
lecture 7: convolution and network architectures
deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2019 – Jan. 2020

outline

fun
convolution
definition and properties
variants and their derivatives
pooling
more fun
network architectures

..

fun

CIFAR10 dataset

plane car bird cat deer dog frog horse ship truck

• 10 classes, 50k training images, 10k test images, 32 × 32 images

Krizhevsky and Hinton 2009. Learning Multiple Layers of Features From Tiny Images.

pipeline

prepare

• vectorize 32× 32× 3 images into 3072× 1

• split training set e.g. into ntrain = 45000 training samples and
nval = 5000 samples to be used for validation

• center vectors by subtracting mean over the training samples

• initialize network weights as Gaussian with standard deviation 10−4

learn

• train for a few iterations and evaluate accuracy on the validation set
for a number of learning rates ε and regularization strengths λ

• train for 10 epochs on the full training set for the chosen
hyperparameters

• evaluate accuracy on the test set

pipeline

prepare

• vectorize 32× 32× 3 images into 3072× 1

• split training set e.g. into ntrain = 45000 training samples and
nval = 5000 samples to be used for validation

• center vectors by subtracting mean over the training samples

• initialize network weights as Gaussian with standard deviation 10−4

learn

• train for a few iterations and evaluate accuracy on the validation set
for a number of learning rates ε and regularization strengths λ

• train for 10 epochs on the full training set for the chosen
hyperparameters

• evaluate accuracy on the test set

linear classifier validation accuracy

100 101 102 103 104 105

10−6

10−5

regularization strength λ

le
ar

n
in

g
ra

te
ε

0.1

0.2

0.3

• classes k = 10, samples ntrain = 45000, nval = 5000, mini-batch
m = 200, learning rate ε = 10−6, regularization strength λ = 5× 102

• test accuracy: 38%

linear classifier weights

plane car bird cat deer

dog frog horse ship truck

2-layer classifier validation accuracy

10−4 10−3 10−2 10−1 100 101 102

10−4

10−3

10−2

regularization strength λ

le
ar

n
in

g
ra

te
ε

0.1

0.2

0.3

0.4

• classes k = 10, samples ntrain = 45000, nval = 5000, mini-batch
m = 200, learning rate ε = 2× 10−3, regularization strength
λ = 2× 10−1

• hidden layer width: 100; test accuracy: 51%

two-layer classifier weights

layer 1 weights 0-49

two-layer classifier weights

layer 1 weights 50-99

two-layer classifier weights

layer 1 weights 100-149

two-layer classifier weights

layer 1 weights 150-199

learning rate

20 40 60 80 100 120 140 160 180 200
0

50

100

iteration

lo
ss

ε = 10−8 ε = 10−7

learning rate

20 40 60 80 100 120 140 160 180 200
0

50

100

iteration

lo
ss

ε = 10−8 ε = 10−7 ε = 10−6

ε = 10−5

learning rate

20 40 60 80 100 120 140 160 180 200
0

50

100

iteration

lo
ss

ε = 10−8 ε = 10−7 ε = 10−6

ε = 10−5 ε = 5× 10−5 ε = 10−4

setting hyperparameters
BERGSTRA ANDBENGIO

Grid Layout Random Layout

U
n
im

p
o
rt

a
n
t

p
a
ra

m
et

er

Important parameter

U
n
im

p
o
rt

a
n
t

p
a
ra

m
et

er

Important parameter

Figure 1: Grid and random search of nine trials for optimizing a functionf (x,y) = g(x)+h(y) ≈
g(x) with low effective dimensionality. Above each squareg(x) is shown in green, and
left of each squareh(y) is shown in yellow. With grid search, nine trials only testg(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turnout to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had beenused to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize whatΨ looks like for various data sets,
and establish an empirical link between the low effective dimensionality ofΨ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate andmore sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in futurework. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

• compared to grid search, random search allows to explore more values
of an important parameter regardless of unimportant parameters

• when the search spans orders of magnitude, draw samples uniformly at
random in log space

• start with coarse range and few iterations, gradually move to finer
range and more iterations

Bergstra and Bengio. JMLR 2012. Random Search for Hyper-Parameter Optimization.

..

convolution

input image representation

x

28× 28 784× 1

• the two-layer network we have learned on MNIST can easily classify
digits with less that 3% error, but learns more than actually required

• remember that for both MNIST and CIFAR10, we flattened images
(1-channel or 3-channel) into vectors, and the order of the elements
(pixels) plays no role in learning

• so what if we permute the elements in all images, both training and
test set?

input image representation

x

28× 28 784× 1

• the two-layer network we have learned on MNIST can easily classify
digits with less that 3% error, but learns more than actually required

• remember that for both MNIST and CIFAR10, we flattened images
(1-channel or 3-channel) into vectors, and the order of the elements
(pixels) plays no role in learning

• so what if we permute the elements in all images, both training and
test set?

shuffling the dimensions

shuffling the dimensions

shuffling the dimensions

• this is what the computer sees

• it must make more sense when you start looking at more than one
samples per class

shuffling the dimensions

remember receptive fields?

CAT VISUAL CORTEX

by two regions ofthe opposite type. In these fields the two flanking regions
were symmetrical, i.e. they were about equal in area and the responses
obtained from them were of about the same magnitude. In addition there
were fields with long narrow centres (excitatory or inhibitory) and asym-
metrical flanks. An example of an asymmetrical field with an inhibitory
centre is shown in Text-fig. 2E. The most effective stationary stimulus for
all of these celLs was a long narrow rectangle ('slit') of light just large

A c
4D* D

AX4

4

E FG
k~~~~

A~~~~~~~~~~~~~~At 4 A4-

Text-fig. 2. Common arrangements of lateral geniculate and cortical receptive
fields. A. 'On'-centre geniculate receptive field. B. 'Off'-centre geniculate recep-
tive field. 0-G. Various arrangements of simple cortical receptive fields. x,
areas giving excitatory responses ('on' responses); A, areas giving inhibitory re-
sponses ('off' responses). Receptive-field axes are shown by continuous lines
through field centres; in the figure these are all oblique, but each arrangement
occurs in all orientations.

enough to cover the central region without invading either flank. For
maximum centre response the orientation of the slit was critical; changing
the orientation by more than 5l10 was usually enough to reduce a re-
sponse greatly or even abolish it. Illuminating both flanks usually evoked
a strong response. If a slit having the same size as the receptive-field
centre was shone in either flanking area it evoked only a weak response,
since it covered only part of one flank. Diffuse light was ineffective, or at
most evoked only a very weak response, indicating that the excitatory and
inhibitory parts of the receptive field were very nearly balanced.

In these fields the equivalent but opposite-type regions occupied retinal

III

• A: ‘on’-center LGN; B: ‘off’-center LGN; C, D: simple cortical

• each cell only has a localized response over a receptive field

• ×: excitatory (‘on’), 4: inhibitory (‘off’) responses

• topographic mapping: there is one cell with the same response pattern
centered at each position

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex.

matrix multiplication

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• inputs x are mapped to activations W>x

• columns/rows of W> correspond to input/activation elements

matrix multiplication → fully connected

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• each row of W> yields one activation element (cell)

• each cell is fully connected to all input elements

matrix multiplication → fully connected

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• each row of W> yields one activation element (cell)

• each cell is fully connected to all input elements

matrix multiplication → fully connected

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• each row of W> yields one activation element (cell)

• each cell is fully connected to all input elements

matrix multiplication → fully connected

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• each row of W> yields one activation element (cell)

• each cell is fully connected to all input elements

matrix multiplication → fully connected

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• each row of W> yields one activation element (cell)

• each cell is fully connected to all input elements

sparse connections

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• now, we only keep a sparse set of connections

• and matrix W becomes sparse as well

sparse connections

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• now, we only keep a sparse set of connections

• and matrix W becomes sparse as well

sparse connections

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• now, we only keep a sparse set of connections

• and matrix W becomes sparse as well

sparse connections

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• now, we only keep a sparse set of connections

• and matrix W becomes sparse as well

sparse connections

x

×

W>x

28× 28 784× 1 100× 1

W>

100× 784

• now, we only keep a sparse set of connections

• and matrix W becomes sparse as well

Toeplitz matrix

x

×

W>x

28× 28 28× 1 26× 1

W>

26× 28

• now, we only refer to one input column; we will repeat

• and all weights having the same color are made equal (shared)

Toeplitz matrix → convolution

x

×

W>x

28× 28 28× 1 26× 1

W>

26× 28

• this can be seen as shifting the same weight triplet (kernel)

• the set of inputs seen by each cell is its receptive field

Toeplitz matrix → convolution

x

×

W>x

28× 28 28× 1 26× 1

W>

26× 28

• this can be seen as shifting the same weight triplet (kernel)

• the set of inputs seen by each cell is its receptive field

Toeplitz matrix → convolution

x

×

W>x

28× 28 28× 1 26× 1

W>

26× 28

• this can be seen as shifting the same weight triplet (kernel)

• the set of inputs seen by each cell is its receptive field

Toeplitz matrix → convolution

x

×

W>x

28× 28 28× 1 26× 1

W>

26× 28

• this can be seen as shifting the same weight triplet (kernel)

• the set of inputs seen by each cell is its receptive field

Toeplitz matrix → convolution

x

×

W>x

28× 28 28× 1 26× 1

W>

26× 28

• this can be seen as shifting the same weight triplet (kernel)

• the set of inputs seen by each cell is its receptive field

Toeplitz matrix → convolution

x

×

W>x

28× 28 28× 1 26× 1

W>

26× 28

• this is an 1d convolution and generalizes to 2d

• this new mapping is a convolutional layer

convolutional networks

convolutional layer

1 still linear, still matrix multiplication, just constrained

2 local receptive fields → sparse connections between units

3 translation equivariant → shared weights

4 sparse + shared → regularized: less parameters to learn

convolutional network

• a network of convolutional layers, optionally followed by
fully-connected layers

• performs better (less than 1% error on MNIST), but not on shuffled
input

convolutional networks

convolutional layer

1 still linear, still matrix multiplication, just constrained

2 local receptive fields → sparse connections between units

3 translation equivariant → shared weights

4 sparse + shared → regularized: less parameters to learn

convolutional network

• a network of convolutional layers, optionally followed by
fully-connected layers

• performs better (less than 1% error on MNIST), but not on shuffled
input

convolutional networks

convolutional layer

1 still linear, still matrix multiplication, just constrained

2 local receptive fields → sparse connections between units

3 translation equivariant → shared weights

4 sparse + shared → regularized: less parameters to learn

convolutional network

• a network of convolutional layers, optionally followed by
fully-connected layers

• performs better (less than 1% error on MNIST), but not on shuffled
input

..

definition and properties

linear time-invariant (LTI) system

• discrete-time signal: x[n], n ∈ Z
• system (filter): f(x)[n], n ∈ Z
• translation (or shift, or delay): sk(x)[n] = x[n− k], k ∈ Z
• linear system: commutes with linear combination

f

(∑

i

aixi

)
=
∑

i

aif(xi)

• time-invariant system: commutes with translation

f(sk(x)) = sk(f(x))

linear time-invariant (LTI) system

• discrete-time signal: x[n], n ∈ Z
• system (filter): f(x)[n], n ∈ Z
• translation (or shift, or delay): sk(x)[n] = x[n− k], k ∈ Z
• linear system: commutes with linear combination

f

(∑

i

aixi

)
=
∑

i

aif(xi)

• time-invariant system: commutes with translation

f(sk(x)) = sk(f(x))

LTI system ≡ convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

LTI system ≡ convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

LTI system ≡ convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

LTI system ≡ convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

LTI system ≡ convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

LTI system ≡ convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

LTI system ≡ convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

1d convolution

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

h

−6 −4 −2 0 2 4 6
0

0.2
0.4
0.6
0.8
1

x

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

x
∗
h

invariance vs. equivariance

• time invariance: invariance to absolute time (or position)

• translation (or shift) equivariance: equivariance to relative time (or
position)

• despite confusion, both mean the same thing: system commutes with
translation

f(sk(x)) = sk(f(x))

however

• translation (or shift) invariance, means that for all k,

f(sk(x)) = f(x)

• each convolutional layer is translation equivariant; but pooling makes
a network translation invariant, e.g.

∑

n

sk(x)[n] =
∑

n

x[n− k] =
∑

n

x[n]

invariance vs. equivariance

• time invariance: invariance to absolute time (or position)

• translation (or shift) equivariance: equivariance to relative time (or
position)

• despite confusion, both mean the same thing: system commutes with
translation

f(sk(x)) = sk(f(x))

however

• translation (or shift) invariance, means that for all k,

f(sk(x)) = f(x)

• each convolutional layer is translation equivariant; but pooling makes
a network translation invariant, e.g.

∑

n

sk(x)[n] =
∑

n

x[n− k] =
∑

n

x[n]

finite impulse response (FIR)

• an FIR system has impulse response h of finite duration (or spatial
extent), because it settles to zero in finite time (extent) from the
input impulse

• “sparse connections and local receptive fields” mean exactly that h is
of finite duration (extent)

• we assume this in the following, starting with a 2d extension, where
we write x[n], n ∈ Z2

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

2d convolution

7

4

1

8

5

2

9

6

3

h

(x ∗ h)[n] =
∑

k

x[k]h[n− k]

=
∑

k

h[k]x[n− k]

3

6

9

2

5

8

1

4

7

x x ∗ h

cross-correlation

• convolution is commutative

(x ∗ h)[n] :=
∑

k

x[k]h[n− k] =
∑

k

h[k]x[n− k] = (h ∗ x)[n]

• cross-correlation is not

(h ? x)[n] :=
∑

k

h[k]x[k+ n] =
∑

k

x[k]h[k− n] = (x ? h)[−n]

• both are LTI; the only difference is that in cross-correlation, h refers
to the flipped impulse response

• but if h is even (h[n] = h[−n]), then h ? x = x ∗ h = h ∗ x
• in the following, we use cross-correlation w ? x or convolution x ∗ h,

where h[n] = w[−n] is the impulse response

• we call w the kernel of the operation

cross-correlation

• convolution is commutative

(x ∗ h)[n] :=
∑

k

x[k]h[n− k] =
∑

k

h[k]x[n− k] = (h ∗ x)[n]

• cross-correlation is not

(h ? x)[n] :=
∑

k

h[k]x[k+ n] =
∑

k

x[k]h[k− n] = (x ? h)[−n]

• both are LTI; the only difference is that in cross-correlation, h refers
to the flipped impulse response

• but if h is even (h[n] = h[−n]), then h ? x = x ∗ h = h ∗ x
• in the following, we use cross-correlation w ? x or convolution x ∗ h,

where h[n] = w[−n] is the impulse response

• we call w the kernel of the operation

cross-correlation

• convolution is commutative

(x ∗ h)[n] :=
∑

k

x[k]h[n− k] =
∑

k

h[k]x[n− k] = (h ∗ x)[n]

• cross-correlation is not

(h ? x)[n] :=
∑

k

h[k]x[k+ n] =
∑

k

x[k]h[k− n] = (x ? h)[−n]

• both are LTI; the only difference is that in cross-correlation, h refers
to the flipped impulse response

• but if h is even (h[n] = h[−n]), then h ? x = x ∗ h = h ∗ x
• in the following, we use cross-correlation w ? x or convolution x ∗ h,

where h[n] = w[−n] is the impulse response

• we call w the kernel of the operation

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

2d convolution, again

7

4

1

8

5

2

9

6

3

w

(w ? x)[n] =
∑

k

w[k]x[k+ n]

=
∑

k

x[k]w[k− n]

7

4

1

8

5

2

9

6

3

x w ? x

features

• something is still missing: so far we had activations a and outputs y
of the form

a =W>x+ b, y = h(a) = h(W>x+ b)

where x is the input, W = (w1, . . . ,wk) a weight matrix and b a bias

• the elements of x, a, b and y were representing features (or cells);
the elements of W were representing connections

• now we have x as a 2d array, w as a 2d kernel, but no features yet

feature maps

• now b remains a vector but x, a, y become 3d tensors with input
feature i and output feature j at spatial position n denoted by

xi[n], aj [n], bj , yj [n]

• xi and yj are 2d arrays we call feature maps, each corresponding to
one feature; and aj a 2d array we call activation map

• if xi refers to the input image, there is just one feature that is the
image intensity of a grayscale image, or three features corresponding
to the three channels of a color image

• W becomes a 4d tensor with a connection from input feature i to
output feature j at spatial position k represented by

wij [k]

feature maps

• now b remains a vector but x, a, y become 3d tensors with input
feature i and output feature j at spatial position n denoted by

xi[n], aj [n], bj , yj [n]

• xi and yj are 2d arrays we call feature maps, each corresponding to
one feature; and aj a 2d array we call activation map

• if xi refers to the input image, there is just one feature that is the
image intensity of a grayscale image, or three features corresponding
to the three channels of a color image

• W becomes a 4d tensor with a connection from input feature i to
output feature j at spatial position k represented by

wij [k]

convolution on feature maps

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron x y

i j

• matrix multiplication and convolution combined

a =W> ? x+ b, y = h(a) = h(W> ? x+ b)

(W> ?x)j [n] = (w>j ?x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

convolution on feature maps

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron x y

i j

• matrix multiplication and convolution combined

a =W> ? x+ b, y = h(a) = h(W> ? x+ b)

(W> ?x)j [n] = (w>j ?x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

convolution on feature maps

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron x y

i j

• matrix multiplication and convolution combined

a =W> ? x+ b, y = h(a) = h(W> ? x+ b)

(W> ?x)j [n] = (w>j ?x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

convolution on feature maps

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron x y

i j

• matrix multiplication and convolution combined

a =W> ? x+ b, y = h(a) = h(W> ? x+ b)

(W> ?x)j [n] = (w>j ?x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

convolution on feature maps

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron x y

i j

• matrix multiplication and convolution combined

a =W> ? x+ b, y = h(a) = h(W> ? x+ b)

(W> ?x)j [n] = (w>j ?x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

convolution on feature maps

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron x y

i j

• matrix multiplication and convolution combined

a =W> ? x+ b, y = h(a) = h(W> ? x+ b)

(W> ?x)j [n] = (w>j ?x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

convolution on feature maps

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron x y

i j

• matrix multiplication and convolution combined

a =W> ? x+ b, y = h(a) = h(W> ? x+ b)

(W> ?x)j [n] = (w>j ?x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+n]

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

convolution on feature maps

different kernel for
each output dimension

kernel w3

input x output y3 = h(w>3 ? x+ b3)

convolution on feature maps

different kernel for
each output dimension

kernel w4

input x output y4 = h(w>4 ? x+ b4)

convolution on feature maps

different kernel for
each output dimension

kernel w5

input x output y5 = h(w>5 ? x+ b5)

1× 1 convolution

• if W has no spatial extent, it becomes a 2d matrix again

(w>j ? x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+ n]

=
∑

i

wijxi[n] = w>j x[n]

• the operation becomes a matrix multiplication just as in
fully-connected layers, but now it is performed independently at each
spatial location

(W> ? x)[n] =W>x[n]

W> ? x =W>x

1× 1 convolution

• if W has no spatial extent, it becomes a 2d matrix again

(w>j ? x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+ n]

=
∑

i

wijxi[n] = w>j x[n]

• the operation becomes a matrix multiplication just as in
fully-connected layers, but now it is performed independently at each
spatial location

(W> ? x)[n] =W>x[n]

W> ? x =W>x

1× 1 convolution

• if W has no spatial extent, it becomes a 2d matrix again

(w>j ? x)[n] :=
∑

i

(wij ? xi)[n] =
∑

i,k

wij [k]xi[k+ n]

=
∑

i

wijxi[n] = w>j x[n]

• the operation becomes a matrix multiplication just as in
fully-connected layers, but now it is performed independently at each
spatial location

(W> ? x)[n] =W>x[n]

W> ? x =W>x

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

kernel weights shared
among all spatial positions

kernel w1

input x output y1 = h(w>1 ? x+ b1)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

new kernel, but still shared
among all spatial positions

kernel w2

input x output y2 = h(w>2 ? x+ b2)

1× 1 convolution

different kernel for
each output dimension

kernel w3

input x output y3 = h(w>3 ? x+ b3)

1× 1 convolution

different kernel for
each output dimension

kernel w4

input x output y4 = h(w>4 ? x+ b4)

1× 1 convolution

different kernel for
each output dimension

kernel w5

input x output y5 = h(w>5 ? x+ b5)

convolution as regularization

• suppose a fully connected layer is given by

a =

(
w1 w2 w3

w4 w5 w6

)
x

• now if we add the following term to our error function

λ

2

(
(w6 − w2)

2 + (w5 − w1)
2 + w2

3 + w2
4

)

then, as λ→∞, the weight matrix tends to the constrained Toeplitz
form (

w1 w2 0
0 w1 w2

)

and the layer becomes convolutional

convolution as regularization

• suppose a fully connected layer is given by

a =

(
w1 w2 w3

w4 w5 w6

)
x

• now if we add the following term to our error function

λ

2

(
(w6 − w2)

2 + (w5 − w1)
2 + w2

3 + w2
4

)

then, as λ→∞, the weight matrix tends to the constrained Toeplitz
form (

w1 w2 0
0 w1 w2

)

and the layer becomes convolutional

convolution as Gaussian mixture prior∗

• remember, weight decay is equivalent to a zero-centered Gaussian
prior if the weight vector/matrix is considered a random variable

• in this analogy, error term

λ

2

(
(w6 − w2)

2 + (w5 − w1)
2 + w2

3 + w2
4

)

corresponds to two Gaussian priors centered at w1, w2 for w5, w6 and
one zero-centered Gaussian for w3, w4

• that is, a Gaussian mixture prior

structured convolution∗
[Jacobsen et al. 2016]

the basis based on the requirement that one can construct
quadrature pair filters as suggested by Scattering and by
evidence from Scale-space theory [12] that considers all
orders up to a maximum of 4, as it has been suggested that
orders beyond that do not carry any information meaningful
to visual perception.

