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psychology and neuroscience
background



non-invasive: Béla Julesz

• which happens first? stereopsis or recognition?

• random dot stereogram: two identical images, except for a central
square region that is displaced randomly in one image

• yields the impression of the square floating over the background

Julesz. BLTJ 1960. Binocular Depth Perception of Computer-Generated Patterns.



non-invasive: Béla Julesz

©          Nature Publishing Group1981

• study of pre-attentive (effortless, instantaneous) texture discrimination

• texture pairs with identical second order statistics

• textons: “basic elements of pre-attentive human texture perception”
Julesz. N 1981. Textons, the Elements of Texture Perception, and Their Interactions.



invasive: Hubel & Wiesel

Hubel and Wiesel. JP 1959. Receptive Fields of Single Neurones in the Cat’s Striate Cortex.



visual system of mammals

Hubel 1995. Eye, Brain, and Vision.



visual pathway

Hubel 1995. Eye, Brain, and Vision.



topographic representation

THE VISUAL PATHWAY 
 

      We can now adapt our earlier diagram on page 10 to fit the special case of the visual 
pathway. As shown in the illustration on this page, the receptors and the next two stages 
are contained in the retina. The receptors are the rods and cones; the optic nerve, carrying 
the retina's entire output, is a bundle of axons of the third-stage retinal cells, called retinal 
ganglion cells. Between the receptors and the ganglion cells are intermediate cells, the 
most important of which are the bipolar cells. The optic nerve proceeds to a way station 
deep in the brain, the lateral geniculate body. After only one set of synapses, the lateral 
geniculate sends its output to the striate cortex, which contains three or four stages. You 
can think of each of the columns in the diagram above as a plate of cells in cross section. 
For example, if we were to stand at the right of the page and look to the left, we would 
see all the cells in a layer in face-on view. Each of the columns of cells in the figure 
represents a two-dimensional array of cells, as shown for the rods and cones in the 
diagram on the next page. 

 

 
 
The initial stages of the mammalian visual system have the platelike organization often found in the central nervous 
system. The first three stages are housed in the retina; the remainder are in the brain: in the lateral geniculate bodies and 
the stages beyond in the cortex. 

 
 

To speak, as I do here, of separate stages immediately raises our problem with genealogy. 
In the retina, as we will see in Chapter 3, the minimum number of stages between 
receptors and the output is certainly three, but because of two other kinds of cells, some 
information takes a more diverted course, with four or five stages from input to output. 
For the sake of convenience, the diagram ignores these detours despite their importance, 
and makes the wiring look simpler than it really is. When I speak of the retinal ganglion 
cells as "stage 3 or 4", it's not that I have forgotten how many there are. To appreciate the 
kind of transfer of information that takes place in a network of this kind, we may begin 
by considering the behavior of a single retinal ganglion cell. We know from its anatomy 
that such a cell gets input from many bipolar cells—perhaps 12,100, or 1000—and that 
each of these cells is in turn fed by a similar number of receptors. As a general rule, all 
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• as you move along the retina, the corresponding points in the cortex
trace a continuous path

• each column represents a two-dimensional array of cells

Hubel 1995. Eye, Brain, and Vision.



simple cells

D. H. HUBEL AND T. N. WIESEL
field such as that of Text-fig. 2F) are of the same order of magnitude as
the diameters of geniculate receptive-field centres, at least for fields in or
near the area centralis. Hence the fineness of discrimination implied by
the small size of geniculate receptive-field centres is not necessarily lost at
the cortical level, despite the relatively large total size of many cortical
fields; rather, it is incorporated into the detailed substructure of the
cortical fields.

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with 'on' centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated 'on' centre indicated by the interrupted lines in the
receptive-field diagram to the left of the figure.

