
input (224, 3) 0 0 224x224x3
conv(7,64,p3, s2) 9,472 118,816,768 112 x 112 x 64
pool(3,2,p1) 0 802,816 56 x 56 x 64
conv(L, 64) 4,160 13,045,760 56 x 56 x 64
conv(3,192, pl) 110,784 347,418,624 56 x 56 x 192
pool(3,2,p1) 0 602,112 28 x 28 x 192
inc(64, (96,128), (16, 32), 32) 163,696 128,488,192 28 x 28 x 256
inc(128, (128,192), (32, 96), 64) 388,736 304,969,728 28 x 28 x 480
pool(3,2,pl) 0 376,320 14 x 14 x 480
[ inc(192,(96,208), (16,48),64) |— ave(5,3.p2) 376,176 73,824,576 14 x 14 x 512
[ inc(160, (112,224), (24,64),64) | | conv(1,128) | 449,160 88,135,712 14 x 14 x 512
inc(128, (128, 256), (24, 64), 6 ) fc(1024) 510,104 100,080,736 14 x 14 x 512
avg(5,3,p2) — inc(112, (144, 288), (32, 64), 64 £c(1000) 605,376 118,754,048 14 x 14 x 528
conv(1,128) | [linc(256, (160,320), (32, 128), 128) | softmax 868,352 170,300,480 14 x 14 x 832
fc(1024) pool(3,2,p1) 0 163,072 7x 7T x 832
fc(1000) [[inc(256, (160, 320), (32, 128), 128) | 1,043,456 51,170,112 7 x 7 x 832
softmax [[inc(384, (192, 384), (48,128),128) | 1,444,080 70,800,688 7 x 7 x 1024
avg(7) 0 50,176 1 x1x 1024
£¢(1000) 1,025,000 1,025,000 1,000

softmax 0 1,000 1,000




GoogleNet

input(224, 3)
conv(7,64,p3, s2)
pool(3,2, pl)
conv(1,64)
conv(3,192, pl)
pool(3,2,pl)

inc(64, (96, 128), (16, 32), 32)

inc(128, (128,192), (32, 96), 64) auxi |.|a.ry
pool(3,2,p1) classifier
. [ inc(192,(96,208), (16,48),64) |- ave(5,3.p2)
au><||_|a_ry [ inc(160, (112,224), (24,64),64) ||| conv(1,128) |
classifier Tnc(128, (128, 256), (24, 64),6 ) fo(1024)
avg(5,3,p2) —H inc(112, (144,288), (32,64), 64 fc(1000)
conv(1,128) [inc(256, (160, 320), (32,128), 128) | softmax
fc(1024) pool (3,2, pl)
fc(1000) [[inc(256, (160, 320), (32, 128), 128) |
softmax [[inc(384, (192, 384), (48,128),128) |

avg(7)
fc(1000)

softmax

parameters
0

9,472

0

4,160
110,784

0

163,696
388,736
0
376,176
449,160
510,104
605,376
868,352
0
1,043,456
1,444,080
0
1,025,000
0

operations
0

118,816, 768
802,816
13,045, 760
347,418,624
602,112
128,488,192
304,969, 728
376,320
73,824,576
88,135,712
100,080, 736
118,754,048
170,300, 480
163,072
51,170,112
70,800, 688
50,176
1,025,000
1,000

volume
224 x 224 x 3

112 x 112 x 64
56 x 56 x 64
56 x 56 x 64
56 x 56 x 192
28 x 28 x 192
28 x 28 x 256
28 x 28 x 480
14 x 14 x 480
14 x 14 x 512
14 x 14 x 512
14 x 14 x 512
14 x 14 x 528
14 x 14 x 832
T xTx832
7xTx832
7 xTx1024
1x1x1024
1,000
1,000
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top-5 error %
=
IS

network performance

. AlexNet

ZFNet

o GoogleNet

VGG-16

0 2 4 6 8 10 12

operations (x10°)

14

16

18
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summary

convolution = linearity + translation equivariance

sparse connections, weight sharing: fully connected — convolution
cross-correlation

feature maps: matrix multiplication and convolution combined

1 x 1 convolution

convolution as regularization, structured convolution

standard, padded*, strided*, dilated™; and their derivatives
pooling and invariance

deeper networks

LeNet-5, AlexNet, ZFNet*, VGG-16, NiN*, GooglLeNet
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