3.2. Transformation properties of the basis

The isotropic Gaussian derivatives exhibit multiple de-
sirable properties. It is possible to create complex multi-
orientation pyramids that constitute wavelet representations
similar to the Morlet Wavelet pyramids used in Scattering
Networks [2]. A complex multiresolution filterbank can
be constructed from a dilated and rotated Gaussian deriva-
tive quadrature. The exact dilated versions of an arbitrary
Gaussian derivative Gm can be obtained through convolu-
tion with a Gaussian kernel of scale σ = n according to

Gm(.;
√
j2 + n2) = Gm(.; j) ∗G(.;n). (4)

Arbitrary rotations of Gaussian derivative kernels can be ob-
tained from a minimal set of basis filters without the need to
rotate the basis itself. This property is referred to as steer-
ability [6]. Steerability is a property of all functions that can
be expressed in a polynomial in x and y times an isotropic
Gaussian. This certainly holds for the Gaussian derivatives
according to equation 3. For example a quadrature pair of
2nd and 3rd order Gaussian derivatives Gxx and Gxxx ro-
tated by an angle θ can be obtained from a minimal 3 and 4
x-y separable basis set given by

Gxxθ = cos2(θ)Gxx − 2 cos(θ) sin(θ)Gxy + sin2(θ)Gyy

Gxxxθ = cos3(θ)Gxxx − 3 cos2(θ) sin(θ)Gxxy

+3 cos(θ) sin2(θ)Gxyy − sin3(θ)Gyyy

(5)

A general derivation of the minimal basis set necessary for
steering arbitrary orders can be found in [6]. Note that the
anisotropic case can be constructed in analogous manner
according to [26]. This renders Scattering as a special case
of the RFNN for fixed angles and scales, given a proper
choice of pooling operations and possibly skip connections
to closely resemble the architecture described in [2]. In
practice this allows for seamless integration of the Scatter-
ing concept into CNNs to achieve a variety of hybrid archi-
tectures.

3.3. Learning basis filter parameters

Learning a feature representation boils down to convo-
lution kernel learning. Where a classical CNN learns pixel
values of the convolutional kernel, a RFNN learns Gaus-
sian derivative basis function weights that combine to a

Algorithm 1 RFNN Learning - updating the parameters αlij
between input map indexed by i and output map indexed by
j of layer l in the Mini-batch Gradient Decent framework.

1: Input: input feature maps ol−1i for each training sam-
ple (computed for the previous layer, ol−1 is the input
image when l = 1), corresponding ground-truth labels
{y1, y2, . . . , yK}, the basic kernels {φ1, φ2, . . . , φM},
previous parameter αlij .

2: compute the convolution {ζ1, ζ2, . . . , ζm} of {ol−1i}
respect to the basic kernels {φ1, φ2, . . . , φM}

3: obtain the output map olj = αlij1 · ζ1 + αlij2 · ζ2 + ...+

αlijM · ζM
4: compute the δljn for each output neuron n of the output

map olj
5: compute the derivative ψ′(tljn) of the activation func-

tion
6: compute the gradient ∂E

∂αl
ij

respect to the weights αlij

7: update parameter αlij = αlij − r · 1
K ·

∑K
k=1[

∂E
∂αl

ij

]k, r
is the learning rate

8: Output: αlij , the output feature maps olj

Figure 3: An illustration of the basic building block in an
RFNN network. A linear comibination of a limited basis
filter set φm yields an arbitrary number of effective filters.
The weights αij are learned by the network.

convolution kernel function. A 2D filter kernel function
F (x, y) in all layers, is a linear combination of i unique
(non-symmetric) Gaussian derivative basis functions φ

F (x, y) = α1φ1 + · · ·+ αnφi, (6)

where α1, ..., αi are the parameters being learned.
We learn the filter’s weights α by mini-batch stochas-

tic gradient descent and compute the derivatives of the loss
function E with respect to the parameters α through back-
propagation. It is straightforward to show the independence
between the basis weights α and the actual basis (see Ap-
pendix for derivation). Thus, we formulate the basis learn-

• we can constrain parameters even more by considering a fixed basis of
streerable filters consisting of separable Gaussian derivatives

• the network then only learns the parameters needed to construct a
filter as a linear combination of the basis filters

• this applies to all layers

Jacobsen, van Gemert, Lou and Smeulders. CVPR 2016. Structured Receptive Fields in CNNs.

..

variants and their derivatives

convolution variants

• we will examine a number of variants of convolution, each only in one
dimension

• this leaves an extension to one more spatial dimension (convolution),
and one more feature dimension (matrix multiplication)

• in each case, we will write convolution as matrix multiplication, where
the matrix has some special structure: derivatives are then
straightforward

standard convolution

• input size n, kernel size r, output size n′

x n = 7, r = 3

a = w ? x n′ = n− r + 1 = 5

• written as matrix multiplication

a =W> · x




a1
a2
a3
a4
a5




=




w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3



·




x1
x2
x3
x4
x5
x6
x7




standard convolution

• input size n, kernel size r, output size n′

x 1 2 3 n = 7, r = 3

a = w ? x n′ = n− r + 1 = 5

• written as matrix multiplication

a =W> · x




a1
a2
a3
a4
a5




=




w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3



·




x1
x2
x3
x4
x5
x6
x7




standard convolution

• input size n, kernel size r, output size n′

x 1 2 3 n = 7, r = 3

a = w ? x n′ = n− r + 1 = 5

• written as matrix multiplication

a =W> · x




a1
a2
a3
a4
a5




=




w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3



·




x1
x2
x3
x4
x5
x6
x7




standard convolution

• input size n, kernel size r, output size n′

x 1 2 3 n = 7, r = 3

a = w ? x n′ = n− r + 1 = 5

• written as matrix multiplication

a =W> · x




a1
a2
a3
a4
a5




=




w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3



·




x1
x2
x3
x4
x5
x6
x7




standard convolution

• input size n, kernel size r, output size n′

x 1 2 3 n = 7, r = 3

a = w ? x n′ = n− r + 1 = 5

• written as matrix multiplication

a =W> · x




a1
a2
a3
a4
a5




=




w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3



·




x1
x2
x3
x4
x5
x6
x7




standard convolution

• input size n, kernel size r, output size n′

x 1 2 3 n = 7, r = 3

a = w ? x n′ = n− r + 1 = 5

• written as matrix multiplication

a =W> · x




a1
a2
a3
a4
a5




=




w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3



·




x1
x2
x3
x4
x5
x6
x7




standard convolution: input derivative

• in general, C = AB → dA = (dC)B>, dB = A>dC

• here, a =W>x: derivative with respect to input x

dx =W · da

d




x1
x2
x3
x4
x5
x6
x7




=




w1

w2 w1

w3 w2 w1

w3 w2 w1

w3 w2 w1

w3 w2

w3




· d




a1
a2
a3
a4
a5




standard convolution: weight derivative

• in general, C = AB → dA = (dC)B>, dB = A>dC

• here, a =W>x: derivative with respect to weights W

dW = x · da>

dW =




x1
x2
x3
x4
x5
x6
x7




· d
(
a1 a2 a3 a4 a5

)

• this is not convenient: we really want dw = (dw1, dw2, dw3)

• if dai = 1[i = 4], then dw = (x4, x5, x6): we learn the pattern that
generated the activation

standard convolution: weight derivative

• in general, C = AB → dA = (dC)B>, dB = A>dC

• here, a =W>x: derivative with respect to weights W

dW = x · da>

d




w1

w2 w1

w3 w2 w1

w3 w2 w1

w3 w2 w1

w3 w2

w3




=




x1
x2
x3
x4
x5
x6
x7




· d
(
a1 a2 a3 a4 a5

)

• this is not convenient: we really want dw = (dw1, dw2, dw3)

• if dai = 1[i = 4], then dw = (x4, x5, x6): we learn the pattern that
generated the activation

standard convolution: weight derivative

• in general, C = AB → dA = (dC)B>, dB = A>dC

• here, a =W>x: derivative with respect to weights W

dw = da ? x

d




w1

w2

w3


 = d




a1 a2 a3 a4 a5
a1 a2 a3 a4 a5

a1 a2 a3 a4 a5


 ·




x1
x2
x3
x4
x5
x6
x7




• sharing in forward ≡ adding in backward

• if dai = 1[i = 4], then dw = (x4, x5, x6): we learn the pattern that
generated the activation

standard convolution: weight derivative

• in general, C = AB → dA = (dC)B>, dB = A>dC

• here, a =W>x: derivative with respect to weights W

dw = da ? x

d




w1

w2

w3


 = d




a1 a2 a3 a4 a5
a1 a2 a3 a4 a5

a1 a2 a3 a4 a5


 ·




x1
x2
x3
x4
x5
x6
x7




• sharing in forward ≡ adding in backward

• if dai = 1[i = 4], then dw = (x4, x5, x6): we learn the pattern that
generated the activation

padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) 1 2 3 n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) 1 2 3 n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) 1 2 3 n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) 1 2 3 n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) 1 2 3 n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) 1 2 3 n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padded convolution∗

• input size n, kernel size r, padding p, padded input x(p) = (0p;x;0p),
output size n′

x(p) 1 2 3 n = 7, r = 3, p = 1

a = w ? x(p) n′ = (n+ 2p)− r + 1 = 7

• written as matrix multiplication

a =W> · x



a1
a2
a3
a4
a5
a6
a7




=




w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2




·




x1
x2
x3
x4
x5
x6
x7




padding preserves size

• if kernel size r = 2`+ 1 and p = `, then n′ = n+ 2p− r + 1 = n and
the size is preserved

• over several layers:

p = 0 p = 1

L1

L2

L3

padding preserves size

• if kernel size r = 2`+ 1 and p = `, then n′ = n+ 2p− r + 1 = n and
the size is preserved

• over several layers:

p = 0 p = 1

L1

L2

L3

padding preserves size

• if kernel size r = 2`+ 1 and p = `, then n′ = n+ 2p− r + 1 = n and
the size is preserved

• over several layers:

p = 0 p = 1

L1

L2

L3

strided convolution (down-sampling)∗

• input size n, kernel size r, stride s, output size n′

x n = 7, r = 3, s = 2

a = (w ? x) ↓s n′ = b(n− r)/sc+ 1 = 3

• like standard convolution followed by down-sampling, but efficient

• written as matrix multiplication (rows sub-sampled)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




strided convolution (down-sampling)∗

• input size n, kernel size r, stride s, output size n′

x 1 2 3 n = 7, r = 3, s = 2

a = (w ? x) ↓s n′ = b(n− r)/sc+ 1 = 3

• like standard convolution followed by down-sampling, but efficient

• written as matrix multiplication (rows sub-sampled)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




strided convolution (down-sampling)∗

• input size n, kernel size r, stride s, output size n′

x 1 2 3 n = 7, r = 3, s = 2

a = (w ? x) ↓s n′ = b(n− r)/sc+ 1 = 3

• like standard convolution followed by down-sampling, but efficient

• written as matrix multiplication (rows sub-sampled)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




strided convolution (down-sampling)∗

• input size n, kernel size r, stride s, output size n′

x 1 2 3 n = 7, r = 3, s = 2

a = (w ? x) ↓s n′ = b(n− r)/sc+ 1 = 3

• like standard convolution followed by down-sampling, but efficient

• written as matrix multiplication (rows sub-sampled)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




strided convolution: input derivative∗

• in general, C = AB → dA = (dC)B>, dB = A>dC

• here, a =W>x: derivative with respect to input x

dx =W · da

d




x1
x2
x3
x4
x5
x6
x7




=




w1

w2

w3 w1

w2

w3 w1

w2

w3




· d




a1
a2
a3




strided convolution: weight derivative∗

• in general, C = AB → dA = (dC)B>, dB = A>dC

• here, a =W>x: derivative with respect to weights W

dW = x · da>

d




w1

w2

w3


 = d




a1 a2 a3
a1 a2 a3

a1 a2 a3


 ·




x1
x2
x3
x4
x5
x6
x7




• again e.g. by writing W as a function of w = (w1, w2, w3) and
applying the chain rule, or by just observing the moving pattern

dilated convolution (up-sampling)∗

• input size n, kernel size r, dilation factor t, effective kernel size
r̂ = r + (r − 1)(t− 1), output size n′

x n = 7, r = 3, t = 2

a = w ↑t ?x n′ = n− r̂ + 1 = 3

• written as matrix multiplication (like strided backward!)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




dilated convolution (up-sampling)∗

• input size n, kernel size r, dilation factor t, effective kernel size
r̂ = r + (r − 1)(t− 1), output size n′

x 1 2 3 n = 7, r = 3, t = 2

a = w ↑t ?x n′ = n− r̂ + 1 = 3

• written as matrix multiplication (like strided backward!)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




dilated convolution (up-sampling)∗

• input size n, kernel size r, dilation factor t, effective kernel size
r̂ = r + (r − 1)(t− 1), output size n′

x 1 2 3 n = 7, r = 3, t = 2

a = w ↑t ?x n′ = n− r̂ + 1 = 3

• written as matrix multiplication (like strided backward!)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




dilated convolution (up-sampling)∗

• input size n, kernel size r, dilation factor t, effective kernel size
r̂ = r + (r − 1)(t− 1), output size n′

x 1 2 3 n = 7, r = 3, t = 2

a = w ↑t ?x n′ = n− r̂ + 1 = 3

• written as matrix multiplication (like strided backward!)

a =W> · x




a1
a2
a3


 =




w1 w2 w3

w1 w2 w3

w1 w2 w3


 ·




x1
x2
x3
x4
x5
x6
x7




dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 1

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

1 2 3

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 1

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

1 2 3

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 1

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

1 2 3

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 1

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

1 2 3

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 1

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

1 2 3

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 1

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

dilated convolution (up-sampling)

• suppose a filter has been trained at a given resolution

• à trous algorithm: given an input at twice the resolution, apply the
same filter dilated by a factor of 2

1 1 1 1 1 1 11 2 3

Yu and Koltun. ICLR 2016. Multi-Scale Context Aggregation By Dilated Convolutions.

convolutional layer arithmetic∗

• input volume v = w × h× k
• hyperparameters k′ filters, kernel size r, padding p, stride s, dilation

factor t

• effective kernel size r̂ = r + (r − 1)(t− 1)

• output volume v′ = w′ × h′ × k′ with

w′ = b(w + 2p− r̂)/sc+ 1

h′ = b(h+ 2p− r̂)/sc+ 1

• r2kk′ weights, k′ biases, (r2k + 1)k′ parameters in total

• (r2k + 1)v′ = (r2k + 1)k′ × w′ × h′ operations in total

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

convolutional layer arithmetic∗

• input volume v = w × h× k
• hyperparameters k′ filters, kernel size r, padding p, stride s, dilation

factor t

• effective kernel size r̂ = r + (r − 1)(t− 1)

• output volume v′ = w′ × h′ × k′ with

w′ = b(w + 2p− r̂)/sc+ 1

h′ = b(h+ 2p− r̂)/sc+ 1

• r2kk′ weights, k′ biases, (r2k + 1)k′ parameters in total

• (r2k + 1)v′ = (r2k + 1)k′ × w′ × h′ operations in total

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html

..

pooling

spatial pooling

195

visuo[oreo 9l< QSsOCiQtion o r e o - -

lower-order --,. higher-order .-,. ~ .grandmother
retino - - , - L G B --,. simple ~ complex --,. hypercomplex hypercomplex " - - cell '~

F- 3 I-- l r
I I I I 11

Uo ', ~' Usl -----> Ucl t~-~i Us2~ Uc2 ~ Us3----* Uc3 T
[I L ~ L J

Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron

shifted in parallel from cell to cell. Hence, all the cells in
a single cell-plane have receptive fields of the same
function, but at different positions.

We will use notations Us~(k~,n) to represent the
output of an S-cell in the kr th S-plane in the l-th
module, and Ucl(k~, n) to represent the output of a C-cell
in the kr th C-plane in that module, where n is the two-
dimensional co-ordinates representing the position of
these cell's receptive fields in the input layer.

Figure 2 is a schematic diagram illustrating the
interconnections between layers. Each tetragon drawn
with heavy lines represents an S-plane or a C-plane,
and each vertical tetragon drawn with thin lines, in
which S-planes or C-planes are enclosed, represents an
S-layer or a C-layer.

In Fig. 2, a cell of each layer receives afferent
connections from the cells within the area enclosed by
the elipse in its preceding layer. To be exact, as for the
S-cells, the elipses in Fig. 2 does not show the connect-
ing area but the connectable area to the S-cells. That is,
all the interconnections coming from the elipses are
not always formed, because the synaptic connections
incoming to the S-cells have plasticity.

In Fig. 2, for the sake of simplicity of the figure,
only one cell is shown in each cell-plane. In fact, all the
cells in a cell-plane have input synapses of the same
spatial distribution as shown in Fig. 3, and only the
positions of the presynaptic cells are shifted in parallel
from cell to cell.

R3 ~I

modifioble synapses

) unmodifiable synopses

Since the cells in the network are interconnected in
a cascade as shown in Fig. 2, the deeper the layer is, the
larger becomes the receptive field of each cell of that
layer. The density of the cells in each cell-plane is so
determined as to decrease in accordance with the
increase of the size of the receptive fields. Hence, the
total number of the cells in each cell-plane decreases
with the depth of the cell-plane in the network. In the
last module, the receptive field of each C-cell becomes
so large as to cover the whole area of input layer U0,
and each C-plane is so determined as to have only one
C-cell.

The S-cells and C-cells are excitatory cells. That is,
all the efferent synapses from these cells are excitatory.
Although it is not shown in Fig. 2, we also have

Fig. 3. Illustration showing the input interconnections to the cells
within a single cell-plane

Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

• the deeper a layer is, the larger becomes the receptive field of each
cell and the density of cells decreases accordingly

• gradually introduces translation and deformation invariance

• pooling is independent per feature map and connections are fixed

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.

spatial pooling

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

spatial pooling

3

1

4

2

n = 6, r = 2, s = 2 n′ = bn/sc = 3

• same “sliding window” as in convolution, only has no parameters and
performs orderless pooling rather than dot product per neighborhood,
e.g. average or max

• no padding but usually stride s > 1

• typically, r = s such that n′ = b(n− r)/sc+ 1 = bn/sc

feature pooling e.g. maxout

Maxout Networks

a series of hidden layers h = {h(1), . . . , h(L)}. Dropout
trains an ensemble of models consisting of the set of
all models that contain a subset of the variables in
both v and h. The same set of parameters θ is used
to parameterize a family of distributions p(y | v; θ, µ)
where µ ∈M is a binary mask determining which vari-
ables to include in the model. On each presentation of
a training example, we train a different sub-model by
following the gradient of log p(y | v; θ, µ) for a different
randomly sampled µ. For many parameterizations of p
(such as most multilayer perceptrons) the instantiation
of different sub-models p(y | v; θ, µ) can be obtained by
elementwise multiplication of v and h with the mask
µ. Dropout training is similar to bagging (Breiman,
1994), where many different models are trained on dif-
ferent subsets of the data. Dropout training differs
from bagging in that each model is trained for only
one step and all of the models share parameters. For
this training procedure to behave as if it is training an
ensemble rather than a single model, each update must
have a large effect, so that it makes the sub-model in-
duced by that µ fit the current input v well.