In a similar way, the simple fields of Text-fig. 2D-G may be constructed
by supposing that the afferent 'on'- or 'off'-centre geniculate cells have
their field centres appropriately placed. For example, field-type G could
be formed by having geniculate afferents with 'off' centres situated in the
region below and to the right of the boundary, and 'on' centres above and
to the left. An asymmetry of flanking regions, as in field E, would
be produced if the two flanks were unequally reinforced by 'on'-centre
afferents.
The model of Text-fig. 19 is based on excitatory synapses. Here the

suppression of firing on illuminating an inhibitory part of the receptive
field is presumed to be the result of withdrawal of tonic excitation, i.e. the
inhibition takes place at a lower level. That such mechanisms occur in the
visual system is clear from studies of the lateral geniculate body, where
an 'off'-centre cell is suppressed on illuminating its field centre because of
suppression of firing in its main excitatory afferent (Hubel & Wiesel, 1961).
In the proposed scheme one should, however, consider the possibility of
direct inhibitory connexions. In Text-fig. 19 we may replace any of the
excitatory endings by inhibitory ones, provided we replace the corre-
sponding geniculate cells by ones of opposite type ('on '-centre instead of
' off'-centre, and conversely). Up to the present the two mechanisms have
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• lower-order cells with radially symmetric receptive field with on-center
and off-surround

• cells centered along a line with excitatory synaptic connections to a
cell of higher order

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex.



complex cells

CAT VISUAL CORTEX1
not been distinguished, but there is no reason to think that both do not
occur.
The properties of complex fields are not easily accounted for by sup-

posing that these cells receive afferents directly from the lateral geniculate
body. Rather, the correspondence between simple and complex fields
noted in Part I suggests that cells with complex fields are of higher order,
having cells with simple fields as their afferents. These simple fields would
all have identical axis orientation, but would differ from one another in
their exact retinal positions. An example of such a scheme is given in
Text-fig. 20. The hypothetical cell illustrated has a complex field like that

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, ofwhich three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

of Text-figs. 5 and 6. One may imagine that it receives afferents from a set
of simple cortical cells with fields of type C, Text-fig. 2, all with vertical
axis orientation, and staggered along a horizontal line. An edge of light
would activate one or more of these simple cells wherever it fell within the
complex field, and this would tend to excite the higher-order cell.

Similar schemes may be proposed to explain the behaviour of other
complex units. One need only use the corresponding simple fields as
building blocks, staggering them over an appropriately wide region. A
cell with the properties shown in Text-fig. 3 would require two types of
horizontally oriented simple fields, having 'off' centres above the hori-
zontal line, and 'on' centres below it. A slit of the same width as these
centre regions would strongly activate only those cells whose long narrow
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• simple cells respond to a vertically oriented edge

• cells scattered throughout a rectangle with excitatory synaptic
connections to a complex cell

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex.



electrode recordings

D. H. HUBEL AND T. N. WIESEL

Receptive-field organization
Multiple recordings. The receptive fields of cells observed together in

multiple recordings were always of similar complexity, i.e. they were
either all simple or all complex in their organization. In about one third
of the multiple recordings the cells had the same detailed field organiza-
tion; if simple, they had similar distributions of excitatory and inhibitory

Text-fig. 15. Reconstruction of part of an electrode track through apical and
mesial segments of post-lateral gyrus near its anterior end. Two lesions were made,
the first after recording from the first unit, the second at the end of the penetration.
Only the first twelve cells are represented. Interrupted lines show boundaries of
layer 4.

In the centre part of the figure the position of each receptive field, outlined with
interrupted lines, is given with respect to the area centralis, shown by a cross.
Cells are numbered in sequence, 1-12. Numbers in parentheses refer to ocular-
dominance group (see Part II). Units 5 and 6, 8 and 9 were observed simultaneously.
The first three fields and the last were complex in organization; the remainder were
simple. x, areas giving excitation; A, areas giving inhibitory effects. Note that
all receptive fields except the last have the same axis orientation (9.30-3.30
o'clock). The arrows show the preferred direction of movement of a slit oriented
parallel to the receptive-field axis.