The functional form becomes important when it comes
time for the ensemble to make a prediction by aver-
aging together all the sub-models’ predictions. Most
prior work on bagging averages with the arithmetic
mean, but it is not obvious how to do so with the
exponentially many models trained by dropout. For-
tunately, some model families yield an inexpensive ge-
ometric mean. When p(y | v; θ) = softmax(vTW + b),
the predictive distribution defined by renormalizing
the geometric mean of p(y | v; θ, µ) over M is simply
given by softmax(vTW/2+b). In other words, the aver-
age prediction of exponentially many sub-models can
be computed simply by running the full model with
the weights divided by 2. This result holds exactly
in the case of a single layer softmax model. Previous
work on dropout applies the same scheme in deeper ar-
chitectures, such as multilayer perceptrons, where the
W/2 method is only an approximation to the geometric
mean. The approximation has not been characterized
mathematically, but performs well in practice.

3. Description of maxout
The maxout model is simply a feed-forward achitec-
ture, such as a multilayer perceptron or deep convo-
lutional neural network, that uses a new type of ac-
tivation function: the maxout unit. Given an input
x ∈ Rd (x may be v, or may be a hidden layer’s state),
a maxout hidden layer implements the function

hi(x) = max
j∈[1,k]

zij

where zij = xTW···ij + bij , and W ∈ Rd×m×k and
b ∈ Rm×k are learned parameters. In a convolutional
network, a maxout feature map can be constructed
by taking the maximum across k affine feature maps
(i.e., pool across channels, in addition spatial loca-
tions). When training with dropout, we perform the
elementwise multiplication with the dropout mask im-
mediately prior to the multiplication by the weights in
all cases–we do not drop inputs to the max operator.
A single maxout unit can be interpreted as making a
piecewise linear approximation to an arbitrary convex
function. Maxout networks learn not just the rela-
tionship between hidden units, but also the activation
function of each hidden unit. See Fig. 1 for a graphical
depiction of how this works.

x

h
i
(x

)

Rectifier

x

h
i
(x

)

Absolute value

x

h
i
(x

)

Quadratic

Figure 1. Graphical depiction of how the maxout activa-
tion function can implement the rectified linear, absolute
value rectifier, and approximate the quadratic activation
function. This diagram is 2D and only shows how max-
out behaves with a 1D input, but in multiple dimensions a
maxout unit can approximate arbitrary convex functions.

Maxout abandons many of the mainstays of traditional
activation function design. The representation it pro-
duces is not sparse at all (see Fig. 2), though the
gradient is highly sparse and dropout will artificially
sparsify the effective representation during training.
While maxout may learn to saturate on one side or
the other this is a measure zero event (so it is almost
never bounded from above). While a significant pro-
portion of parameter space corresponds to the function
being bounded from below, maxout is not constrained
to learn to be bounded at all. Maxout is locally lin-
ear almost everywhere, while many popular activation
functions have signficant curvature. Given all of these
departures from standard practice, it may seem sur-
prising that maxout activation functions work at all,
but we find that they are very robust and easy to train
with dropout, and achieve excellent performance.

4. Maxout is a universal approximator
A standard MLP with enough hidden units is a uni-
versal approximator. Similarly, maxout networks are
universal approximators. Provided that each individ-
ual maxout unit may have arbitrarily many affine com-
ponents, we show that a maxout model with just two
hidden units can approximate, arbitrarily well, any

• unlike most activation functions that are element-wise, maxout groups
several (e.g. k) activations together and takes their maximum

a = max
j

w>j x+ bj

• does not saturate or “die”, but increases the cost by k

• can approximate any convex function

• two such units can approximate any smooth function!

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.

feature pooling e.g. maxout

Maxout Networks

a series of hidden layers h = {h(1), . . . , h(L)}. Dropout
trains an ensemble of models consisting of the set of
all models that contain a subset of the variables in
both v and h. The same set of parameters θ is used
to parameterize a family of distributions p(y | v; θ, µ)
where µ ∈M is a binary mask determining which vari-
ables to include in the model. On each presentation of
a training example, we train a different sub-model by
following the gradient of log p(y | v; θ, µ) for a different
randomly sampled µ. For many parameterizations of p
(such as most multilayer perceptrons) the instantiation
of different sub-models p(y | v; θ, µ) can be obtained by
elementwise multiplication of v and h with the mask
µ. Dropout training is similar to bagging (Breiman,
1994), where many different models are trained on dif-
ferent subsets of the data. Dropout training differs
from bagging in that each model is trained for only
one step and all of the models share parameters. For
this training procedure to behave as if it is training an
ensemble rather than a single model, each update must
have a large effect, so that it makes the sub-model in-
duced by that µ fit the current input v well.

The functional form becomes important when it comes
time for the ensemble to make a prediction by aver-
aging together all the sub-models’ predictions. Most
prior work on bagging averages with the arithmetic
mean, but it is not obvious how to do so with the
exponentially many models trained by dropout. For-
tunately, some model families yield an inexpensive ge-
ometric mean. When p(y | v; θ) = softmax(vTW + b),
the predictive distribution defined by renormalizing
the geometric mean of p(y | v; θ, µ) over M is simply
given by softmax(vTW/2+b). In other words, the aver-
age prediction of exponentially many sub-models can
be computed simply by running the full model with
the weights divided by 2. This result holds exactly
in the case of a single layer softmax model. Previous
work on dropout applies the same scheme in deeper ar-
chitectures, such as multilayer perceptrons, where the
W/2 method is only an approximation to the geometric
mean. The approximation has not been characterized
mathematically, but performs well in practice.

3. Description of maxout
The maxout model is simply a feed-forward achitec-
ture, such as a multilayer perceptron or deep convo-
lutional neural network, that uses a new type of ac-
tivation function: the maxout unit. Given an input
x ∈ Rd (x may be v, or may be a hidden layer’s state),
a maxout hidden layer implements the function

hi(x) = max
j∈[1,k]

zij

where zij = xTW···ij + bij , and W ∈ Rd×m×k and
b ∈ Rm×k are learned parameters. In a convolutional
network, a maxout feature map can be constructed
by taking the maximum across k affine feature maps
(i.e., pool across channels, in addition spatial loca-
tions). When training with dropout, we perform the
elementwise multiplication with the dropout mask im-
mediately prior to the multiplication by the weights in
all cases–we do not drop inputs to the max operator.
A single maxout unit can be interpreted as making a
piecewise linear approximation to an arbitrary convex
function. Maxout networks learn not just the rela-
tionship between hidden units, but also the activation
function of each hidden unit. See Fig. 1 for a graphical
depiction of how this works.

x

h
i
(x

)

Rectifier

x

h
i
(x

)

Absolute value

x

h
i
(x

)

Quadratic

Figure 1. Graphical depiction of how the maxout activa-
tion function can implement the rectified linear, absolute
value rectifier, and approximate the quadratic activation
function. This diagram is 2D and only shows how max-
out behaves with a 1D input, but in multiple dimensions a
maxout unit can approximate arbitrary convex functions.

Maxout abandons many of the mainstays of traditional
activation function design. The representation it pro-
duces is not sparse at all (see Fig. 2), though the
gradient is highly sparse and dropout will artificially
sparsify the effective representation during training.
While maxout may learn to saturate on one side or
the other this is a measure zero event (so it is almost
never bounded from above). While a significant pro-
portion of parameter space corresponds to the function
being bounded from below, maxout is not constrained
to learn to be bounded at all. Maxout is locally lin-
ear almost everywhere, while many popular activation
functions have signficant curvature. Given all of these
departures from standard practice, it may seem sur-
prising that maxout activation functions work at all,
but we find that they are very robust and easy to train
with dropout, and achieve excellent performance.

4. Maxout is a universal approximator
A standard MLP with enough hidden units is a uni-
versal approximator. Similarly, maxout networks are
universal approximators. Provided that each individ-
ual maxout unit may have arbitrarily many affine com-
ponents, we show that a maxout model with just two
hidden units can approximate, arbitrarily well, any

• unlike most activation functions that are element-wise, maxout groups
several (e.g. k) activations together and takes their maximum

a = max
j

w>j x+ bj

• does not saturate or “die”, but increases the cost by k

• can approximate any convex function

• two such units can approximate any smooth function!

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.

feature pooling: pose invariance

max

• if each activation responds to a different pose or view, maxout will
respond to any

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.

feature pooling: pose invariance

max

• if each activation responds to a different pose or view, maxout will
respond to any

Goodfellow, Warde-Farley, Mirza, Courville and Bengio. ICML 2013. Maxout Networks.

..

more fun

convolutional network

MNIST CIFAR10
param ops volume param ops volume

x = input 0 0 28× 28× 1 0 0 32× 32× 3

z1 = conv(5, 32) (x) 832 479232 24× 24× 32 2432 1906688 28× 28× 32

p1 = pool(2) (z1) 0 18432 12× 12× 32 0 25088 14× 14× 32

z2 = conv(5, 64) (p1) 51264 3280896 8× 8× 64 51264 5126400 10× 10× 64

p2 = pool(2) (z2) 0 4096 4× 4× 64 0 6400 5× 5× 64

z3 = fc(100) (p2) 102500 102500 100 160100 160100 100

a4 = fc(10) (z3) 1010 1010 10 1010 1010 10

y = softmax (a4) 0 0 10 0 0 10

• ReLU nonlinearity after each convolutional and FC layer

• most parameters in first fully connected layer

• most operations in second convolutional layer

• most memory in first convolutional layer

conv(r, k′[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

convolutional network

MNIST CIFAR10
param ops volume param ops volume

x = input 0 0 28× 28× 1 0 0 32× 32× 3

z1 = conv(5, 32) (x) 832 479232 24× 24× 32 2432 1906688 28× 28× 32

p1 = pool(2) (z1) 0 18432 12× 12× 32 0 25088 14× 14× 32

z2 = conv(5, 64) (p1) 51264 3280896 8× 8× 64 51264 5126400 10× 10× 64

p2 = pool(2) (z2) 0 4096 4× 4× 64 0 6400 5× 5× 64

z3 = fc(100) (p2) 102500 102500 100 160100 160100 100

a4 = fc(10) (z3) 1010 1010 10 1010 1010 10

y = softmax (a4) 0 0 10 0 0 10

• ReLU nonlinearity after each convolutional and FC layer

• most parameters in first fully connected layer

• most operations in second convolutional layer

• most memory in first convolutional layer

conv(r, k′[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

convolutional network

MNIST CIFAR10
param ops volume param ops volume

x = input 0 0 28× 28× 1 0 0 32× 32× 3

z1 = conv(5, 32) (x) 832 479232 24× 24× 32 2432 1906688 28× 28× 32

p1 = pool(2) (z1) 0 18432 12× 12× 32 0 25088 14× 14× 32

z2 = conv(5, 64) (p1) 51264 3280896 8× 8× 64 51264 5126400 10× 10× 64

p2 = pool(2) (z2) 0 4096 4× 4× 64 0 6400 5× 5× 64

z3 = fc(100) (p2) 102500 102500 100 160100 160100 100

a4 = fc(10) (z3) 1010 1010 10 1010 1010 10

y = softmax (a4) 0 0 10 0 0 10

• ReLU nonlinearity after each convolutional and FC layer

• most parameters in first fully connected layer

• most operations in second convolutional layer

• most memory in first convolutional layer

conv(r, k′[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

convolutional network

MNIST CIFAR10
param ops volume param ops volume

x = input 0 0 28× 28× 1 0 0 32× 32× 3

z1 = conv(5, 32) (x) 832 479232 24× 24× 32 2432 1906688 28× 28× 32

p1 = pool(2) (z1) 0 18432 12× 12× 32 0 25088 14× 14× 32

z2 = conv(5, 64) (p1) 51264 3280896 8× 8× 64 51264 5126400 10× 10× 64

p2 = pool(2) (z2) 0 4096 4× 4× 64 0 6400 5× 5× 64

z3 = fc(100) (p2) 102500 102500 100 160100 160100 100

a4 = fc(10) (z3) 1010 1010 10 1010 1010 10

y = softmax (a4) 0 0 10 0 0 10

• ReLU nonlinearity after each convolutional and FC layer

• most parameters in first fully connected layer

• most operations in second convolutional layer

• most memory in first convolutional layer

conv(r, k′[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

MNIST layer 1 filters

• mini-batch m = 128, learning rate ε = 10−2, regularization strength
λ = 10−2, Gaussian initialization σ = 0.1

• test error: 1.2%

CIFAR10 layer 1 filters

• mini-batch m = 128, learning rate ε = 10−2, regularization strength
λ = 10−2, Gaussian initialization σ = 0.1

• test error: 28%

towards deeper networks
[Montufar et al. 2014]

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.02.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.02.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep
model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left
panel. Filled markers indicate errors made by the shallow model.

These previous theoretical results, however, do not trivially apply to the types of deep neural net-
works that have seen success in recent years. Conventional neural networks often employ either
hidden units with a bounded smooth activation function, or Boolean hidden units. On the other
hand, recently it has become more common to use piecewise linear functions, such as the rectifier
activation g(a) = max{0, a} (Glorot et al. 2011, Nair and Hinton 2010) or the maxout activation
g(a1, . . . , ak) = max{a1, . . . , ak} (Goodfellow et al. 2013). The practical success of deep neural
networks with piecewise linear units calls for the theoretical analysis specific for this type of neural
networks.

In this respect, Pascanu et al. (2013) reported a theoretical result on the complexity of functions
computable by deep feedforward networks with rectifier units. They showed that, in the asymptotic
limit of many hidden layers, deep networks are able to separate their input space into exponentially
more linear response regions than their shallow counterparts, despite using the same number of
computational units.

Building on the ideas from (Pascanu et al. 2013), we develop a general framework for analyzing
deep models with piecewise linear activations. The intermediary layers of these models are able to
map several pieces of their inputs into the same output. The layer-wise composition of the functions
computed in this way re-uses low-level computations exponentially often as the number of layers
increases. This key property enables deep networks to compute highly complex and structured
functions. We underpin this idea by estimating the number of linear regions of functions computable
by two important types of piecewise linear networks: with rectifier units and with maxout units.

Our results for the complexity of deep rectifier networks yield a significant improvement over the
previous results on rectifier networks mentioned above, showing a favourable behavior of deep over
shallow networks even with a moderate number of hidden layers. Our analysis of deep rectifier and
maxout networks serves as plattform to study a broad variety of related networks, such as convolu-
tional networks.

The number of linear regions of the functions that can be computed by a given model is a measure
of the model’s flexibility. An example of this is given in Fig. 1, which compares the learnt deci-
sion boundary of a single-layer and a two-layer model with the same number of hidden units (see
details in Appendix F). This illustrates the advantage of depth; the deep model captures the desired
boundary more accurately, approximating it with a larger number of linear pieces.

As noted earlier, deep networks are able to identify an exponential number of input neighborhoods by
mapping them to a common output of some intermediary hidden layer. The computations carried out
on the activations of this intermediary layer are replicated many times, once in each of the identified
neighborhoods. This allows the networks to compute very complex looking functions even when
they are defined with relatively few parameters.

The number of parameters is an upper bound for the dimension of the set of functions computable
by a network, and a small number of parameters means that the class of computable functions has
a low dimension. The set of functions computable by a deep feedforward piecewise linear network,
although low dimensional, achieves exponential complexity by re-using and composing features
from layer to layer.

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.02.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.02.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep
model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left
panel. Filled markers indicate errors made by the shallow model.

These previous theoretical results, however, do not trivially apply to the types of deep neural net-
works that have seen success in recent years. Conventional neural networks often employ either
hidden units with a bounded smooth activation function, or Boolean hidden units. On the other
hand, recently it has become more common to use piecewise linear functions, such as the rectifier
activation g(a) = max{0, a} (Glorot et al. 2011, Nair and Hinton 2010) or the maxout activation
g(a1, . . . , ak) = max{a1, . . . , ak} (Goodfellow et al. 2013). The practical success of deep neural
networks with piecewise linear units calls for the theoretical analysis specific for this type of neural
networks.

In this respect, Pascanu et al. (2013) reported a theoretical result on the complexity of functions
computable by deep feedforward networks with rectifier units. They showed that, in the asymptotic
limit of many hidden layers, deep networks are able to separate their input space into exponentially
more linear response regions than their shallow counterparts, despite using the same number of
computational units.

Building on the ideas from (Pascanu et al. 2013), we develop a general framework for analyzing
deep models with piecewise linear activations. The intermediary layers of these models are able to
map several pieces of their inputs into the same output. The layer-wise composition of the functions
computed in this way re-uses low-level computations exponentially often as the number of layers
increases. This key property enables deep networks to compute highly complex and structured
functions. We underpin this idea by estimating the number of linear regions of functions computable
by two important types of piecewise linear networks: with rectifier units and with maxout units.

Our results for the complexity of deep rectifier networks yield a significant improvement over the
previous results on rectifier networks mentioned above, showing a favourable behavior of deep over
shallow networks even with a moderate number of hidden layers. Our analysis of deep rectifier and
maxout networks serves as plattform to study a broad variety of related networks, such as convolu-
tional networks.

The number of linear regions of the functions that can be computed by a given model is a measure
of the model’s flexibility. An example of this is given in Fig. 1, which compares the learnt deci-
sion boundary of a single-layer and a two-layer model with the same number of hidden units (see
details in Appendix F). This illustrates the advantage of depth; the deep model captures the desired
boundary more accurately, approximating it with a larger number of linear pieces.

As noted earlier, deep networks are able to identify an exponential number of input neighborhoods by
mapping them to a common output of some intermediary hidden layer. The computations carried out
on the activations of this intermediary layer are replicated many times, once in each of the identified
neighborhoods. This allows the networks to compute very complex looking functions even when
they are defined with relatively few parameters.

The number of parameters is an upper bound for the dimension of the set of functions computable
by a network, and a small number of parameters means that the class of computable functions has
a low dimension. The set of functions computable by a deep feedforward piecewise linear network,
although low dimensional, achieves exponential complexity by re-using and composing features
from layer to layer.

2

2-layer: solid; 3-layer: dashed close-up
(20 hidden units each)

• “deep networks are able to separate their input space into
exponentially more linear response regions than their shallow
counterparts, despite using the same number of computational units”

Montufar, Pascanu, Cho and Bengio. NIPS 2014. On the Number of Linear Regions of Deep Neural Networks.

..

network architectures

LeNet-5
[LeCun et al. 1998]

���������	��

����������������������������������� �"! �

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

��:LH%k%�#k¨Vb31A1*%: 01+@Ar06.%31+�2/}!PZ+�h;+r06K��#To,��w24CUMU24_L.#01:L24C%,/_!hX+@.%31,/_�hX+r0G8f2436g�T#*%+@31+b}�243fD%:LH4: 065�31+@A@24H4C%: 01:L24C�k lv,/AO*�>#_�,/C%+Y:L5�,§}�+B,R01.#31+�F�,/>ZT�:�k +4k%,§51+r0�2/}�.%C%: 0658X*#2451+Y8f+@:LH4*U015b,/31+YA@24C%5 0131,/:LC%+@D�012�Q�+�:LD#+BCU06:LA�,/_�k

å�ê©è"ç�ï1ëíï�å�è"ÿ�ä ï¾î�å�æ�ê�ø�éÆè ç�ï1æ�ä"ï�úiø�ì�ÿ�ê
û�å%�aï�ädð&ã�ç�ï�è"ä�å�ø�é�å�
�û�ï
��ì�ï,*¹��ø�ï�éiè�å�é�ù�
�ø�å�ê
��ì�éiè"ä ì�ûkè ç�ï�ïUÄ�ï���è©ì�ë¹è"ç�ï1ê"ø	��î¼ì�ø�ùOé�ì�é!�û�ø�é�ïdå�ä ø³è@�að��}ëkè ç�ï���ì�ï,*¹��ø�ï�éiè ø�êpê�î�å�û�û1��è"ç�ï�é5è"ç�ï©ÿ�é�ø�è�ì�æNï�ä�å	è ï�êø�é5å¹�iÿ�åaê�ø��}û�ø�é�ï�å�ä�î\ì�ù�ï���å�é�ù1è ç�ï©ê"ÿ�
!�«ê"å�î\æ�û�ø�é���û�å%��ï�ä�î¼ï�ä ï�û	�

�û�ÿ�ä�ê¼è"ç�ïOø�é�æ�ÿ�è�ð �}ë¸è ç�ï¤��ì�ï,*¹��ø�ï�éiè1ø�ê¾û�å�ä��aï��wê"ÿ�
!�«ê å�î¼æ�û�ø�é��ÿ�é�ø�è ê{��å�é�
�ï�ê"ï�ï�é&å�êYæNï�ä"ëíì�ä î¼ø�é��¾å ��é�ìaø�ê��:ý��
¼ìaä�åL��é�ìaø�ê��
��ñ{"�
¸ëíÿ�é��£è ø�ìaé¼ù�ï�æNï�é�ù�ø�é��®ì�éSè"ç�ïYúrå�û�ÿ�ï¹ì�ë�è ç�ï�
�ø�åaê�ðgþ�ÿ�����ïdê@�ê"ø�úaïSû�å%��ï�ä êpì�ë���ì�é�úaì�û�ÿ�è"ø�ì�é�ê¸å�é�ù�ê"ÿ�
!�«ê"å�î¼æ�û�ø�é��5å�ä ï�è@��æ�ø���å�û�û	�å�û�è"ï�ä"é�å	è"ïdùf��ä ï�ê"ÿ�û�è"ø�é��¾ø�éOå���
�øª�}æ���ä å�î\ø�ù
B+wå	èpï�å���ç&û�å%��ï�ä���è"ç�ïé�ÿ�î�
Nï�ä¸ì�ëgëíïdå	è ÿ�ä"ïSî�å�æ�ê�ø�êpø�é ��ä ï�å�ê"ï�ù&åaê è ç�ïSê"æ�å�è"ø�å�ûUä"ïdê�ìaû�ÿ!�è"ø�ì�é\ø�êUù�ï���ä ï�åaê�ïdù�ð (wå���ç©ÿ�é�ø³ègø�é�è ç�ï¹è"ç�ø�ä�ù�ç�ø�ù�ù�ï�éSû�å%��ï�äBø�é�©��?�ÿ�ä ï��¹î�å%��ç�årúaïgø�é�æ�ÿ�èb��ì�é�é�ï��£è ø�ìaé�ê�ëíä ì�î ê�ï�ú�ï�ä å�ûrëíï�å	è ÿ�ä ï�î�å�æ�êø�é�è ç�ï
æ�ä ï�ú�ø�ì�ÿ�ê�û�å%��ï�ä�ðkã�ç�ï���ìaé�ú�ì�û�ÿ�è ø�ìaé��	ê"ÿ�
!�«ê"å�î¼æ�û�ø�é��À��ì�îÀ�

�ø�é�å	è ø�ìaé���ø�é�ê�æ�ø�ä ï�ù�
��&õ ÿ�
�ï�û�å�é�ù � ø�ïdê�ï�û
< ê�é�ì�è"ø�ì�é�ê�ì�ë �"ê"ø�îÀ�æ�û�ï�
®å�é�ù �R��ìaî\æ�û�ï�£�
���ï�û�û�ê���ó¹åaêkø�î¼æ�û�ï�î¼ï�éaè ï�ù\ø�éÀ��ÿ�ô�ÿ�ê�ç�ø�î�å=< êñ ï�ì!��ì��aé�ø�è"ä ì�é � b ��	O��è"ç�ìaÿ���ç&é�ì¥��û�ì�
�å�û�û	�5ê�ÿ�æNï�ä ú�ø�ê"ï�ù5û�ï�å�ä"é�ø�é��æ�ä ì!��ï�ù�ÿ�ä"ï
ê"ÿ���ç5å�ê�
�å���ôZ�}æ�ä ì�æ�å��aå	è ø�ìaé�ó¹åaêYårú	å�ø�û�å�
�û�ïpè"ç�ï�é�ð��û�å�äR��ï�ù�ï���ä ï�ï©ì�ë^ø�éiú	å�ä"ø�å�é���ï
è"ì¥��ï�ì�î¼ï�è ä"ø��®è"ä�å�é�ê{ëíìaä"î�å	è ø�ìaé�êYì�ëè"ç�ï\ø�é�æ�ÿ�è
��å�é¦
�ï�å���ç�ø�ï�ú�ï�ù·óYø³è çOè ç�ø�ê®æ�ä"ì���ä ï�ê ê�ø�ú�ï©ä ï�ù�ÿ��£è ø�ìaéì�ë�ê"æ�å	è ø�å�û�ä ï�ê"ì�û�ÿ�è"ø�ì�é¹��ìaî¼æ�ï�é�ê"å�è"ïdù¨
Z�\å
æ�ä ì��aä"ïdê"ê"ø�úaï^ø�é���ä ï�åaê�ïì�ëNè"ç�ï ä"ø���ç�é�ïdê"êUì�ë�è ç�ï ä ï�æ�ä ï�ê"ï�éiè å�è"ø�ì�é�Á»è"ç�ï é�ÿ�î�
Nï�ä�ì�ë�ëíïdå	è ÿ�ä"ïî�å�æ�ê/Â£ðþ�ø�é ��ï
å�û�û�è ç�ï®ówï�ø��açiè ê¹å�ä ï�û�ï�å�ä é�ïdù¾óYø�è"ç�
�å���ôZ�}æ�ä"ìaæ�å?�iå	è ø�ìaé��
��ìaé�ú�ì�û�ÿ�è ø�ìaé�å�û�é�ï�è{ówìaä"ô�ê¨��å�é�
Nï·ê�ï�ï�éÄå�ê�ê���éaè ç�ï�ê"ø	¾�ø�é��Oè ç�ï�ø�äì	óYé ëíï�å�è"ÿ�ä ï�ïU£�è"ä�å���è"ìaä�ð¾ã�ç�ï1ówï�ø��açaè©ê"ç�å�ä ø�é��:è"ï���ç�é�ø	�iÿ�ï1ç�å�êè"ç�ï�ø�éiè"ï�ä ï�ê�è"ø�é�� ê�ø�ù�ï:ïUÄ�ï��£è¼ì�ë ä ï�ù�ÿ���ø�é��·è ç�ï:éiÿ�î�
Nï�ä¼ì�ëYëíä ï�ïæ�å�ä å�î\ï�è"ï�ä ê���è"ç�ï�ä"ï�
�� ä ï�ù�ÿ���ø�é�� è ç�ï ����å�æ�å���ø³è@��
Æì�ë©è"ç�ï î�åo�
��ç�ø�é�ï�å�é�ù¼ä"ïdù�ÿ���ø�é��®è ç�ï��iå�æ¨
�ï�è{ówï�ï�é¼è ï�ê�è^ï�ä ä"ìaä�å�é�ù\è ä å�ø�é�ø�é��ï�ä ä ì�ä � b&c'	}ð¾ã�ç�ï�é�ï�è{ówìaä"ô·ø�é�©���ÿ�ä"ï`�&��ìaéiè å�ø�é�ê4b&c���� ;6��5 ��ì�é!�é�ï#�£è"ø�ì�é�ê��o
�ÿ�èkìaé�û	� ����� �6����è"ä�å�ø�é�å?
�û�ï^ëíä"ï�ï^æ�å�ä å�î\ï�è"ï�ä êX
�ï#��å�ÿ�ê�ïì�ëUè"ç�ï
ówï�ø��açaè ê"ç�å�ä ø�é���ð
�Bø�£�ï�ù��«ê"ø�¾�ï\�wìaéiúaì�û�ÿ�è"ø�ì�é�å�ûSñ�ï�è{ó¹ì�ä ô�êOç�årúaïÃ
Nï�ï�éÂå�æ�æ�û�ø�ï�ùè"ì î�å�éZ�Kå�æ�æ�û�ø���å	è ø�ìaé�ê��¹å�î\ìaé�� ì�è"ç�ï�ä¾ç�å�é�ù�óYä ø³è ø�é�� ä ï���ì��aé�øª�è"ø�ì�é$� b ��	O� � b�� 	O��î�å���ç�ø�é�ïU�}æ�ä ø�éiè ï�ù ��ç�å�ä�å��£è ï�äpä"ï#��ì��aé�ø�è"ø�ì�é � b ��	1�ì�é��mû�ø�é�ï9ç�å�é�ù�óYä ø³è ø�é��Âä ï���ì���é�ø³è ø�ìaé � b�5 	O�·å�é�ù/ë�å���ï9ä ï���ì��aé�øª�è"ø�ì�é � b�; 	}ð �Bø�£�ï�ù��«ê"ø�¾�ïÃ��ìaéiúaì�û�ÿ�è"ø�ì�é�å�û©é�ï�è{ówìaä"ô�ê:è ç�å	èÆê�ç�å�ä"ïó¹ï�ø	��çiè ê¼å�û�ì�é�� å ê�ø�é��aû�ï:è"ï�î¼æ�ìaä å�û�ù�ø�î¼ï�é�ê�ø�ì�éÄå�ä ï�ô�é�ì	óYé å�êã�ø�î\ï��O"pï�û�å%�pñ�ï�ÿ�ä�å�ûiñ ï�è{ówìaä"ô�ê�Á�ã$"¸ñ�ñpêRÂ�ðUã$"¸ñ�ñpê;ç�årú�ï�
Nï�ï�éÿ�ê"ï�ùOø�é·æ�ç�ì�é�ï�î¼ïSä ï���ì���é�ø³è ø�ìaé�ÁíóYø�è"ç�ìaÿ�è®ê"ÿ�
!�«ê å�î¼æ�û�ø�é���Â�� c��'	1�

� c�¿
	O�¼ê�æNì�ôaï�éòó¹ì�ä�ù ä ï���ì���é�ø�è"ø�ì�é Á�óYø³è ç(ê"ÿ�
!�«ê å�î¼æ�û�ø�é���Â � c0� 	1�
� c b 	O�
ì�é��mû�ø�é�ï ä"ï#��ì��aé�ø�è"ø�ì�é ì�ë¼ø�ê"ì�û�å	è ï�ùWç�å�é�ù�óYä ø³è"è"ï�éy��ç�å�ä�å��4�è"ï�ä ê4� c&c&	1��å�é�ù5ê�ø	��é�å	è"ÿ�ä"ï¸ú�ï�ä"ø�© ��å�è"ø�ì�é � c!��	}ð

' �E� ¸�º�¸U»Z(��
ã�ç�ø�ê�ê�ï#�£è"ø�ì�é&ù�ïdê���ä"ø	
Nï�êYø�é5î\ìaä"ï
ù�ï�è å�ø�û;è"ç�ï©å�äR��ç�ø�è"ï#�£è ÿ�ä"ï®ì�ë

��ïdñ ï�èB� �!�Yè ç�ïx�wìaé�ú�ì�û�ÿ�è ø�ìaé�å�û¸ñ ï�ÿ�ä å�ûpñ ï�è{ówìaä"ôÄÿ�ê"ï�ù6ø�é-è"ç�ïïU£�æNï�ä ø�î¼ï�éaè�ê�ð �;ï�ñ ï�èB� ����ì�î¼æ�ä ø�ê"ï�ê �©û�å%�aï�ä�ê��ié�ì�è$��ìaÿ�éiè"ø�é��Sè"ç�ïø�é�æ�ÿ�è#��å�û�û�ì�ë;óYç�ø���ç¥��ì�éiè å�ø�é1è"ä�å�ø�é�å?
�û�ï¸æ�å�ä�å�î¼ï�è"ï�ä�ê'Á�ówï�ø��açiè ê/Â£ðã�ç�ï�ø�é�æ�ÿ�è;ø�ê;åSb �%£ b0�^æ�øª£�ï�û�ø�î�å?�aï�ð;ã�ç�ø�ê;ø�ê�ê"ø	��é�ø�© ��å�éiè"û	��û�å�äR��ï�äè"ç�å�é5è"ç�ï©û�å�ä��aï�ê�è'��ç�å�ä�å���è"ï�äYø�é5è ç�ï�ù�å�è å?
�å�ê"ï¢Á�å	èpî\ìiê{è��A�o£��6�æ�ø�£�ï�û�ê���ï�éaè ï�ä ï�ù�ø�é åC�65o£��A5 ©�ï�û�ù�Â�ð1ã�ç�ï�ä ï�å�ê"ì�é ø�ê®è"ç�å�è©ø³è©ø�êù�ïdê�ø�ä å�
�û�ï
è"ç�å�èpæNì�è ï�éiè"ø�å�ûkù�ø�ê{è ø�é���è"ø�ú�ï�ëíï�å	è ÿ�ä ï�ê�ê"ÿ���ç·åaêpê�è"ä ì�ôaïï�é�ù��mæNì�ø�éiè ê¹ì�ä���ìaä"é�ï�ä���å�é1å�æ�æNï�å�äE�G²�»µ¯�¸ ?/¸�²�»r¸U¬gì�ë�è"ç�ïpä ï���ï�æ!�è"ø�ú�ï�©�ï�û�ù:ì�ë;è"ç�ï
ç�ø��aç�ï�ê�èB�}û�ï�ú�ï�ûNëíï�å	è ÿ�ä ï®ù�ï�è"ï#�£è ì�ä�ê�ðY�«éO��ïdñ ï�è����è"ç�ïpê"ï�èwì�ë���ï�éiè ï�ä�ê�ì�ë�è ç�ï�ä ï���ï�æ�è ø�úaï$©�ï�û�ù�êwì�ë�è ç�ï�û�å�ê�è���ì�é�ú�ìaû�ÿ!�è"ø�ì�é�å�û�û�å%��ï�ä�ÁO�;b���ê"ï�ï$
Nï�û�ì	ó'Â;ëíì�ä îÂå4�A�?£��A�¸å�ä ï�åpø�é\è"ç�ï'��ï�éaè ï�äì�ë;è"ç�ï4b �o£ b �®ø�é�æ�ÿ�èdð^ã�ç�ï¸ú	å�û�ÿ�ï�ê¹ì�ëBè"ç�ï¸ø�é�æ�ÿ�è æ�ø�£�ï�û�ê�å�ä ï�é�ìaäB�î�å�û�ø�¾�ï�ù�ê�ì�è"ç�å�è®è"ç�ï¨
�å���ôZ�aä"ìaÿ�é�ù&û�ï�úaï�û$ÁíóYç�ø³è ï#Ât��ìaä"ä ï�ê"æNì�é�ù�êè"ì&å:ú	å�û�ÿ�ï¼ì�ë�� ��ð�¿\å�é�ùOè"ç�ï¼ëíìaä"ï���ä ì�ÿ�é�ù�Áµ
�û�å���ô�Â���ìaä"ä ï�ê"æNì�é�ù�êè"ìx¿að�¿��'��ð¼ã�ç�ø�ê
î�å�ô�ï�ê¸è ç�ï�î¼ï�å�é ø�é�æ�ÿ�è�ä"ìaÿ���ç�û��!���Bå�é�ù�è"ç�ïú	å�ä ø�å�é���ï¸ä ì�ÿ��aç�û�� ¿¸óYç�ø	��ç5å�����ï�û�ï�ä�å	è ï�ê¹û�ï�å�ä é�ø�é��O� c � 	}ð
�«é®è"ç�ï^ëíì�û�û�ì	óYø�é����%��ìaé�ú�ì�û�ÿ�è ø�ìaé�å�û	û�å%��ï�ä ê�å�ä"ïgû�å?
Nï�û�ï�ù��§£f�	ê"ÿ�
!�ê å�î¼æ�û�ø�é���û�å%�aï�ä�ê�å�ä"ï©û�å?
Nï�û�ï�ù þZ£f��å�é�ù·ëíÿ�û�û	�Z�O��ì�é�é�ï��£è ï�ù&û�å%��ï�ä êå�ä ï®û�å�
�ï�û�ïdù¥�X£f��óYç�ï�ä"ï�£:ø�ê¹è ç�ï
û�å%�aï�ä�ø�é�ù�ïU£�ð
�;å%��ï�ä��{¿¾ø�ê�å���ìaé�ú�ì�û�ÿ�è ø�ìaé�å�ûgû�å%��ï�ä©óYø³è ç)�5ëíï�å�è"ÿ�ä ï�î�å�æ�ê�ð

(^å���ç¼ÿ�é�ø�è¹ø�é�ï�å���ç¼ëíï�å	è ÿ�ä ï î�å�æ¾ø�ê§��ì�é�é�ï#�£è ï�ù¼è ì�å �%£��®é�ï�ø	��ç!�

Nì�ä ç�ì�ì�ù�ø�é�è"ç�ï�ø�é�æ�ÿ�èdðUã�ç�ï�ê"ø	¾�ï^ì�ë�è ç�ï^ëíïdå	è ÿ�ä"ï¹î�å�æ�êUø�ê �A5o£��65óYç�ø���çOæ�ä ï�úaï�éiè êt��ì�é�é�ï#�£è ø�ìaé·ëíä ì�î è"ç�ï\ø�é�æ�ÿ�è
ëíä"ìaî ë�å�û�û�ø�é��:ì?Äè"ç�ï�
Nì�ÿ�é�ù�å�äR��ð��{¿���ì�éiè å�ø�é�ê�¿ �6�¼è"ä�å�ø�é�å?
�û�ïSæ�å�ä�å�î¼ï�è ï�ä�ê��Nå�é�ù
¿ � �!� b6�&c���ìaé�é�ï#�£è"ø�ì�é�ê�ð
�;å%��ï�ä þ �\ø�ê�å�ê�ÿ�
��}ê å�î¼æ�û�ø�é��\û�å%��ï�äYóYø³è ç �Sëíï�å	è ÿ�ä ï
î¼å�æ�êYì�ëê"ø�¾�ï�¿�c?£f¿]c�ð#(^å���ç�ÿ�é�ø³ègø�é\ïdå���ç�ëíï�å	è ÿ�ä ï¹î�å�æSø�ê���ìaé�é�ï���è"ïdù©è ì¸å

�%£��®é�ï�ø	��ç�
�ìaä"ç�ìiì�ù¼ø�é�è"ç�ï{��ìaä"ä ï�ê"æNì�é�ù�ø�é��®ëíïdå	è"ÿ�ä"ïpî¼å�æ�ø�é&�{¿�ðã�ç�ï¸ëíì�ÿ�äYø�é�æ�ÿ�è ê�è ì�å�ÿ�é�ø³è ø�é·þ ��å�ä"ï
åaù�ù�ï�ù���è"ç�ï�é�îSÿ�û³è ø�æ�û�ø�ï�ù

�� å&è"ä�å�ø�é�å�
�û�ï���ì�ïC*¢��ø�ï�éaè#��å�é�ùKå�ù�ù�ï�ùÆè ì å·è"ä�å�ø�é�å?
�û�ï¢
�ø�å�ê�ðã�ç�ï·ä ï�ê"ÿ�û�è¾ø�ê1æ�å�ê ê"ï�ùKè"ç�ä ì�ÿ���çHå ê�ø	��î¼ìaø�ù�å�û�ëíÿ�é���è"ø�ì�é�ð ã�ç�ï
�%£��1ä"ï#��ï�æ�è"ø�ú�ï�©�ï�û�ù�ê
å�ä"ïSé�ì�é!�}ì	ú�ï�ä"û�å�æ�æ�ø�é�����è"ç�ï�ä"ï�ëíì�ä ï�ëíïdå	è"ÿ�ä"ïî�å�æ�ê�ø�éhþ��5ç�årú�ï¼ç�å�û³ë�è ç�ï1é�ÿ�î�
�ï�ä�ì�ë�ä ì	ó ê©å�é�ùx��ì�û�ÿ�î¼é å�êëíï�å�è"ÿ�ä ï®î�å�æ�êYø�é �{¿�ð �Bå%��ï�äYþ �\ç�åaêt¿ ��è"ä�å�ø�é�å�
�û�ï®æ�å�ä å�î¼ï�è"ï�ä êå�é�ù.��� 5�56�À��ì�é�é�ï���è"ø�ì�é�ê�ð
�;å%��ï�ä��;b¼ø�êpå¢��ì�é�ú�ìaû�ÿ�è"ø�ì�é�å�û�û�å%�aï�ä óYø�è"ç�¿��\ëíï�å�è"ÿ�ä ï©î�å�æ�ê�ð

(^å���ç5ÿ�é�ø�è�ø�é&ïdå���ç:ëíï�å�è"ÿ�ä ï©î�å�æ5ø�ê'��ì�é�é�ï#�£è ï�ù�è"ì1ê"ï�úaï�ä�å�û �o£ �é�ï�ø��açZ
Nì�ä ç�ì�ì�ù�ê5å	è&ø�ù�ï�éiè"ø���å�û®û�ì!��å�è"ø�ì�é�ê5ø�é åKê"ÿ�
�ê"ï�è·ì�ë¼þ �=< êëíï�å�è"ÿ�ä ï:î¼å�æ�ê�ðKãUå?
�û�ï¥�\ê�ç�ì	ó ê�è ç�ï&ê�ï�è\ì�ë®þ �·ëíï�å�è"ÿ�ä ï:î¼å�æ�ê

• first convolutional neural network to use back-propagation

• applied to character recognition

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.