In the left part of the figure all of the receptive fields are superimposed, to indi-
cate the overlap and variation in size. The vertical and horizontal lines represent
meridia, crossing at the area centralis. Scale on horizontal meridian, 10 for each
subdivision.
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Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex.
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computer vision background



the summer vision project
[Papert 1966]

“The summer vision project is an attempt to use our

summer workers effectively in the construction of a

significant part of a visual system. The particular

task was chosen partly because it can be segmented into

sub-problems which allow individuals to work

independently and yet participate in the construction of

a system complex enough to be a real landmark in the

development of "pattern recognition".”

Papert 1966. The Summer Vision Project.



general goals

FIGURE-GROUND

“divide a picture into regions such as likely objects,

likely background areas and chaos”
REGION DESCRIPTION

“analysis of shape and surface properties”
OBJECT IDENTIFICATION

“name objects by matching them with a vocabulary of

known objects”

Papert 1966. The Summer Vision Project.



specific goals

July

“non-overlapping objects like balls, bricks, cylinders”
“each face will be of uniform and distinct color and/or

texture”
“background will be homogeneous”

August

“complex surfaces and background, e.g. cigarette pack

with writing, or a cylindrical battery”
“objects like tools, cups, etc. ”

Papert 1966. The Summer Vision Project.



David Marr, “Vision”
[Marr 1982]

• biological plausibility: turning
psychology and neuroscience
results into models of visual
information processing

• inverse graphics: from images
to surfaces through geometric
and photometric models

• philosophy: levels of analysis,
processing stages, generic
principles

Marr 1982. Vision.



edge detection

image I I ∗ ∇2G

sign zero crossings
Marr 1982. Vision.



raw primal sketch

zero crossings edge segments

blobs bars
Marr 1982. Vision.



full primal sketch

image

hierarchical grouping of tokens

Marr 1982. Vision.



2.5d sketch

surface orientation 2.5d sketch

• surface orientation (vector field), surface orientation discontinuities
(dotted lines), depth discontinuities (continuous lines)

• obtained via stereopsis, optical flow, motion parallax, photometric
stereo

Marr 1982. Vision.



3d model representation

• hierarchical 3d model description

• parts of limited complexity, specified in local coordinate systems

• flexible, allowing for relative part transformation

Marr 1982. Vision.



pictorial structures
[Fischler and Elschlager 1973]FISCHLER AND ELSCHLAGER: PICTORIAL STRUCTURES
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(a)

VALUE(X)=(E+F+G+H)-(A+B+C+D)

Note: VALUE(X) is the value assigned to the
L(EV)A corresponding to the location X
as a function of the intensities of locations
A through H in the sensed scene.

(b)

K K2=CONSTANTS
a=(C+D+E+F)/4
p=(A+B+G+H+I+J)/6

p-(X+F)
IF [X<(a-K}) OR. a < /3)THEN VALUE(X)=yFK2
ELSE VALUE (X) = y

(c)
Fig. 3. Reference description of a face. (a) Schematic representation

of face reference, indicating components and their linkages.
(b) Reference description for left edge of face. (c) Reference
description for eye.

(noisy) face pictures using two references which in-
cluded, but differed in, the nose/mouth definitions. In
the first series, consisting of 90 experiments, there were

83 completely correct embeddings, and 7 partially incor-
rect embeddings. The errors involved six experiments
in which the nose/mouth complex was offset by three to

four resolution cells from its ideal location, and one ex-

periment in which both the eyes and the nose/mouth
complex were improperly placed. In the second series,
consisting of 45 experiments, the placement of the nose/
mouth complex was judged incorrect in 3 experiments,
while all the other components were always correctly
embedded.

Analysis of the face experiments led to the following
conclusions. In spite of almost perfect performance in
embedding the hair, eyes, and sides of the face, precise
placement of the nose/mouth complex based on strictly
local evaluation was almost impossible in some of the
noisy pictures due to loss of detail [e.g., see Fig. 4(b) ].
With the attribute feature of the LEA not yet opera-

tional, and with the arbitrary decision to use binary
(rather than multivalued) weights in the spring arrays

for these experiments, the LEA restricted the feasible
region over which an optimum value could be selected
for embedding the nose/mouth complex, but did not
bias the selection as would genetally be the case. In the
presence of heavy noise, the simple nose/mouth descrip-

tions used in these experiments were not always ade-
quate to produce a local optimum in the L(EV)A at or
near the ideal embedding location. (A three-resolution
cell deviation was considered an error.)