LeNet-5
parameters operations volume

input(32, 1) 0 0 32× 32× 1

conv(5, 6) 156 122, 304 28× 28× 6

avg(2) 0 4, 704 14× 14× 6

conv(5, 16) 2, 416 241, 600 10× 10× 16

avg(2) 0 1, 600 5× 5× 16

conv(5, 120) 48, 120 48, 120 1× 1× 120

fc(84) 10, 164 10, 164 84

RBF(10) 850 850 10

softmax 0 10 10

• subsampling by average pooling with learnable global weight and bias

• scaled tanh nonlinearity after first pooling layer and FC layer

• last convolutional layer allows variable-sized input

• output RBF units: Euclidean distance to 7× 12 distributed codes

• loss function similar to softmax + cross-entropy

LeNet-5 distributed codes

���������	��

����������������������������������� �"! �

 ! " # $ % & ’ () * + , − . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _

‘ a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~ �

��:LH%k��#k EGC%: 06:�,/_w>o,/31,/F$+r01+@315§2/};01*%+�24.#06>%.#0$NXd ��5�}	243§31+@A@24H4C%:L`@:LC%Ht06*%+}	.%_L_�V�<%�wE Ew51+r0Bk

æ�ÿ�è®ê�æ�å���ï©è"ç�å�èpé�ìaé!�üè@��æ�ø���å�û�æ�å�è�è"ï�ä"é�ê�å�ä ï©î¼ì�ä ï©û�ø�ôaï�û	�1è ì�ë�å�û�ûì�ÿ�è ê"ø�ù�ï
ì�ë{ðã�ç�ï�æ�å�ä å�î\ï�è"ï�ä�ú�ï���è"ìaä ê�ì�ëaè ç�ï��'���kê�æ�û�å%��è"ç�ïwä"ìaû�ïkì�ë�è�å�äR��ï�èú�ï#�£è ì�ä�êkëíì�ä�û�å%��ï�ä�� ��ðY�}è^ø�ê�ó¹ì�ä"è"ç¼æ�ìaø�éiè ø�é���ì�ÿ�è�è ç�å	è^è"ç�ï���ì�îÀ�æNì�é�ï�éaè�ê�ì�ëBè"ç�ìiê�ï®ú�ï#�£è ì�ä�ê¹å�ä"ï���¿¸ì�ä��/¿���óYç�ø���ç�ø�êYó¹ï�û�û�óYø³è ç�ø�éè"ç�ïwä�å�é��aï�ì�ë�è"ç�ï¹ê�ø	��î¼ì�ø�ù
ì�ë � ���	å�é�ù©è"ç�ï�ä"ï�ëíì�ä ï�æ�ä ï�úaï�éiè ê;è"ç�ìiê�ïê"ø��aî\ìaø�ù�êUëíä"ìaî±��ï�è�è ø�é��©ê å	è ÿ�ä�å	è"ïdù�ð;�«é¼ë�å��£è#�3��¿Yå�é�ù��/¿ å�ä ï¹è"ç�ïæNì�ø�éaè�êYì�ëgî�åo£�ø�î�ÿ�î ��ÿ�ä ú	å	è ÿ�ä"ï®ì�ëBè ç�ï�ê"ø��aî\ìaø�ù�ê�ð^ã�ç�ø�ê�ëíìaäR��ï�êè"ç�ï�� �Yÿ�é�ø�è ê�è"ì ìaæ�ï�ä å�è"ï�ø�é®è"ç�ï�ø�ä;î�åo£�ø�î¼å�û�û	�¸é�ì�é!�}û�ø�é�ïdå�ä�ä�å�é���ï�ðþ�å�è"ÿ�ä�å	è ø�ìaé ì�ë�è"ç�ï:ê�ø	��î¼ìaø�ù�ê©î�ÿ�ê�è�
Nï�årú�ìaø�ù�ï�ù�
�ï#��å�ÿ�ê�ï1ø³è�ø�êô�é�ì	óYé·è ì�û�ï�åaù&è ì:ê"û�ì	ó^��ì�é�úaï�äR��ï�é ��ï©å�é�ùOø�û�û��r��ì�é�ù�ø³è ø�ìaé�ø�é��1ì�ëè"ç�ï
û�ìiê"ê¹ëíÿ�é �£è"ø�ì�é;ð
> �E� ¶%³/³��
!² ?�»)� ¶?²

ã�ç�ï¸ê"ø�î\æ�û�ïdê{è�ì�ÿ�è æ�ÿ�èYû�ìaê ê�ëíÿ�é �£è"ø�ì�é1è"ç�å�è���å�é¥
�ï¸ÿ�ê"ï�ù¾óYø�è"çè"ç�ï®å�
�ì	úaï�é�ï�è{ówìaä"ô¼ø�ê¹è"ç�ï
ö·å?£�ø�îSÿ�î ��ø�ô�ï�û�ø�ç�ì�ì�ù�(^ê�è"ø�î�å	è ø�ìaé
��ä ø�è"ï�ä ø�ì�é¢Á�ö �#(�ÂU�róYç�ø	��ç�ø�éSì�ÿ�äb��å�ê"ï^ø�êBï��iÿ�ø�úrå�û�ï�éiè;è"ì�è"ç�ï�ö&ø�é!�ø�î�ÿ�î ö&ï�å�éOþ!�iÿ�å�ä ï�ù (^ä"ä ì�ä�ÁüöOþ (�Â�ð�ã�ç�ï���ä ø³è ï�ä ø�ìaé�ëíìaäpå�ê"ï�èì�ëUè"ä�å�ø�é�ø�é���ê"å�î¼æ�û�ïdê�ø�êYê"ø�î\æ�û���+

D¢ÁZ= Â 5 ¿

^C
3�� �

A�����ÁZ9 3 <>= Â Á
5�Â

óYç�ï�ä"ï@A � � ø�ê®è"ç�ï1ì�ÿ�è æ�ÿ�è©ì�ë¹è"ç�ï�I 3 �mè"çx�����9ÿ�é�ø�è��Uøüð ï�ð1è"ç�ïì�é�ï©è"ç�å	è
��ì�ä ä ï�ê"æ�ìaé�ù�ê�è ì1è ç�ï���ì�ä ä"ï#�£è{��û�åaê"êpì�ë�ø�é�æ�ÿ�è®æ�å�è�è"ï�ä"é
9@3�ð � ç�ø�û�ï�è ç�ø�ê���ìaê�èwëíÿ�é �£è"ø�ì�é�ø�ê�å�æ�æ�ä ì�æ�ä ø�å�è"ïYëíìaä�î\ìiê{è���åaê�ïdê��ø�è®û�å���ô�êpè"ç�ä"ï�ïSø�î¼æ�ìaä�è�å�éiè¸æ�ä"ìaæ�ï�ä�è ø�ïdê�ð��Uø�ä ê�è��;ø³ë¹ówï¼å�û�û�ì	óòè"ç�ïæ�å�ä å�î\ï�è"ï�ä êYì�ëgè"ç�ïÀ�����Kè"ì�åaù�å�æ�è�� D¢Á)= Â�ç�å�êpå�è ä"ø�ú�ø�å�û6�v
�ÿ�èè"ì�è å�û�û	�pÿ�é�å�����ï�æ�è å?
�û�ï��rê"ì�û�ÿ�è ø�ìaé�ð;�«é
è ç�ø�êBê"ì�û�ÿ�è"ø�ì�é;�rå�û�û�è"ç�ï������æ�å�ä å�î\ï�è"ï�äBúaï��£è ì�ä�ê;å�ä"ï¹ï��iÿ�å�û6��å�é�ù®è"ç�ï�ê�è å�è"ï¹ì�ë � �pø�êY��ì�é�ê�è å�éaèå�é�ù·ï��iÿ�å�ûUè"ì�è"ç�å�è®æ�å�ä�å�î¼ï�è ï�ä¸ú�ï���è"ìaä�ð
�«éOè"ç�ø�ê
��åaê�ï�è"ç�ï¼é�ï�èB�ó¹ì�ä ô&ç�å�æ�æ�ø�û	�·ø	��é�ìaä"ïdê�è ç�ï�ø�é�æ�ÿ�è#�Bå�é�ù å�û�ûkè ç�ï¹�����6ìaÿ�è"æ�ÿ�è êå�ä ï1ï#�iÿ�å�ûwè"ì�¾�ï�ä"ì�ð ã�ç�ø�ê¨��ìaû�û�å�æ�ê"ø�é��·æ�ç�ï�é�ì�î¼ï�é�ì�é ù�ì�ï�êSé�ì�èì!����ÿ�ä�ø�ë�è"ç�ï������-ó¹ï�ø	��çiè êSå�ä ï�é�ì�è\å�û�û�ì	ó¹ï�ù�è"ì�å�ù�å�æ�è�ð&ã�ç�ïê"ï���ìaé�ùÄæ�ä ì�
�û�ï�î ø�ê¾è ç�å	è¾è ç�ï�ä ïOø�ê¾é�ìÃ��ìaî\æNï�è ø³è ø�ìaé
Nï�è{ó¹ï�ï�éè"ç�ï ��û�å�ê ê�ïdê�ð-þ�ÿ���çHåx��ì�î¼æNï�è ø³è ø�ìaé ��å�é
Nï·ì�
�è�å�ø�é�ï�ù�
��hÿ�ê@�ø�é��håÆî¼ì�ä ï&ù�ø�êR��ä ø�î\ø�é�å�è"ø�ú�ï5è"ä�å�ø�é�ø�é�����ä ø�è"ï�ä ø�ì�é���ù�ÿ�
�
Nï�ùHè"ç�ïö¤�{�eÁíî�å?£�ø�î�ÿ�î@å&æ�ìiê{è ï�ä ø�ìaä"øGÂ
��ä"ø�è"ï�ä"ø�ì�é���ê"ø�î\ø�û�å�ä©è ì�ö·å?£�øª�î�ÿ�îòö&ÿ�è"ÿ�å�û��«é�ëíì�ä î�å	è ø�ìaé���ä ø³è ï�ä ø�ìaé�ê"ì�î¼ï�è ø�î¼ï�êBÿ�ê"ï�ù©è"ìpè"ä�å�ø�éõ�öOö·êN� c 5 	O�@� c�;'	1� � �A�'	mð��}èÀ��ì�ä ä"ïdê�æNì�é�ù�ê
è ìOî�åo£�ø�î\ø	¾�ø�é��Oè"ç�ïæNìaê�è"ï�ä ø�ì�ä
æ�ä ì�
�å�
�ø�û�ø�è@�·ì�ë¹è"ç�ï¢��ì�ä ä ï��£è
��û�å�ê ê4I 3 Á�ì�ä
î¼ø�é�ø�î¼ø	¾U�ø�é��&è"ç�ï¾û�ì��aå�ä"ø�è"ç�îFì�ë�è"ç�ï1æ�ä"ì�
�å?
�ø�û�ø³è@�Oì�ë�è"ç�ï¥��ì�ä ä ï��£è���û�åaê"ê/Â4�
��ø�ú�ï�é
è"ç�å	èUè"ç�ï¹ø�é�æ�ÿ�ègø�î�å���ï���å�é���ì�î¼ïwëíä"ìaîWìaé�ï¹ì�ë�è"ç�ï���û�åaê"ê"ï�êì�äSëíä ì�î å¤
�å���ô���ä ì�ÿ�é�ù �"ä"ÿ�
�
�ø�ê"ç�
¤��û�åaê"êSû�å?
Nï�ûmð¦�«é è ï�ä î�ê�ì�ë

æNï�é�å�û³è ø�ïdê��Uø³èSî\ïdå�é�ê
è"ç�å�è�ø�é åaù�ù�ø�è"ø�ì�é è"ì&æ�ÿ�ê�ç�ø�é���ù�ì	óYé è"ç�ïæNï�é�å�û³è@�Äì�ë
è ç�ï¦��ì�ä ä"ï#�£è¥��û�åaê"ê1û�ø�ô�ï·è"ç�ïÆöOþ (��ä ø³è ï�ä ø�ìaé���è"ç�ø�ê
��ä ø�è"ï�ä ø�ì�é¼å�û�ê�ì®æ�ÿ�û�û�êgÿ�æ¼è"ç�ï æ�ï�é�å�û�è"ø�ï�ê�ì�ëNè"ç�ïYø�é���ìaä"ä ï���è���û�å�ê ê�ïdê,+
D Á)= Â 5 ¿

^C
3�� �

Á<A�����ÁZ9 3 <>= Â#� û�ì�� Á
	 /
E
� C

W
	 /���
���� ���
�� Â�Â

Á
;�Âã�ç�ï¹é�ï��iå	è ø�úaï^ì�ë�è ç�ïYê�ï#��ìaé�ù®è"ï�ä"î æ�û�å%��êUå`����ì�î¼æNï�è"ø�è"ø�ú�ï
 ä ì�û�ï�ð
�}è©ø�ê®é�ï���ï�ê ê"å�ä"ø�û��·ê"î�å�û�û�ï�ä®è"ç�å�é\Áíì�ä
ï#�iÿ�å�ûkè ìZÂpè"ç�ï¨©�ä ê�è®è"ï�ä"î&�è"ç�ï�ä ï�ëíì�ä ï¼è"ç�ø�ê�û�ìiê"ê®ëíÿ�é��£è ø�ìaé ø�ê�æ�ìiê�ø�è"ø�ú�ïað:ã�ç�ï¥��ì�é�ê{è�å�éiè��·ø�êæNìaê"ø³è ø�úaï���å�é�ùOæ�ä ï�ú�ï�éiè ê�è"ç�ï\æ�ï�é�å�û�è"ø�ï�ê¸ì�ë§��û�å�ê ê�ïdê è ç�å	è
å�ä ïSå�ûª�ä ï�å�ù��&ú�ï�äR�5û�å�ä��aï©ëíä ì�î
Nï�ø�é��:æ�ÿ�ê"ç�ï�ùOëíÿ�ä"è"ç�ï�ä
ÿ�æ�ð\ã�ç�ï¼æ�ìiê@�è"ï�ä"ø�ì�ä®æ�ä ì�
�å?
�ø�û�ø�è@�&ì�ëwè"ç�ø�ê®ä ÿ�
�
�ø�ê�ç ��û�å�ê ê¸û�å�
�ï�ûgówìaÿ�û�ù¤
Nï¼è"ç�ïä�å	è"ø�ì ì�ë�	 /

E
å�é�ù�	 /

E
��� W 	 /��
 ��� ���
�� ð(ã�ç�ø�ê�ù�ø�êR��ä ø�î¼ø�é�åo�è"ø�ú�ï¢��ä"ø�è"ï�ä"ø�ì�é�æ�ä ï�ú�ï�éiè ê¸è"ç�ï�æ�ä"ï�ú�ø�ìaÿ�ê�û	�&î¼ï�éiè"ø�ì�é�ï�ù ����ì�û�û�å�æ�ê@�ø�é��¾ïUÄ�ï���è>
�óYç�ï�é&è ç�ï������Kæ�å�ä�å�î¼ï�è"ï�ä�ê å�ä"ï
û�ï�å�ä"é�ïdù�
�ï#��å�ÿ�ê�ïø�èSô�ï�ï�æ�ê
è"ç�ï �'������ï�éiè"ï�ä ê©å�æ�å�ä"è
ëíä ì�î ï�å���çÆì�è"ç�ï�ä�ð&�«éhþ�ï#�4�è"ø�ì�é �{�4�Yówï&æ�ä ï�ê"ï�éiè1å �aï�é�ï�ä å�û�ø	¾�å�è"ø�ì�éhì�ë®è"ç�ø�ê¢��ä ø�è"ï�ä ø�ì�é ëíì�äê���ê�è"ï�î�ê^è ç�å	è�û�ï�å�ä é�è ìÀ��û�åaê"ê"ø³ëµ�¼îSÿ�û³è ø�æ�û�ï®ì�
 �{ï��£è�ê¹ø�é1è"ç�ï¸ø�é�æ�ÿ�è

Áíïað ��ð�� ��ç�å�ä�å���è"ï�ä�êwø�é5ó¹ì�ä�ù�ê¹ì�äYø�é:ù�ì!��ÿ�î¼ï�éiè ê/Â£ð
�wì�î¼æ�ÿ�è ø�é��®è ç�ï$��ä�å�ù�ø�ï�éaègì�ë�è"ç�ï û�ìiê"êUëíÿ�é��£è ø�ìaé\óYø�è"ç¼ä ï�ê"æ�ï#�£èè"ìHå�û�û
è ç�ï ó¹ï�ø	��çiè ê:ø�é å�û�û®è ç�ï û�å%��ï�ä�ê:ì�ëSè"ç�ï���ì�é�ú�ìaû�ÿ�è ø�ìaé�å�ûé�ï�è{ówìaä"ô:ø�ê®ù�ìaé�ï\óYø³è ç
�å���ô��}æ�ä ì�æ�å��aå�è"ø�ì�é�ð�ã�ç�ï\ê�è å�é�ù�å�ä�ù·å�ûª�

��ìaä"ø�è"ç�îFî�ÿ�ê{è�
Nï1ê"û�ø	��çiè"û	�Oî¼ì�ù�ø�©�ï�ù è ì5è å�ô�ï¾å�����ìaÿ�éiè®ì�ë�è"ç�ïó¹ï�ø	��çièBê"ç�å�ä ø�é���ð;��é
ï�å�ê��¸ó¹å%��è"ì ø�î¼æ�û�ï�î¼ï�éièBø�èBø�ê�è ì�©�ä�ê{èb��ì�îÀ�æ�ÿ�è ï^è ç�ï^æ�å�ä"è"ø�å�û�ù�ï�ä ø�ú	å�è"ø�ú�ï�ê;ì�ë�è ç�ï^û�ìaê ê�ëíÿ�é��£è ø�ìaé�óYø�è"ç©ä ï�ê"æ�ï#�£èè"ì5ïdå���ç ?/¶?²�²v¸ ?�»)� ¶?²��;åaê¸ø³ë¹è"ç�ï¼é�ï�è{ówìaä"ô&ó¹ï�ä ïSå&��ì�é�ú�ï�éaè ø�ìaé�å�ûî�ÿ�û³è øª�}û�å%�aï�ägé�ï�è{ówìaä"ô�óYø³è ç�ì�ÿ�èwówï�ø��açaè^ê"ç�å�ä"ø�é���ðUã�ç�ï�é\è ç�ï æ�å�äB�è"ø�å�û¸ù�ï�ä ø�úrå�è"ø�ú�ïdê�ì�ë©å�û�û è ç�ï¦��ì�é�é�ï��£è ø�ìaé�ê¼è ç�å	è5ê�ç�å�ä"ï·åhê"å�î\ïæ�å�ä å�î\ï�è"ï�ä�å�ä ï å�ù�ù�ïdùSè"ì
ëíìaä"î4è"ç�ï�ù�ï�ä ø�ú	å	è ø�úaïYóYø³è ç�ä"ïdê�æNï���ègè"ìè"ç�å	è æ�å�ä å�î\ï�è"ï�ä�ðþ�ÿ���ç&å\û�å�ä��aï®å�äR��ç�ø³è ï��£è ÿ�ä ï���å�é&
�ï®è ä å�ø�é�ï�ù�ú�ï�äR�¾ï,*¹��ø�ï�éiè"û	���

�ÿ�è®ù�ì�ø�é��1ê"ì1ä ï��iÿ�ø�ä ï�ê�è ç�ï�ÿ�ê"ï�ì�ë�å�ëíï�ó è ï���ç�é�ø	�iÿ�ïdêYè"ç�å	è¸å�ä"ïù�ïdê���ä"ø	
�ïdùHø�éHè"ç�ï å�æ�æNï�é�ù�øª£�ðLþ�ï���è"ø�ì�é �=ì�ë
è ç�ï�å�æ�æ�ï�é�ù�ø�£ù�ïdê���ä"ø	
�ïdê®ù�ï�è�å�ø�û�ê¸ê�ÿ ��ç�å�êpè ç�ïSæ�å�ä"è"ø���ÿ�û�å�ä®ê�ø	��î¼ìaø�ù&ÿ�ê�ïdùf��å�é�ùè"ç�ï�ó¹ï�ø	��çiè1ø�é�ø�è"ø�å�û�ø�¾då	è"ø�ì�é;ðLþ�ï#�£è ø�ìaé � å�é�ù�� ù�ï�êR��ä ø	
�ïOè"ç�ïî¼ø�é�ø�î¼ø	¾�å	è ø�ìaé¾æ�ä ì!��ï�ù�ÿ�ä"ïpÿ�ê"ï�ùf�ióYç�ø���ç¾ø�ê¹å�ê�è"ì!��ç�åaê{è ø	��ú�ï�ä ê"ø�ìaéì�ë�å5ù�ø�å���ìaé�å�ûgå�æ�æ�ä"ì%£�ø�î�å	è"ø�ì�éOè"ì:è"ç�ïK�;ï�úaï�é�
�ï�ä����}öOå�ä/�aÿ�å�ä�ù�èæ�ä ì!��ï�ù�ÿ�ä"ïað

�U�U�%��$©Ù ��ß�Ü�Þ �¼Ý;Ú;�"�¸×BØ��rÝ;àf� �d×BÚ �¢��Þ�#���Þ�#�Ù�à
 Ù�Þ #B×;���

� ç�ø�û�ï¼ä"ï#��ì���é�ø	¾�ø�é��¾ø�é�ù�ø�ú�ø�ù�ÿ�å�ûgù�ø	��ø�è ê¸ø�ê¸ìaé�û��5ìaé�ïSì�ë^î�å�é��æ�ä ì�
�û�ï�î�ê¹ø�éiúaì�û�ú�ïdù�ø�é5ù�ïdê�ø	��é�ø�é��¼å�æ�ä å��£è"ø���å�û�ä"ï#��ì��aé�ø�è"ø�ì�é1ê���ê@�è"ï�î&��ø�èOø�ê�å�é ïU£���ï�û�û�ï�éaè¦
�ï�é���ç�î�å�ä ô6ëíìaä¦��ìaî¼æ�å�ä ø�é��Äê"ç�å�æ�ïä ï���ì���é�ø�è"ø�ì�é�î¼ï�è"ç�ì�ù�ê�ð�ã�ç�ìaÿ���ç�î�å�é��¾ïU£�ø�ê{è ø�é��Sî¼ï�è ç�ì�ù&��ì�îÀ�

�ø�é�ï
å\ç�å�é�ù!�O��ä å�ë»è"ï�ù1ëíï�å�è"ÿ�ä ï¸ïU£�è"ä�å���è"ì�äYå�é�ù�åSè ä å�ø�é�å�
�û�ï���û�åaê@�ê"øª©�ï�ä��¹è ç�ø�ê:ê�è"ÿ�ù!� ��ìaé���ï�éiè"ä�å	è"ïdê�ì�éHåaù�å�æ�è ø�úaï&î¼ï�è"ç�ì�ù�ê¾è ç�å	èì�æNï�ä�å	è ï
ù�ø�ä ï���è"û	�¾ì�é5ê"ø�¾�ïU�}é�ì�ä î�å�û�ø�¾�ï�ù¾ø�î�å?�aï�ê�ð
��� "À­o»r­&*/­%³�¸"!'»µ¯�¸$# ¶�%'� ��¸,%Àº�% ��°�³U¸�»

ã�ç�ï ù�å	è�å?
�åaê�ï ÿ�ê"ï�ù-è"ì è"ä�å�ø�é å�é�ù-è"ïdê{è&è ç�ï êB��ê�è"ï�î¼ê&ù�ïU�êR��ä ø�
Nï�ùSø�éSè"ç�ø�êkæ�å�æ�ï�ägó¹åaêX��ì�é�ê�è"ä ÿ���è"ï�ù�ëíä ì�î è"ç�ï ñ���þ�ã < ê�þ�æNïU�
��ø�å�ûb"på�è å�
�å�ê"ï�b¾å�é�ù·þ�æ�ï#��ø�å�ûb"på�è å?
�å�ê"ï¢¿���ìaéiè å�ø�é�ø�é��¹
�ø�é�å�äR�ø�î¼å���ïdê®ì�ëwç�å�é�ù�óYä ø�è�è"ï�é ù�ø��aø³è�ê�ð¾ñ'��þ�ãÂì�ä ø��aø�é�å�û�û	�·ù�ïdê�ø	��é�å�è"ïdùþ!"'�:b\å�ê^è"ç�ï�ø�ä^è ä å�ø�é�ø�é��¼ê�ï�è¹å�é�ù�þ!"'�/¿¸åaê�è ç�ï�ø�ä¹è"ï�ê�èYê�ï�è�ðgõ ì	ó��ï�úaï�ä#��þ!"���bpø�êUî�ÿ ��ç���û�ï�å�é�ï�äkå�é�ù©ï�åaê�ø�ï�äBè"ì¸ä ï���ì���é�ø	¾�ï^è"ç�å�é\þ!"'�
¿�ð�ã�ç�ï
ä ï�åaê�ìaé1ëíìaäYè"ç�ø�ê'��å�é&
Nï
ëíì�ÿ�é�ù5ì�é5è"ç�ï
ë�å���èYè"ç�å�è¸þ!"'�:b

• 7× 12 character bitmaps

• chosen by hand to initialize the FC-RBF connections

• structured output

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.

LeNet-5 connections between convolutional layers

���������	��

����������������������������������� �"! !
� ¿ � b c � � � 5 ; ¿8�\¿�¿�¿ �\¿�b ¿�c ¿ �

� � � � � � � � � � �
¿ � � � � � � � � � �
� � � � � � � � � � �
b � � � � � � � � � �
c � � � � � � � � � �
� � � � � � � � � � �

)!VYdwP�l E���������	��
���
����������������	������������������������ !�"
���#"���%$�&'�� !�(���)
�*	�������*�+��	���(�������!��������#,�� ��	������
��� -�������	�� !�"
���#.���(/10!2

��ìaî�
�ø�é�ïdù
��·ïdå���ç��;b1ëíïdå	è ÿ�ä"ï¼î�å�æ;ð � çZ�Oé�ì�è���ìaé�é�ï#�£è©ï�úZ�ï�äR�Kþ ��ëíïdå	è ÿ�ä"ï5î�å�æ è ì ï�ú�ï�ä����;b�ëíïdå	è"ÿ�ä"ï5î�å�æ��*ã�ç�ï&ä ï�åo�ê"ì�éhø�êSè{ówì�ëíì�û�ù�ðx�Uø�ä�ê{è#�^å�é�ì�é!�r��ìaî¼æ�û�ï�è"ï���ì�é�é�ï���è"ø�ì�éKêR��ç�ï�î\ïô�ï�ï�æ�ê;è"ç�ï¹é�ÿ�î�
�ï�äkì�ë ��ì�é�é�ï#�£è ø�ìaé�ê;óYø�è"ç�ø�é\ä"ïdå�ê"ì�é�å�
�û�ï�
�ìaÿ�é�ù�ê�ðö&ìaä"ï¹ø�î¼æNì�ä"è å�éaè û�����ø�èUëíìaäR��ï�êkå{
�ä"ïdå�ô
ì�ëNê��iî¼î¼ï�è ä��
ø�éSè"ç�ï�é�ï�èB�ó¹ì�ä ôNðb"�ø�Ä�ï�ä ï�éiègëíï�å�è"ÿ�ä ïYî�å�æ�êgå�ä"ï¹ëíì�ä/��ïdù©è ì
ïU£�è"ä�å���è�ù�øªÄ�ï�ä ï�éiè
Áíç�ì�æNï�ëíÿ�û�û��x��ì�î¼æ�û�ï�î¼ï�éiè å�ä���Âpëíïdå	è"ÿ�ä"ïdê

�ï#��å�ÿ�ê�ï¾è"ç�ï��¦�aï�èSù�ø�ëG�ëíï�ä ï�éièpê"ï�è�êYì�ëgø�é�æ�ÿ�è�ê�ðYã�ç�ï�ä å�è"ø�ì�é�å�û�ï

Nï�ç�ø�é�ù:è ç�ï���ì�é�é�ï#�£è ø�ìaéêR��ç�ï�î¼ï
ø�é�è�å?
�û�ï
��ø�êYè"ç�ï®ëíìaû�û�ì	óYø�é���ð^ã�ç�ït©�ä ê�è�ê�ø�£��;b\ëíïdå	è ÿ�ä"ïî�å�æ�êSè�å�ô�ï�ø�é�æ�ÿ�è êSëíä ì�î ï�ú�ï�äR� ��ì�éiè ø��aÿ�ì�ÿ�ê\ê"ÿ�
�ê"ï�è ê\ì�ëYè"ç�ä ï�ïëíï�å�è"ÿ�ä ï:î¼å�æ�êSø�éÄþ ��ð ã�ç�ï:é�ïU£�è�ê�ø�£Æè å�ô�ï:ø�é�æ�ÿ�èSëíä ì�î ï�ú�ï�ä��
��ìaéiè"ø	��ÿ�ìaÿ�êYê�ÿ�
�ê�ï�è ì�ëUëíì�ÿ�ädð^ã�ç�ï
é�ïU£�èYè"ç�ä ï�ï®è�å�ôaï
ø�é�æ�ÿ�è ëíä ì�îê"ì�î¼ï:ù�ø�êR��ìaéaè ø�é�ÿ�ìaÿ�ê¼ê�ÿ�
�ê�ï�è ê¼ì�ë�ëíì�ÿ�ä�ð��Bø�é�å�û�û	� è"ç�ï:û�å�ê�è�ì�é�ïè å�ô�ïdê ø�é�æ�ÿ�è¸ëíä"ìaîMå�û�ûgþ �\ëíïdå	è ÿ�ä"ïSî�å�æ�ê�ðB�;å%�aï�ä��;b1ç�å�ê�¿�� �!¿��è"ä�å�ø�é�å�
�û�ï®æ�å�ä å�î¼ï�è"ï�ä ê�å�é�ù ¿��!¿�� ���6����ì�é�é�ï��£è ø�ìaé�ê�ð
�;å%��ï�ä^þ!c©ø�ê^å©ê"ÿ�
!�«ê å�î¼æ�û�ø�é��
û�å%��ï�ägóYø³è ç¤¿8�¸ëíïdå	è ÿ�ä"ï�î¼å�æ�êgì�ëê"ø�¾�ï �%£���ð (wå���ç&ÿ�é�ø³è¸ø�é·ïdå���ç5ëíïdå	è"ÿ�ä"ï©î�å�æ&ø�ê���ìaé�é�ï���è"ïdù:è"ì�å

�%£��®é�ï�ø	��ç�
�ìaä"ç�ìiì�ù¼ø�é�è"ç�ï{��ìaä"ä ï�ê"æNì�é�ù�ø�é��®ëíïdå	è"ÿ�ä"ïpî¼å�æ�ø�é��;b��ø�é�å1ê"ø�î\ø�û�å�ä�ó�å%�5å�ê
�{¿Så�é�ùOþ ��ð��;å%�aï�ä®þ!c1ç�åaê�b0�\è"ä�å�ø�é�å�
�û�ïæ�å�ä å�î\ï�è"ï�ä ê�å�é�ù.��� ���6�À��ì�é�é�ï���è"ø�ì�é�ê�ð
�;å%��ï�ä��@�®ø�êwå���ì�é�úaì�û�ÿ�è"ø�ì�é�å�û�û�å%��ï�ä^óYø³è ç ¿ �6�¸ëíï�å�è"ÿ�ä ï�î�å�æ�ê�ð

(^å���çKÿ�é�ø³è¾ø�ê¹��ìaé�é�ï#�£è"ïdùKè"ì å �%£��Oé�ï�ø	��ç�
Nì�ä ç�ì�ì�ùhì�éHå�û�û
¿8�ì�ëYþ!cB< ê¸ëíï�å�è"ÿ�ä ï¼î�å�æ�ê�ð\õ�ï�ä ï���
Nï���å�ÿ�ê"ïSè"ç�ï¾ê"ø�¾�ïSì�ëYþ�c�ø�ê
å�û�ê�ì
�%£����^è ç�ïOê"ø�¾�ï&ì�ë��@� < ê\ëíï�å	è ÿ�ä ï&î¼å�æ�ê�ø�ê�¿U£f¿�+5è"ç�ø�ê1å�î\ìaÿ�éiè êè"ìÄå ëíÿ�û�û
��ìaé�é�ï#�£è"ø�ì�éc
�ï�è{ówï�ï�é9þ!c å�é�ù��@��ð �@� ø�ê1û�å?
Nï�û�ï�ùå�ê¹åÀ��ì�é�úaì�û�ÿ�è"ø�ì�é�å�û�û�å%��ï�ä#�iø�é�ê�è"ïdå�ù�ì�ëBå
ëíÿ�û�û	�Z�O��ì�é�é�ï#�£è ï�ù¾û�å%��ï�ä��

Nï���å�ÿ�ê"ï¹ø�ë ��ï�ñ�ï�è����pø�é�æ�ÿ�è�ó¹ï�ä ï�î¼åaù�ï�
�ø	����ï�äkóYø³è ç\ï�ú�ï�ä��iè"ç�ø�é��ï�û�ê"ï&ô�ï�æ�è ��ì�é�ê{è�å�éiè��wè"ç�ï5ëíïdå	è ÿ�ä"ï&î�å�æÄù�ø�î¼ï�é�ê�ø�ì�éÄó¹ì�ÿ�û�ù�
�ïû�å�äR��ï�äBè"ç�å�é ¿�£f¿�ðBã�ç�ø�êUæ�ä ì!��ï�ê êBì�ë�ù!��é�å�î¼ø	��å�û�û��
ø�é���ä ï�åaê�ø�é���è"ç�ïê"ø�¾�ï�ì�ë¹å ��ìaé�ú�ì�û�ÿ�è ø�ìaé�å�û�é�ï�è{ó¹ì�ä ô�ø�ê®ù�ï�êR��ä ø�
Nï�ù·ø�éOè"ç�ï¼ê�ï#�£è ø�ìaéþ�ï#�£è"ø�ì�é&�{�B�£ð �;å%�aï�ä'�@�Sç�å�ê@c 5��	¿ �6�
è"ä�å�ø�é�å�
�û�ï
��ì�é�é�ï#�£è ø�ìaé�ê�ð
�;å%��ï�ä�� ��� ��ì�éiè å�ø�é�ê 5'c�ÿ�é�ø³è�ê�Á»è ç�ï�ä ï�åaê�ìaé1ëíìaäYè"ç�ø�ê�éiÿ�î�
Nï�ä

��ìaî¼ï�ê®ëíä ì�î=è"ç�ï�ù�ï�ê"ø��aéÆì�ë�è"ç�ï1ì�ÿ�è æ�ÿ�è�û�å%��ï�ä��BïU£�æ�û�å�ø�é�ï�ù�
NïU�û�ì	ó'Â å�é�ù5ø�ê�ëíÿ�û�û�����ìaé�é�ï#�£è"ïdù5è"ì��@��ð��}è¸ç�å�ê�¿8����¿��'c\è"ä�å�ø�é�å�
�û�ïæ�å�ä å�î\ï�è"ï�ä ê�ð
��ê ø�é¤��û�å�ê ê"ø	��å�û�é�ï�ÿ�ä å�û�é�ï�è{ówìaä"ô�ê���ÿ�é�ø�è ê ø�é&û�å%��ï�ä�ê¹ÿ�æ5è"ì¢� �

��ìaî¼æ�ÿ�è"ï¹å ù�ì�è;æ�ä ì�ù�ÿ��£è;
Nï�è{ó¹ï�ï�é
è"ç�ï�ø�ä;ø�é�æ�ÿ�èUú�ï���è"ìaä;å�é�ù¸è ç�ï�ø�äó¹ï�ø	��çièBúaï��£è ì�ä#��è ì�óYç�ø���ç�å'
�ø�åaê�ø�êBåaù�ù�ïdù�ðUã�ç�ø�êBówï�ø��açiè"ï�ù
ê"ÿ�î&�ù�ï�é�ì�è ï�ù43 W ëíìaä1ÿ�é�ø³è65R�Yø�ê�è ç�ï�é-æ�å�ê ê�ïdù è"ç�ä ì�ÿ���ç6å ê"ø��aî¼ì�ø�ùêR�aÿ�å�ê"ç�ø�é��Sëíÿ�é��£è ø�ìaé5è"ì¾æ�ä ì�ù�ÿ���ï®è"ç�ï©ê�è å�è"ï
ì�ëgÿ�é�ø³è"5/��ù�ï�é�ì�è"ï�ù

��87/W + 7 W 5:9YÁ;3!W6Â ÁZ��Â
ã�ç�ï©êR�iÿ�å�ê"ç�ø�é���ëíÿ�é��£è ø�ìaé:ø�ê å¼êR��å�û�ï�ù�ç���æ�ï�ä�
Nì�û�ø	�pè�å�é��aï�éiè8+

9YÁ<3!Â 5:=5è å�é�ç;Á;>�3�Â Á
��Â

óYç�ï�ä"ï?=-ø�ê�è"ç�ï�å�î¼æ�û�ø�è"ÿ�ù�ï�ì�ëNè ç�ïYëíÿ�é �£è"ø�ì�é�å�é�ù@>Æù�ï�è"ï�ä î¼ø�é�ï�êø�è ê�ê"û�ìaæ�ïYå�èUè ç�ïYì�ä ø	��ø�é�ðBã�ç�ï¹ëíÿ�é �£è"ø�ì�é89¾ø�êkì�ù�ùf�aóYø³è ç¼ç�ì�ä ø�¾�ì�é!�è å�ûUåaêB��î¼æ�è ì�è"ïdê�å�è �(=4å�é�ù � =�ð¸ã�ç�ïÀ��ìaé�ê{è�å�éiè.=Âø�ê���ç�ìiê�ï�éè"ì�
Nï¥¿ \��!¿ �A;�ðpã�ç�ï\ä�å	è"ø�ì�é�å�û�ï
ëíì�äpè"ç�ø�êt��ç�ì�ø���ïSì�ëwå�ê��iÿ�åaê�ç�ø�é��ëíÿ�é���è"ø�ì�é5ø�ê$��ø�ú�ï�é1ø�é&��æ�æNï�é�ù�ø�£��©ð
�Bø�é�å�û�û	���dè"ç�ï^ì�ÿ�è"æ�ÿ�èUû�å%�aï�ä�ø�êX��ì�î¼æNìaê"ï�ù¸ì�ëB(^ÿ���û�ø�ù�ï�å�é���å�ù�ø�å�û