Image-Matching Experiments Using Terrain Scenes

Approximately 40 experiments have been performed
using terrain scenes (including both aerial and ground
scenes). The object in each case was to create a relatively
simple description of some portion of the scene and then
attempt to find the proper embedding of the description
in the image (or some distorted or alternate view of
the image).
The descriptions employed two basic types of com-

ponents: 1) texture components, in which- the "texture
value" of a point was defined as a crude statistical func-
tion of the intensity values and gradients in some local
region surrounding the point; and 2) shape components,
which were defined by collections of "edge" points hav-
ing specified gradients.

Fig. 5(a) shows an example of a terrain (reference)
description. Fig. 5(b) shows its successful embedding
relative to the computer-stored version of the photo-
graph of the actual terrain segment as shown in Fig.
5 (c). Each coherent piece in reference 5 (a) is represented
by several points enclosed by a dotted line. In this ex-

ample, the points of each enclosure of the reference com-

• manually specified object description

• parts-based model: part attributes and pairwise spatial relations

• efficient dynamic programming implementation

Fischler and Elschlager. TC 1973. The Representation and Matching of Pictorial Structures.



generalized Hough transform
[Ballard 1981]

• Hough transform detects analytic curves in parameter space

• generalized version detects arbitrary non-analytic curves

• detection based on a voting process

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



scale selection
[Lindeberg 1993]

signal. Now, I propose to generalize this observa-
tion to more complex signals, leading to the following
heuristic principle, which is to be applied in situations
when no other information is available. In the absence
of other evidence, a scale level at which some (possi-
bly non-linear) combination of normalized derivatives
assumes a local maximum can be treated as re
ecting
the characteristic length of a corresponding structure
in the data.

This principle is similar although not equivalent to
the parameter variation method in [18, 19], where in-
teresting scale levels are determined frommaximaover
scales of a (normalized) blob measure. The underly-
ing motivation behind using maxima over scales for
scale selection is to select scale levels where the oper-
ator response is at its strongest, and other interfering
structures have been suppressed.
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Figure 2: Scale-space signatures of the (absolute value
of the) normalized Laplacean for two details of a sun-

ower image; (left) grey-level image, (right) signature of
jr2

normLj computed at the central point.

Figure 2 illustrates the variation over scale of a sim-
ple measure formulated in terms of normalized spatial
derivatives; it displays the scale variation of the ab-
solute value of the normalized Laplacean computed
at two di�erent points. These graphs are called the
scale-space signatures of jr2

normLj = jtr2Lj.
Clearly, the maximum over scales in the top row

of Figure 2 is obtained at a �ner scale than in the
bottom row. An examination of the ratio between
the scale levels where the graphs attain their maxima
shows that this value is roughly equal to the ratio of
the sizes of the sun
owers in the centers of the two
images respectively (in agreement with the heuristic
principle).

4 Blob detection

The reason why this particular di�erential expres-
sion has been selected here is because it constitutes
an entity commonly used in blob detection; see e.g.
[25, 6, 5, 27]. Figure 3 shows the result of extend-
ing this approach to multi-scale blob detection. It
shows scale-space extrema (points that are local ex-
trema both in space and scale) of jr2

normLj. Every
extremum is graphically illustrated by an ellipse in-
dicating the local directional statistics in the image1.

Figure 3: Multi-scale blob detection using normalized
scale-space extrema of the squared Laplacean; (left) grey-
level image, (right) ellipses illustrating the scale-space ex-
trema superimposed onto a bright copy of the original grey-
level image (the size of each ellipse is proportional to scale
at which the maximum is assumed, while the shape of the
ellipse is given by the local directional statistics in a neigh-
bourhood of the maximum). (Adapted from [23]).

Note the ability of the method to adaptively zoom
in to di�erent scales, and also how well the computed
ellipses describe the blobs in the image, considering
how little information is used in the processing. In
order to study this behaviour analytically, consider

f(x1; x2) = g(x1; x2; t0) =
1

2�t
e�(x

2

1
+x2

2
)=(2t) (12)

as a simplemodel of a two-dimensional blob with char-
acteristic length

p
t0. From the semi-group property

of the Gaussian kernel g(�; t) � g(�; t) = g(�; t0 + t) it
follows that the scale-space representation L of f is

L(x1; x2; t) = g(x1; x2; t0 + t): (13)

Clearly, the spatial maximum of jr2Lj is assumed at
(x1; x2)

T = (0; 0)T . The corresponding normalized

1More precisely, each ellipse represents a secondmomentma-
trix (a matrix similar to A in (27)) computed using a Gaussian
window function with scale value proportional to the scale at
which the scale-space maximum of r2

normL is assumed; see [23]
for a detailed desciption and theoretical analysis of this method.

3

• scale-space and scale-normalized derivatives

• automatic scale selection at local maxima over scale

• applies to blobs, junctions, corners, edges or ridges
Lindeberg. SCIA 1993. On Scale Selection for Differential Operators.



scale-invariant feature transform (SIFT)
[Lowe 1999]

Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

The least-squares solution for the parameters x can be determined by solving the correspond-
ing normal equations,

x = [ATA]−1ATb,

which minimizes the sum of the squares of the distances from the projected model locations
to the corresponding image locations. This least-squares approach could readily be extended
to solving for 3D pose and internal parameters of articulated and flexible objects (Lowe,
1991).

Outliers can now be removed by checking for agreement between each image feature and
the model. Given the more accurate least-squares solution, we now require each match to
agree within half the error range that was used for the parameters in the Hough transform
bins. If fewer than 3 points remain after discarding outliers, then the match is rejected.
As outliers are discarded, the least-squares solution is re-solved with the remaining points,
and the process iterated. In addition, a top-down matching phase is used to add any further
matches that agree with the projected model position. These may have been missed from the
Hough transform bin due to the similarity transform approximation or other errors.

The final decision to accept or reject a model hypothesis is based on a detailed probabilis-
tic model given in a previous paper (Lowe, 2001). This method first computes the expected
number of false matches to the model pose, given the projected size of the model, the number
of features within the region, and the accuracy of the fit. A Bayesian analysis then gives the
probability that the object is present based on the actual number of matching features found.
We accept a model if the final probability for a correct interpretation is greater than 0.98.
For objects that project to small regions of an image, 3 features may be sufficient for reli-
able recognition. For large objects covering most of a heavily textured image, the expected
number of false matches is higher, and as many as 10 feature matches may be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a cluttered and occluded image con-
taining 3D objects. The training images of a toy train and a frog are shown on the left.

23

• scale selection by difference of Gaussians (DoG)

• orientation assignment, local descriptor

• Hough transform on affine space

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



textons
[Malik et al. 1999]

2 Filters and Textons
Since the early 1980s, many approaches have been pro-

posed in the computer vision literature that employfilter-
baseddescriptions of images [6, 10, 14]. By the termfilter-
basedwe mean that the fundamental representation for a
pixel in an image includes not only its brightness or color
information, but also the inner product of the neighborhood
centered on that pixel with a set of filters tuned to various
orientations and spatial frequencies. (See Figure 2 for an
example of such a filter set.)

Figure 2. Gaussian derivative filter set consisting of 2 phases
(even and odd), 3 scales (spaced by half-octaves), and 6 ori-
entations (equally spaced from 0 to�). The basic filter is
a difference-of-Gaussian quadrature pair with3 : 1 elonga-
tion. Each filter is divided by itsL1 norm for scale invari-
ance.

As discussed for example in [8, 11], vectors of filter re-
sponses have many appealing properties, including relation-
ships to physiological findings in the primate visual sys-
tem [3] and to the basic mathematical notion of a Taylor
series expansion.