��å�ê"ø�ê¹��ÿ�é���è"ø�ì�éÄÿ�é�ø�è ê¦Á ������Â4�wì�é�ï:ëíì�ä1ï�å���ç ��û�å�ê ê��^óYø�è"ç 5'cø�é�æ�ÿ�è�ê^ïdå���ç�ðkã�ç�ï�ìaÿ�è"æ�ÿ�è ê^ì�ë�ï�å���ç¢�����Oÿ�é�ø³èBA&W�ø�ê���ì�î¼æ�ÿ�è"ï�ùå�ê¹ëíìaû�û�ì	ó ê8+ A&W 5DC	E ÁF7 E �HG W E Â � \ Á �?Â

�«éÆì�è ç�ï�ä©ó¹ì�ä�ù�ê���ï�å���çÆì�ÿ�è æ�ÿ�è������-ÿ�é�ø�è���ìaî\æ�ÿ�è"ïdê®è"ç�ï�(�ÿ!�
��û�ø�ù�ï�å�é\ù�ø�ê�è å�é ��ï�
�ï�è{ówï�ï�é\ø³è�êkø�é�æ�ÿ�è�ú�ï#�£è"ìaägå�é�ù�ø³è�êgæ�å�ä�å�î¼ï�è"ï�äú�ï#�£è ì�ädð¹ã�ç�ï©ëíÿ�ä�è ç�ï�ä®åró�å%�¾ø�ê è"ç�ï�ø�é�æ�ÿ�è�ëíä ì�îPè"ç�ïSæ�å�ä�å�î¼ï�è"ï�äú�ï#�£è ì�ä#��è"ç�ï�û�å�ä��aï�ä¾ø�ê¾è ç�ï¦�'���(ìaÿ�è"æ�ÿ�è�ðÂã�ç�ïOì�ÿ�è"æ�ÿ�è5ì�ë©åæ�å�ä�è ø	��ÿ�û�å�ä$��������å�é
Nï¸ø�éiè"ï�ä"æ�ä ï�è ï�ù:å�ê�åSæ�ï�é�å�û�è@��è"ï�ä"î/î\ïdåo�ê"ÿ�ä"ø�é��¸è"ç�ï�©�è�
�ï�è{ówï�ï�é\è"ç�ïYø�é�æ�ÿ�è^æ�å�è�è"ï�ä"é¼å�é�ù\å¸î¼ì�ù�ï�û�ì�ëNè"ç�ï
��û�å�ê ê�åaê"ê"ì!��ø�å	è ï�ù:óYø³è ç&è"ç�ï������¹ð �«éOæ�ä"ì�
�å?
�ø�û�ø�ê�è"ø��®è ï�ä î¼ê���è"ç�ï
����� ìaÿ�è"æ�ÿ�è$��å�é¥
�ï®ø�éaè ï�ä æ�ä ï�è"ïdù1åaê^è ç�ï®ÿ�é�é�ìaä"î�å�û�ø	¾�ïdù�é�ï��iåo�è"ø�ú�ï\û�ì��?�}û�ø�ôaï�û�ø�ç�ì�ì�ù·ì�ëwå5â®å�ÿ�ê ê�ø�å�é ù�ø�ê{è ä"ø	
�ÿ�è ø�ìaé�ø�éOè ç�ï�ê�æ�å���ïì�ë���ì�é!©��aÿ�ä�å	è"ø�ì�é�êYì�ëgû�å%��ï�ä{����ð�â¸ø�úaï�éOå�é&ø�é�æ�ÿ�èpæ�å	è�è ï�ä é���è"ç�ïû�ìaê ê�ëíÿ�é��£è ø�ìaéÆê"ç�ìaÿ�û�ù
�ï¾ù�ï�ê"ø��aé�ï�ù�ê�ì&å�êpè ì��aï�è®è"ç�ï¨��ì�é!© ��ÿ!�ä�å	è"ø�ì�é ì�ë'� �·å�ê���û�ìaê"ï1å�êSæ�ìiê"ê"ø	
�û�ï¾è"ì·è ç�ï1æ�å�ä�å�î¼ï�è ï�ä©úaï��£è ì�äì�ë�è ç�ï{�����Oè"ç�å�è���ì�ä ä"ïdê�æNì�é�ù�êUè"ì©è ç�ï æ�å�è�è ï�ä é < êwù�ï�ê"ø�ä"ïdù¹��û�å�ê ê�ðã�ç�ï®æ�å�ä å�î\ï�è"ï�ä¹úaï���è"ì�ä�êwì�ë;è ç�ï�ê"ï®ÿ�é�ø�è êYó¹ï�ä ït��ç�ìaê"ï�é¥
Z�1ç�å�é�ùå�é�ù�ôaï�æ�èY©�£�ï�ù�Á�å�è�û�ïdå�ê�ègø�é�ø�è"ø�å�û�û	�!Â�ðUã�ç�ï���ì�î¼æNì�é�ï�éiè êUì�ë�è"ç�ìiê�ïæ�å�ä å�î\ï�è"ï�ä êwú�ï#�£è"ìaä êwó¹ï�ä ï¸ê"ï�è¹è"ìÀ�/¿pìaä ��¿að � ç�ø�û�ï¸è"ç�ï�� ��ìaÿ�û�ùç�årúaï$
�ï�ï�é¥��ç�ìaê"ï�é�å	è¹ä å�é�ù�ì�î(óYø�è"ç¾ï#�aÿ�å�û�æ�ä"ì�
�å?
�ø�û�ø³è ø�ïdêgëíì�ä§�R¿å�é�ù ��¿��kì�ä©ï�ú�ï�é���ç�ìaê"ï�éÆè ì&ëíì�ä î å�é ï�ä ä"ìaä���ìaä"ä ï���è"ø�é�����ì�ù�ïå�ê¸ê"ÿ����aï�ê�è"ï�ù&
���� c3� 	O��è"ç�ï��&ówï�ä"ï©ø�é�ê�è"ïdå�ù·ù�ïdê�ø	��é�ï�ù5è ì1ä ï�æ�ä ïU�ê"ï�éiè®å:ê�è@�iû�ø	¾�ï�ùOø�î�å���ï\ì�ë�è ç�ïÀ��ì�ä ä"ïdê�æNì�é�ù�ø�é��¥��ç�å�ä å��£è"ï�ä{��û�åaê"êù�ä�åróYé�ìaé å!�#£f¿ �¥
�ø�è"î�å�æ Á�ç�ï�é ��ï�è ç�ï�é�ÿ�î�
Nï�ä 5&cZÂ�ð:þ�ÿ���ç åä ï�æ�ä ï�ê"ï�éiè å�è"ø�ì�éSø�êké�ì�è�æ�å�ä"è"ø���ÿ�û�å�ä"û	�
ÿ�ê"ï�ëíÿ�û�ëíìaägä"ï#��ì���é�ø	¾�ø�é��¸ø�ê"ì?�û�å	è"ïdù�ù�ø��aø³è�ê��!
�ÿ�è�ø�è ø�ê��iÿ�ø�è"ï®ÿ�ê"ï�ëíÿ�û�ëíì�ä�ä ï���ì���é�ø	¾�ø�é��\ê{è ä"ø�é��aê¹ì�ë
��ç�å�ä å��£è"ï�ä ê©è å�ô�ï�éhëíä"ìaî è"ç�ï�ëíÿ�û�ûYæ�ä ø�éaè�å?
�û�ï&�pþ������\ê"ï�èdðKã�ç�ïä�å	è"ø�ì�é�å�û�ï
ø�ê�è ç�å	èt��ç�å�ä�å���è"ï�ä êwè"ç�å	è¸å�ä"ï©ê"ø�î\ø�û�å�ä#��å�é�ù:è ç�ï�ä ï�ëíìaä"ï
��ìaé�ëíÿ�ê å?
�û�ï���ê"ÿ���ç1å�êwÿ�æ�æNï�ä/��åaê�ï
ý��aû�ì	ó¹ï�ä/��å�ê"ïpý���å�é�ù¹¾�ï�ä ì��iì�äû�ì	ówï�äR��å�ê"ï¸û1��ù�ø	��ø�è�¿��Nê��iÿ�å�ä"ï�
�ä å���ô�ï�è ê���å�é�ù·ÿ�æ�æNï�ä/��å�ê"ï��4�NóYø�û�ûç�årúaï ê�ø�î¼ø�û�å�ägìaÿ�è"æ�ÿ�è���ì�ù�ïdê�ðkã�ç�ø�ê�ø�êgæ�å�ä�è ø	��ÿ�û�å�ä"û	�©ÿ�ê"ï�ëíÿ�û�ø�ë�è"ç�ïê���ê�è"ï�î@ø�ê¢��ìaî�
�ø�é�ï�ùKóYø�è"ç6å û�ø�é��aÿ�ø�ê�è"ø��5æNìaê�èB�}æ�ä"ì!��ï�ê ê�ìaä�è ç�å	è
��å�é���ì�ä ä"ï#�£è�ê�ÿ���ç&��ìaé�ëíÿ�ê"ø�ìaé�ê�ðY�¹ï#��å�ÿ�ê�ïpè"ç�ï
��ì�ù�ï�ê¹ëíì�ä���ì�é�ëíÿ�ê@�å?
�û�ï���û�å�ê ê"ï�ê¼å�ä ï:ê"ø�î\ø�û�å�ä#��è"ç�ï&ì�ÿ�è æ�ÿ�è¾ì�ëpè"ç�ï¤��ì�ä ä"ïdê�æNì�é�ù�ø�é��
�����kêYëíìaäpå�é�å�î�
�ø��aÿ�ì�ÿ�ê'��ç�å�ä�å���è"ï�äYóYø�û�ûX
NïSê"ø�î¼ø�û�å�ä��Nå�é�ù&è"ç�ïæNìaê�èB�}æ�ä"ì!��ï�ê ê�ìaä�óYø�û�û�
�ï¹å?
�û�ï�è ìpæ�ø	��ô¸è"ç�ï¹å�æ�æ�ä ì�æ�ä ø�å�è"ïgø�éiè"ï�ä æ�ä ïU�è å�è"ø�ì�é�ð$�Uø	��ÿ�ä ï�b¹��ø�ú�ïdê�è"ç�ï©ì�ÿ�è æ�ÿ�è{��ì�ù�ï�ê ëíì�äYè ç�ï©ëíÿ�û�ûX�¸þ����B�ê"ï�è�ð
� é�ì�è"ç�ï�äpä ï�åaê�ìaé5ëíì�ä¸ÿ�ê�ø�é��:ê�ÿ���ç�ù�ø�ê�è"ä ø	
�ÿ�è"ïdù¤��ì�ù�ïdê���ä�å	è ç�ï�äè"ç�å�éKè"ç�ï5î¼ì�ä ï¥��ì�î¼î¼ì�é6��¿�ì�ë¸ñ�
¦��ì�ù�ï Áüå�û�ê�ì���å�û�û�ï�ùhæ�û�å���ï

��ì�ù�ï��wìaä¹��ä�å�é�ù!�mî¼ì�è ç�ï�ä¹��ï�û�û���ì�ù�ï#ÂSëíìaä¼è"ç�ï&ìaÿ�è"æ�ÿ�è ê�ø�ê¼è ç�å	èé�ìaé¼ù�ø�ê�è"ä ø�
�ÿ�è"ïdù¹��ì�ù�ï�êUè ï�é�ù\è ì

�ï�ç�årú�ï�
�åaù�û	��óYç�ï�é¼è"ç�ïYé�ÿ�îÀ�

Nï�ä\ì�ë���û�å�ê ê�ïdê
ø�ê�û�å�äR��ï�ä
è"ç�å�é å5ëíï�ó ù�ì�¾�ï�é�ê�ðOã�ç�ï¾ä ï�åaê�ìaé ø�êè"ç�å	è1ìaÿ�è"æ�ÿ�è1ÿ�é�ø�è ê1ø�é-åÆé�ì�é!�«ù�ø�ê{è ä"ø	
�ÿ�è ï�ù ��ì�ù�ï·îSÿ�ê�è
�ïOì?Äî¼ìaê�è�ì�ë�è ç�ï:è"ø�î¼ï�ðÄã�ç�ø�ê¼ø�ê¹�iÿ�ø�è"ï&ù�ø *¹��ÿ�û�è�è"ì å���ç�ø�ï�úaï�óYø�è"çê"ø��aî\ìaø�ù\ÿ�é�ø³è�ê�ðJI�ï�è�å�é�ì�è"ç�ï�ä�ä ï�å�ê"ì�é\ø�êkè"ç�å�è^è ç�ï'��û�å�ê ê"øª©�ï�ä êgå�ä"ïì�ë»è ï�é:ÿ�ê"ï�ù�è ìSé�ì�è�ì�é�û	��ä"ï#��ì���é�ø	¾�ï���ç�å�ä�å���è"ï�ä�ê���
�ÿ�è å�û�ê"ì©è ìSä ïU�
�{ï���è^é�ìaé!�O��ç�å�ä�å��£è ï�ä�ê�ðX�����Uê�óYø³è ç¾ù�ø�ê�è"ä ø	
�ÿ�è"ïdù¹��ì�ù�ïdêgå�ä ïYî\ìaä"ïå�æ�æ�ä"ìaæ�ä ø�å�è"ï¹ëíì�ägè ç�å	è¹æ�ÿ�ä æ�ìiê�ï$
Nï���å�ÿ�ê"ïYÿ�é�û�ø�ô�ï�ê"ø��aî¼ì�ø�ù�ê���è"ç�ï��å�ä ï�å��£è ø�ú	å�è"ï�ù\óYø�è"ç�ø�é�å¸ówï�û�û���ø�ä/��ÿ�î�êR��ä ø�
Nï�ù�ä"ï���ø�ì�é\ì�ë�è"ç�ï�ø�ägø�é!�

• number of connections limited

• forces break of symmetry

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.

ImageNet
[Russakovsky et al. 2014]

• 22k classes, 15M samples

• ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000
classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

ImageNet classification performance

2010 2011 2012 2013 2014 2015

0

5

10

15

20

25

30 SVC+SVM

FV+SVM

AlexNet

ZFNet

GoogLeNet

ResNet

to
p

-5
er

ro
r

%

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

AlexNet
[Krizhevsky et al. 2012]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

• 16.4% top-5 error on on ILSVRC’12, outperformed all by 10%

• 8 layers

• ReLU, local response normalization, data augmentation, dropout

• stochastic gradient descent with momentum

• implementation on two GPUs; connectivity between the two
subnetworks is limited

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

AlexNet
[Krizhevsky et al. 2012]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

• 16.4% top-5 error on on ILSVRC’12, outperformed all by 10%

• 8 layers

• ReLU, local response normalization, data augmentation, dropout

• stochastic gradient descent with momentum

• implementation on two GPUs; connectivity between the two
subnetworks is limited

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

learned layer 1 kernels

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][α1λ1, α2λ2, α3λ3]
T

where pi and λi are ith eigenvector and eigenvalue of the 3 × 3 covariance matrix of RGB pixel
values, respectively, and αi is the aforementioned random variable. Each αi is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11×11×3 learned by the first convolutional
layer on the 224×224×3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε ·
〈
∂L

∂w

∣∣
wi

〉

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ε is the learning rate, and
〈
∂L
∂w

∣∣
wi

〉
Di

is

the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

• 96 kernels of size 11× 11× 3

• top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

AlexNet (CaffeNet)
parameters operations volume

input(227, 3) 0 0 227× 227× 3

conv(11, 96, s4) 34, 944 105, 705, 600 55× 55× 96

pool(3, 2) 0 290, 400 27× 27× 96

norm 0 69, 984 27× 27× 96

conv(5, 256, p2) 614, 656 448, 084, 224 27× 27× 256

pool(3, 2) 0 186, 624 13× 13× 256

norm 0 43, 264 13× 13× 256

conv(3, 384, p1) 885, 120 149, 585, 280 13× 13× 384

conv(3, 384, p1) 1, 327, 488 224, 345, 472 13× 13× 384

conv(3, 256, p1) 884, 992 149, 563, 648 13× 13× 256

pool(3, 2) 0 43, 264 6× 6× 256

fc(4096) 37, 752, 832 37, 752, 832 4, 096

fc(4096) 16, 781, 312 16, 781, 312 4, 096

fc(1000) 4, 097, 000 4, 097, 000 1, 000

softmax 0 1, 000 1, 000

• ReLU follows each convolutional and fully connected layer

• CaffeNet: input size modified from 224× 224, pool/norm switched

conv(r, k′[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

AlexNet (CaffeNet)
parameters operations volume

input(227, 3) 0 0 227× 227× 3

conv(11, 96, s4) 34, 944 105, 705, 600 55× 55× 96

pool(3, 2) 0 290, 400 27× 27× 96

norm 0 69, 984 27× 27× 96

conv(5, 256, p2) 614, 656 448, 084, 224 27× 27× 256

pool(3, 2) 0 186, 624 13× 13× 256

norm 0 43, 264 13× 13× 256

conv(3, 384, p1) 885, 120 149, 585, 280 13× 13× 384

conv(3, 384, p1) 1, 327, 488 224, 345, 472 13× 13× 384

conv(3, 256, p1) 884, 992 149, 563, 648 13× 13× 256

pool(3, 2) 0 43, 264 6× 6× 256

fc(4096) 37, 752, 832 37, 752, 832 4, 096

fc(4096) 16, 781, 312 16, 781, 312 4, 096

fc(1000) 4, 097, 000 4, 097, 000 1, 000

softmax 0 1, 000 1, 000

• ReLU follows each convolutional and fully connected layer

• CaffeNet: input size modified from 224× 224, pool/norm switched

conv(r, k′[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

AlexNet: classification examples

• correct label on top; its predicted probability with red if visible

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

ImageNet classification performance

2010 2011 2012 2013 2014 2015

0

5

10

15

20

25

30 SVC+SVM

FV+SVM

AlexNet

ZFNet

GoogLeNet

ResNet

to
p

-5
er

ro
r

%

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

ZFNet∗

Visualizing and Understanding Convolutional Networks

Input Image

stride 2	

image size 224	

3	

96	

5	

2	

110	

55

3x3 max pool
stride 2

96	

3	

1	

26

256	

!lter size 7	

3x3 max
pool

stride 2

13
256	

3	

1	

13

384	

3	

1	

13

384	

Layer 1 Layer 2

13

256	

3x3 max
pool

stride 2

6

Layer 3 Layer 4 Layer 5

256	

4096
units	

4096
units	

Layer 6 Layer 7

C
class

softmax	

Output

contrast
norm.

contrast
norm.

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The final layer is a C-way softmax
function, C being the number of classes. All filters and feature maps are square in shape.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer’s features are displayed
in a different block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64].
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to
pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Degrees

P(
tru

e c
las

s)

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

1

3

5

7

8

9

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower

African Crocodile
African Grey
Entertrainment Center

60 40 20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

60 40 20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertical Translation (Pixels)

P(
tru

e c
las

s)

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale (Ratio)

P(
tru

e c
las

s)

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

a1	

c1	

a3	

c3	
 c4	

a4	

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

5

10

15

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih Tzu
African Crocodile
African Grey
Entertrainment Center

a2	

b3	
 b4	
 b2	
 b1	

c2	

Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.

• 11.7% top-5 error on ILSVRC’13

• 8 layers, refinement of AlexNet

• layer 1 kernel size (stride) reduced from 11(4) to 7(2) to reduce
aliasing artifacts

• conv3,4,5 width increased to 512, 1024, 512

Zeiler and Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.

ZFNet∗

parameters operations volume

input(224, 3) 0 0 224× 224× 3

conv(7, 96, s2, p1) 14, 208 171, 916, 800 110× 110× 96

pool(3, 2, p1) 0 1, 161, 600 55× 55× 96

norm 0 290, 400 55× 55× 96

conv(5, 256, s2) 614, 656 415, 507, 456 26× 26× 256

pool(3, 2, p1) 0 173, 056 13× 13× 256

norm 0 43, 264 13× 13× 256

conv(3, 512, p1) 1, 180, 160 199, 447, 040 13× 13× 512

conv(3, 1024, p1) 4, 719, 616 797, 615, 104 13× 13× 1024

conv(3, 512, p1) 4, 719, 104 797, 528, 576 13× 13× 512

pool(3, 2) 0 86, 528 6× 6× 512

fc(4096) 75, 501, 568 75, 501, 568 4, 096

fc(4096) 16, 781, 312 16, 781, 312 4, 096

fc(1000) 4, 097, 000 4, 097, 000 1, 000

softmax 0 1, 000 1, 000

• layer widths adjusted by cross-validation; depth matters

conv(r, k′[, p = 0][, s = 1]); (max)-pool(r[, s = r][, p = 0]);

ZFNet: occlusion sensitivity

image

correct class probability

• image occluded by gray square

• correct class probability as a function of the position of the square

Zeiler and Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.