Though the representation of textures using filter re-
sponses is extremely versatile, one might say that it is overly
redundant (each pixel values is represented byNfil filter
responses, whereNfil is usually around36). Moreover, it
should be noted that we are characterizing textures, enti-
ties with some spatially repeating properties by definition.
Therefore, we do not expect the filter responses to be totally
different at each pixel over the texture. Thus, there should
be several distinct filter response vectors and all others are
noisy variations of them.

This observation leads to our proposal of clustering the
filter responses into a small set of prototype response vec-
tors. We call these prototypestextons. Algorithmically,
each texture is analyzed using the filter bank shown in Fig-
ure 2. There are a total of36 filters. Each pixel is now
transformed to aNfil = 36 dimensional vector of filter
response These vectors are clustered using aK-means al-
gorithm. The criterion for this algorithm is to findK “cen-
ters” such that after assigning each data vector to the nearest
center, the sum of the squared distance from the centers is
minimized.K-means is a greedy algorithm that finds a lo-
cal minimum of this criterion1. In this paper, we use the

1For more discussions and variations of the K-means algorithm, the
reader is referred to [4, 7].

kmeans function in the NETLAB toolbox [15].
It is useful to visualize the resulting cluster centers in

terms of the original filter kernels. To do this, recall that
each cluster center represents a set of projections of each
filter onto a particular image patch. We can solve for the
image patch corresponding to each cluster center in a least
squares sense by premultiplying the vectors representing the
cluster centers by the pseudoinverse of the filterbank [8].
The matrix representing the filterbank is formed by con-
catenating the filter kernels into columns and placing these
columns side by side. The set of synthesized image patches
for two test images are shown in Figures 3(b) and 4(b).
These are our textons. The textons represent assemblies of
filter outputs that are characteristic of the local image struc-
ture present in the image.

(a) (b)

(c)

Figure 3. (a) Polka-dot image. (b) Textons found viaK-
means withK = 25, sorted in decreasing order by norm.
(c) Mapping of pixels to the texton channels. The dominant
structures captured by the textons are translated versions of
the dark spots. We also see textons corresponding to faint
oriented edge and bar elements. Notice that some channels
contain activity inside a textured region or along an oriented
contour and nowhere else.

Looking at the polka-dot example, we find that many of

oriented filter bank

fewer points in the neighborhood to compute the his-
togram. In that case, the histogram difference becomes
less reliable, and therefore should be discounted. We
define the reliability measure for each histogram mea-
sure at pixelp(i) = sigmoid(Z(i); thresholdp). In
our experiments, thethresholdp is set to0:05�jW(i)j.

3. In parallel to the texture computation, the intervening
contour cue gated by the texture-ness can be used to
group/segment pixels. The computation is same as in
x4.1, except the filter energy is suppressed by texture-
ness measure�(i).

W IC(i; j) = exp(� max
x2lij ;�(x)<1:0

OE(x)=�IC )

4. Let the two pair-wise feature distance functions com-
puted in the two previous steps beW tex(i; j) and
W IC(i; j), from the texture cue and intervening con-
tour cue respectively. Since the test for isotropy is
purely a local one, one expects the� and� function
to misfire sometimes. By combining the two cues, and
applying global grouping algorithm to this data, we
hope to “smooth out” these errors in the� and� es-
timates. The rule we have for combining two cues is:

W (i; j) = [W TX(i; j)]p(i;j)[W IC(i; j)]

wherep(i; j) = min(p(i); p(j)) is the significance of
the histogram comparison between pixelsi andj.

5. Applying grouping algorithm to the combined pair-
wise similarity measure to obtain the final segmenta-
tion. We used the normalized cut algorithm for this
step [18]. The global nature of the normalized cut al-
gorithm help us overcome the errors in the local� and
� computation.

5 Results

We have run our algorithm on a variety of natural images.
Figures 8 and 9 show typical segmentation results. In all
the cases, the regions are cleanly separated from each other
using combined texture and contour cues.

Grouping based on each of the cues alone would re-
sult in severe artifacts: In Figure 8a, the contours on the
penguin would form isolated groups using the texture cue.
Similar problems would occur at the intensity boundaries
in 8b and 8c. Grouping based on contour information alone
would result in over-fragmentation of the pebbles in 8a
and 9a, and the tiger body in 8c. On the other hand, in Fig-
ure 8b the lower arm can not be separated from the upper
arm without using contour information.

(a)

(b)

(c)

Figure 8. Segmentation results of three images using com-
bined texture and intervening contour cue. The image re-
gions are cleanly segmented from each other using the com-
bined cues. In all three cases, grouping by each of the cues
alone will not produce the right results.

fewer points in the neighborhood to compute the his-
togram. In that case, the histogram difference becomes
less reliable, and therefore should be discounted. We
define the reliability measure for each histogram mea-
sure at pixelp(i) = sigmoid(Z(i); thresholdp). In
our experiments, thethresholdp is set to0:05�jW(i)j.

3. In parallel to the texture computation, the intervening
contour cue gated by the texture-ness can be used to
group/segment pixels. The computation is same as in
x4.1, except the filter energy is suppressed by texture-
ness measure�(i).

W IC(i; j) = exp(� max
x2lij ;�(x)<1:0

OE(x)=�IC )

4. Let the two pair-wise feature distance functions com-
puted in the two previous steps beW tex(i; j) and
W IC(i; j), from the texture cue and intervening con-
tour cue respectively. Since the test for isotropy is
purely a local one, one expects the� and� function
to misfire sometimes. By combining the two cues, and
applying global grouping algorithm to this data, we
hope to “smooth out” these errors in the� and� es-
timates. The rule we have for combining two cues is:

W (i; j) = [W TX(i; j)]p(i;j)[W IC(i; j)]

wherep(i; j) = min(p(i); p(j)) is the significance of
the histogram comparison between pixelsi andj.

5. Applying grouping algorithm to the combined pair-
wise similarity measure to obtain the final segmenta-
tion. We used the normalized cut algorithm for this
step [18]. The global nature of the normalized cut al-
gorithm help us overcome the errors in the local� and
� computation.

5 Results

We have run our algorithm on a variety of natural images.
Figures 8 and 9 show typical segmentation results. In all
the cases, the regions are cleanly separated from each other
using combined texture and contour cues.

Grouping based on each of the cues alone would re-
sult in severe artifacts: In Figure 8a, the contours on the
penguin would form isolated groups using the texture cue.
Similar problems would occur at the intensity boundaries
in 8b and 8c. Grouping based on contour information alone
would result in over-fragmentation of the pebbles in 8a
and 9a, and the tiger body in 8c. On the other hand, in Fig-
ure 8b the lower arm can not be separated from the upper
arm without using contour information.

(a)

(b)

(c)

Figure 8. Segmentation results of three images using com-
bined texture and intervening contour cue. The image re-
gions are cleanly segmented from each other using the com-
bined cues. In all three cases, grouping by each of the cues
alone will not produce the right results.

image texture segmentation

• textons defined as clusters of filter responses

• regions described by texton histograms

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



real-time face detection
[Viola and Jones 2001]

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection

• simple rectangle features in constant time on integral images

• learning weak classifiers by boosting

• classifier cascade provides a focus-of-attention mechanism

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.



bag of words
[Sivic and Zisserman 2003]

independent measurement of a common scene region (the
pre-image of the detected region), and the estimate of the
descriptor for this scene region is computed by averaging
the descriptors throughout the track. This gives a measur-
able improvement in the signal to noise of the descriptors
(which again has been demonstrated using the ground truth
tests of section 5.1).

3. Building a visual vocabulary
The objective here is to vector quantize the descriptors into
clusters which will be the visual ‘words’ for text retrieval.
Then when a new frame of the movie is observed each de-
scriptor of the frame is assigned to the nearest cluster, and
this immediately generates matches for all frames through-
out the movie. The vocabulary is constructed from a sub-
part of the movie, and its matching accuracy and expressive
power are evaluated on the remainder of the movie, as de-
scribed in the following sections.
The vector quantization is carried out here by K-means

clustering, though other methods (K-medoids, histogram
binning, etc) are certainly possible.