ZFNet: visualizing intermediate layers∗

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

• reconstructed patterns from top 9 activations of selected features of
layer 4 and corresponding image patches

Zeiler and Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.

VGG
[Simonyan and Zisserman 2014]

Table 1: ConvNet configurations(shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv〈receptive field size〉-〈number of channels〉”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2:Number of parameters(in millions).

Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

decrease the number of parameters: assuming that both the input and the output of a three-layer
3× 3 convolution stack hasC channels, the stack is parametrised by3

(
32C2

)
= 27C2 weights; at

the same time, a single7 × 7 conv. layer would require72C2 = 49C2 parameters, i.e.81% more.
This can be seen as imposing a regularisation on the7 × 7 conv. filters, forcing them to have a
decomposition through the3× 3 filters (with non-linearity injected in between).

The incorporation of1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), additional non-linearity is
introduced by the rectification function. It should be notedthat the1 × 1 conv. layers have recently
been utilised in the “Network in Network” architecture of [15].

Small-size convolution filters have been previously used in[2], but their nets are significantly less
deep than ours, and they did not evaluate on the large-scale ILSVRC dataset. GoogLeNet [23],
another top-performing entry of ILSVRC-2014 which was developed independently of our work,
is similar to our approach in that it is based on very deep ConvNets (22 weight layers) and small
convolution filters (apart from3 × 3, they also use1 × 1 and5 × 5 convolutions). Their network
topology is, however, more complex than ours, and the spatial resolution of the feature maps is
reduced more aggressively in the first layers to decrease theamount of computation.

3

• 7.3% top-5 error on ILSVRC’14

• depth increased up to 19 layers, kernel sizes (strides) reduced to 3(1)

• local response normalization doesn’t do anything

• top/bottom layers of deep models pre-initialized by trained model A

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

effective receptive field

L0

L1

L2

L3

• is the part of the visual input that affects a given cell indirectly
through previous layers

• grows linearly with depth

• stack of three 3× 3 kernels of stride 1 has the same effective receptive
field as a single 7× 7 kernel, but fewer parameters

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

effective receptive field

L0

L1

L2

L3

• is the part of the visual input that affects a given cell indirectly
through previous layers

• grows linearly with depth

• stack of three 3× 3 kernels of stride 1 has the same effective receptive
field as a single 7× 7 kernel, but fewer parameters

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

effective receptive field

L0

L1

L2

L3

• is the part of the visual input that affects a given cell indirectly
through previous layers

• grows linearly with depth

• stack of three 3× 3 kernels of stride 1 has the same effective receptive
field as a single 7× 7 kernel, but fewer parameters

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

effective receptive field

L0

L1

L2

L3

• is the part of the visual input that affects a given cell indirectly
through previous layers

• grows linearly with depth

• stack of three 3× 3 kernels of stride 1 has the same effective receptive
field as a single 7× 7 kernel, but fewer parameters

Simonyan and Zisserman 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

VGG-16

parameters operations volume

input(224, 3) 0 0 224× 224× 3

conv(3, 64, p1) 1, 792 89, 915, 390 224× 224× 64

conv(3, 64, p1) 36, 928 1, 852, 899, 328 224× 224× 64

pool(2) 0 3, 211, 264 112× 112× 64

conv(3, 128, p1) 73, 856 926, 449, 664 112× 112× 128

conv(3, 128, p1) 147, 584 1, 851, 293, 696 112× 112× 128

pool(2) 0 1, 605, 632 56× 56× 128

conv(3, 256, p1) 295, 168 925, 646, 848 56× 56× 256

conv(3, 256, p1) 590, 080 1, 850, 490, 880 56× 56× 256

conv(3, 256, p1) 590, 080 1, 850, 490, 880 56× 56× 256

pool(2) 0 802, 816 28× 28× 256

conv(3, 512, p1) 1, 180, 160 925, 245, 440 28× 28× 512

conv(3, 512, p1) 2, 359, 808 1, 850, 089, 472 28× 28× 512

conv(3, 512, p1) 2, 359, 808 1, 850, 089, 472 28× 28× 512

pool(2) 0 401, 408 14× 14× 512

conv(3, 512, p1) 2, 359, 808 462, 522, 368 14× 14× 512

conv(3, 512, p1) 2, 359, 808 462, 522, 368 14× 14× 512

conv(3, 512, p1) 2, 359, 808 462, 522, 368 14× 14× 512

pool(2) 0 100, 352 7× 7× 512

fc(4096) 102, 764, 544 102, 764, 544 4, 096

fc(4096) 16, 781, 312 16, 781, 312 4, 096

fc(1000) 4, 097, 000 4, 097, 000 1, 000

softmax 0 1, 000 1, 000

network in network (NiN)∗
[Lin et al. 2013]

 .
. .

 .
. .

 .
. .

 .
. .

 .
. .

 .
. . .
. .

....

Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking
of three mlpconv layers and one global average pooling layer.

Comparison to maxout layers: the maxout layers in the maxout network performs max pooling
across multiple affine feature maps [8]. The feature maps of maxout layers are calculated as follows:

fi,j,k = max
m

(wT
km
xi,j). (3)

Maxout over linear functions forms a piecewise linear function which is capable of modeling any
convex function. For a convex function, samples with function values below a specific threshold
form a convex set. Therefore, by approximating convex functions of the local patch, maxout has
the capability of forming separation hyperplanes for concepts whose samples are within a convex
set (i.e. l2 balls, convex cones). Mlpconv layer differs from maxout layer in that the convex func-
tion approximator is replaced by a universal function approximator, which has greater capability in
modeling various distributions of latent concepts.

3.2 Global Average Pooling

Conventional convolutional neural networks perform convolution in the lower layers of the network.
For classification, the feature maps of the last convolutional layer are vectorized and fed into fully
connected layers followed by a softmax logistic regression layer [4] [8] [11]. This structure bridges
the convolutional structure with traditional neural network classifiers. It treats the convolutional
layers as feature extractors, and the resulting feature is classified in a traditional way.

However, the fully connected layers are prone to overfitting, thus hampering the generalization abil-
ity of the overall network. Dropout is proposed by Hinton et al. [5] as a regularizer which randomly
sets half of the activations to the fully connected layers to zero during training. It has improved the
generalization ability and largely prevents overfitting [4].

In this paper, we propose another strategy called global average pooling to replace the traditional
fully connected layers in CNN. The idea is to generate one feature map for each corresponding
category of the classification task in the last mlpconv layer. Instead of adding fully connected layers
on top of the feature maps, we take the average of each feature map, and the resulting vector is fed
directly into the softmax layer. One advantage of global average pooling over the fully connected
layers is that it is more native to the convolution structure by enforcing correspondences between
feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence
maps. Another advantage is that there is no parameter to optimize in the global average pooling
thus overfitting is avoided at this layer. Futhermore, global average pooling sums out the spatial
information, thus it is more robust to spatial translations of the input.

We can see global average pooling as a structural regularizer that explicitly enforces feature maps to
be confidence maps of concepts (categories). This is made possible by the mlpconv layers, as they
makes better approximation to the confidence maps than GLMs.

3.3 Network In Network Structure

The overall structure of NIN is a stack of mlpconv layers, on top of which lie the global average
pooling and the objective cost layer. Sub-sampling layers can be added in between the mlpconv

4

• fully connected layers are simply replaced by global average pooling

• activation functions are usually element-wise for simplicity; but here
an entire 2-layer network is used as activation function

• but this is nothing but convolution followed by two 1× 1 convolutions

• 1× 1 convolutions are just like matrix multiplications and can be used
for dimension reduction

Lin, Chen and Yan 2013. Network in Network.

network in network (NiN)∗
[Lin et al. 2013]

 .
. .

 .
. .

 .
. .

 .
. .

 .
. .

 .
. . .
. .

....

Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking
of three mlpconv layers and one global average pooling layer.

Comparison to maxout layers: the maxout layers in the maxout network performs max pooling
across multiple affine feature maps [8]. The feature maps of maxout layers are calculated as follows:

fi,j,k = max
m

(wT
km
xi,j). (3)

Maxout over linear functions forms a piecewise linear function which is capable of modeling any
convex function. For a convex function, samples with function values below a specific threshold
form a convex set. Therefore, by approximating convex functions of the local patch, maxout has
the capability of forming separation hyperplanes for concepts whose samples are within a convex
set (i.e. l2 balls, convex cones). Mlpconv layer differs from maxout layer in that the convex func-
tion approximator is replaced by a universal function approximator, which has greater capability in
modeling various distributions of latent concepts.

3.2 Global Average Pooling

Conventional convolutional neural networks perform convolution in the lower layers of the network.
For classification, the feature maps of the last convolutional layer are vectorized and fed into fully
connected layers followed by a softmax logistic regression layer [4] [8] [11]. This structure bridges
the convolutional structure with traditional neural network classifiers. It treats the convolutional
layers as feature extractors, and the resulting feature is classified in a traditional way.

However, the fully connected layers are prone to overfitting, thus hampering the generalization abil-
ity of the overall network. Dropout is proposed by Hinton et al. [5] as a regularizer which randomly
sets half of the activations to the fully connected layers to zero during training. It has improved the
generalization ability and largely prevents overfitting [4].

In this paper, we propose another strategy called global average pooling to replace the traditional
fully connected layers in CNN. The idea is to generate one feature map for each corresponding
category of the classification task in the last mlpconv layer. Instead of adding fully connected layers
on top of the feature maps, we take the average of each feature map, and the resulting vector is fed
directly into the softmax layer. One advantage of global average pooling over the fully connected
layers is that it is more native to the convolution structure by enforcing correspondences between
feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence
maps. Another advantage is that there is no parameter to optimize in the global average pooling
thus overfitting is avoided at this layer. Futhermore, global average pooling sums out the spatial
information, thus it is more robust to spatial translations of the input.

We can see global average pooling as a structural regularizer that explicitly enforces feature maps to
be confidence maps of concepts (categories). This is made possible by the mlpconv layers, as they
makes better approximation to the confidence maps than GLMs.

3.3 Network In Network Structure

The overall structure of NIN is a stack of mlpconv layers, on top of which lie the global average
pooling and the objective cost layer. Sub-sampling layers can be added in between the mlpconv

4

• fully connected layers are simply replaced by global average pooling

• activation functions are usually element-wise for simplicity; but here
an entire 2-layer network is used as activation function

• but this is nothing but convolution followed by two 1× 1 convolutions

• 1× 1 convolutions are just like matrix multiplications and can be used
for dimension reduction

Lin, Chen and Yan 2013. Network in Network.

http://knowyourmeme.com/memes/we-need-to-go-deeper

http://knowyourmeme.com/memes/we-need-to-go-deeper

ImageNet classification performance

2010 2011 2012 2013 2014 2015

0

5

10

15

20

25

30 SVC+SVM

FV+SVM

AlexNet

ZFNet

GoogLeNet

ResNet

to
p

-5
er

ro
r

%

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.

GoogLeNet
[Szegedy et al. 2015]

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

• 6.7% top-5 error on ILSVRC’14

• depth increased to 22 layers,
kernel sizes 1× 1 to 5× 5

• inception module repeated 9
times

• 1× 1 kernels used as
“bottleneck” layers
(dimensionality reduction)

• 25 times less parameters and
faster than AlexNet

• auxiliary classifiers

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

convolutional features are sparse∗

• remember, features play the role of codebooks, and bag-of-words
representations can be sparse

• with relu, each feature represents a “detector” that fires when the
activation is positive

Yosinski, Clune, Nguyen Fuchs and Lipson. ICMLW 2015. Understanding Neural Networks Through Deep Visualization.

convolutional features are sparse∗

• deep layers have more features (e.g. 1024) and lower resolutions (e.g.
7× 7)

• detected patterns in many cases are as small as 3× 3 or even 1× 1

• the convolution operation resembles more (sparse) matrix
multiplication than convolution

• this is not as efficient as dense multiplication on parallel hardware

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

convolutional features are sparse∗

• deep layers have more features (e.g. 1024) and lower resolutions (e.g.
7× 7)

• detected patterns in many cases are as small as 3× 3 or even 1× 1

• the convolution operation resembles more (sparse) matrix
multiplication than convolution

• this is not as efficient as dense multiplication on parallel hardware

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

inception module

input(7, 832)

pool(3, 1, p1)

conv(1, 384) conv(3, 384, p1) conv(5, 128, p2)

concat

271, 418, 048 operations

inc(384, (192, 384), (48, 128), 128)

• naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

• but this expensive and dimension keeps increasing

• add dimension reduction to control cost, dimensions, and sparsity

• this is referred to as inception module

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

inception module

input(7, 832)

pool(3, 1, p1)

conv(1, 384) conv(3, 384, p1) conv(5, 128, p2)

concat

271, 418, 048 operations

inc(384, (192, 384), (48, 128), 128)

• naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

• but this expensive and dimension keeps increasing

• add dimension reduction to control cost, dimensions, and sparsity

• this is referred to as inception module

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

inception module

input(7, 832)

conv(1, 192) conv(1, 48) pool(3, 1, p1)

conv(1, 384) conv(3, 384, p1) conv(5, 128, p2) conv(1, 128)

concat

70, 800, 688 operations

inc(384, (192, 384), (48, 128), 128)

• naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

• but this expensive and dimension keeps increasing

• add dimension reduction to control cost, dimensions, and sparsity

• this is referred to as inception module

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

inception module

input(7, 832)

conv(1, 192) conv(1, 48) pool(3, 1, p1)

conv(1, 384) conv(3, 384, p1) conv(5, 128, p2) conv(1, 128)

concat

70, 800, 688 operations

inc(384, (192, 384), (48, 128), 128)

• naive inception module simply concatenates (feature-wise) three
convolutions and one max-pooling

• but this expensive and dimension keeps increasing

• add dimension reduction to control cost, dimensions, and sparsity

• this is referred to as inception module

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

alternatively: low-rank decomposition∗

Y = h




W X




• X (Y): input (output) features (columns = spatial positions)

• W : weights; h: activation function

• low-rank approximation W ≈ UV >; V is 1× 1 spatially

• X was sparse; V >X is not

• (in fact, V also includes a non-linearity)

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

alternatively: low-rank decomposition∗

Y ≈ h




U V > X




• X (Y): input (output) features (columns = spatial positions)

• W : weights; h: activation function

• low-rank approximation W ≈ UV >; V is 1× 1 spatially

• X was sparse; V >X is not

• (in fact, V also includes a non-linearity)

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

alternatively: low-rank decomposition∗

Y ≈ h




U V >X




• X (Y): input (output) features (columns = spatial positions)

• W : weights; h: activation function

• low-rank approximation W ≈ UV >; V is 1× 1 spatially

• X was sparse; V >X is not

• (in fact, V also includes a non-linearity)

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

alternatively: low-rank decomposition∗

Y ≈ h




UV >X




• X (Y): input (output) features (columns = spatial positions)

• W : weights; h: activation function

• low-rank approximation W ≈ UV >; V is 1× 1 spatially

• X was sparse; V >X is not

• (in fact, V also includes a non-linearity)

Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich. CVPR 2015. Going Deeper with Convolutions.

GoogLeNet

parameters operations volume

input(224, 3) 0 0 224× 224× 3

conv(7, 64, p3, s2) 9, 472 118, 816, 768 112× 112× 64

pool(3, 2, p1) 0 802, 816 56× 56× 64

conv(1, 64) 4, 160 13, 045, 760 56× 56× 64

conv(3, 192, p1) 110, 784 347, 418, 624 56× 56× 192

pool(3, 2, p1) 0 602, 112 28× 28× 192

inc(64, (96, 128), (16, 32), 32) 163, 696 128, 488, 192 28× 28× 256

inc(128, (128, 192), (32, 96), 64) 388, 736 304, 969, 728 28× 28× 480

pool(3, 2, p1) 0 376, 320 14× 14× 480

inc(192, (96, 208), (16, 48), 64) avg(5, 3, p2) 376, 176 73, 824, 576 14× 14× 512

inc(160, (112, 224), (24, 64), 64) conv(1, 128) 449, 160 88, 135, 712 14× 14× 512

inc(128, (128, 256), (24, 64), 64) fc(1024) 510, 104 100, 080, 736 14× 14× 512

avg(5, 3, p2) inc(112, (144, 288), (32, 64), 64) fc(1000) 605, 376 118, 754, 048 14× 14× 528

conv(1, 128) inc(256, (160, 320), (32, 128), 128) softmax 868, 352 170, 300, 480 14× 14× 832

fc(1024) pool(3, 2, p1) 0 163, 072 7× 7× 832

fc(1000) inc(256, (160, 320), (32, 128), 128) 1, 043, 456 51, 170, 112 7× 7× 832

softmax inc(384, (192, 384), (48, 128), 128) 1, 444, 080 70, 800, 688 7× 7× 1024

avg(7) 0 50, 176 1× 1× 1024

fc(1000) 1, 025, 000 1, 025, 000 1, 000

softmax 0 1, 000 1, 000

auxiliary
classifier

auxiliary
classifier

GoogLeNet

parameters operations volume

input(224, 3) 0 0 224× 224× 3

conv(7, 64, p3, s2) 9, 472 118, 816, 768 112× 112× 64

pool(3, 2, p1) 0 802, 816 56× 56× 64

conv(1, 64) 4, 160 13, 045, 760 56× 56× 64

conv(3, 192, p1) 110, 784 347, 418, 624 56× 56× 192

pool(3, 2, p1) 0 602, 112 28× 28× 192

inc(64, (96, 128), (16, 32), 32) 163, 696 128, 488, 192 28× 28× 256

inc(128, (128, 192), (32, 96), 64) 388, 736 304, 969, 728 28× 28× 480

pool(3, 2, p1) 0 376, 320 14× 14× 480

inc(192, (96, 208), (16, 48), 64) avg(5, 3, p2) 376, 176 73, 824, 576 14× 14× 512

inc(160, (112, 224), (24, 64), 64) conv(1, 128) 449, 160 88, 135, 712 14× 14× 512

inc(128, (128, 256), (24, 64), 64) fc(1024) 510, 104 100, 080, 736 14× 14× 512

avg(5, 3, p2) inc(112, (144, 288), (32, 64), 64) fc(1000) 605, 376 118, 754, 048 14× 14× 528

conv(1, 128) inc(256, (160, 320), (32, 128), 128) softmax 868, 352 170, 300, 480 14× 14× 832

fc(1024) pool(3, 2, p1) 0 163, 072 7× 7× 832

fc(1000) inc(256, (160, 320), (32, 128), 128) 1, 043, 456 51, 170, 112 7× 7× 832

softmax inc(384, (192, 384), (48, 128), 128) 1, 444, 080 70, 800, 688 7× 7× 1024

avg(7) 0 50, 176 1× 1× 1024

fc(1000) 1, 025, 000 1, 025, 000 1, 000

softmax 0 1, 000 1, 000

auxiliary
classifier

auxiliary
classifier

network performance

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

AlexNet

ZFNet

VGG-16

GoogLeNet

operations (×109)

to
p

-5
er

ro
r

%

Canziani, Culurciello and Paszke. 2016. An Analysis of Deep Neural Network Models for Practical Applications.

summary

• convolution ≡ linearity + translation equivariance

• sparse connections, weight sharing: fully connected → convolution

• cross-correlation

• feature maps: matrix multiplication and convolution combined

• 1× 1 convolution

• convolution as regularization, structured convolution

• standard, padded∗, strided∗, dilated∗; and their derivatives

• pooling and invariance

• deeper networks

• LeNet-5, AlexNet, ZFNet∗, VGG-16, NiN∗, GoogLeNet

	fun
	convolution
	definition and properties
	variants and their derivatives
	pooling
	more fun
	network architectures