3.1. Implementation
Regions are tracked through contiguous frames, and a mean
vector descriptor x̄i computed for each of the i regions. To
reject unstable regions the 10% of tracks with the largest
diagonal covariance matrix are rejected. This generates an
average of about 1000 regions per frame.
Each descriptor is a 128-vector, and to simultaneously

cluster all the descriptors of the movie would be a gargan-
tuan task. Instead a subset of 48 shots is selected (these
shots are discussed in more detail in section 5.1) cover-
ing about 10k frames which represent about 10% of all the
frames in the movie. Even with this reduction there are still
200K averaged track descriptors that must be clustered.
To determine the distance function for clustering the Ma-

halanobis distance is computed as follows: it is assumed
that the covariance Σ is the same for all tracks, and this
is computed by estimating from all the available data, i.e.
all descriptors for all tracks in the 48 shots. The Maha-
lanobis distance enables the more noisy components of the
128–vector to be weighted down, and also decorrelates the
components. Empirically there is a small degree of correla-
tion. The distance function between two descriptors (repre-
sented by their mean track descriptors) x̄1, x̄2, is then given
by d

�
x̄1 � x̄2 � � � �

x̄1 � x̄2 � � � � 1 �
x̄1 � x̄2 � . As is standard,

the descriptor space is affine transformed by the square root
of Σ so that Euclidean distance may be used.
About 6k clusters are used for Shape Adapted regions,

and about 10k clusters for Maximally Stable regions. The
ratio of the number of clusters for each type is chosen to be
approximately the same as the ratio of detected descriptors

(a)

(b)

Figure 2: Samples from the clusters corresponding to a single vi-
sual word. (a) Two examples of clusters of Shape Adapted regions.
(b) Two examples of clusters of Maximally Stable regions.

of each type. The number of clusters is chosen empirically
to maximize retrieval results on the ground truth set of sec-
tion 5.1. The K-means algorithm is run several times with
random initial assignments of points as cluster centres, and
the best result used.
Figure 2 shows examples of regions belonging to par-

ticular clusters, i.e. which will be treated as the same vi-
sual word. The clustered regions reflect the properties of
the SIFT descriptors which penalize variations amongst re-
gions less than cross-correlation. This is because SIFT em-
phasizes orientation of gradients, rather than the position of
a particular intensity within the region.
The reason that SA and MS regions are clustered sepa-

rately is that they cover different and largely independent
regions of the scene. Consequently, they may be thought
of as different vocabularies for describing the same scene,
and thus should have their own word sets, in the same way
as one vocabulary might describe architectural features and
another the state of repair of a building.

4. Visual indexing using text retrieval
methods

In text retrieval each document is represented by a vector of
word frequencies. However, it is usual to apply a weighting
to the components of this vector [1], rather than use the fre-
quency vector directly for indexing. Here we describe the
standard weighting that is employed, and then the visual
analogy of document retrieval to frame retrieval.

3
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Example queries: Figures 7 and 8 show results of two
object queries for the movie ‘Run Lola Run’, and figure 9
shows the result of an object query on the film ‘Ground-
hog day’. Both movies contain about 4K keyframes. Both
the actual frames returned and their ranking are excellent –
as far as it is possible to tell, no frames containing the ob-
ject are missed (no false negatives), and the highly ranked
frames all do contain the object (good precision).
The object query results do demonstrate the expressive

power of the visual vocabulary. The visual words learnt for
Lola are used unchanged for the Groundhog Day retrieval.

7. Summary and Conclusions

The analogy with text retrieval really has demonstrated
its worth: we have immediate run-time object retrieval
throughout a movie database, despite significant viewpoint
changes in many frames. The object is specified as a sub-
part of an image, and this has proved sufficient for quasi-
planar rigid objects.
There are, of course, improvements that can be made

mainly to overcome problems in the visual processing. Low
rankings are currently due to a lack of visual descriptors for
some scene types. However, the framework allows other ex-
isting affine co-variant regions to be added (they will define
an extended visual vocabulary), for example those of [17].
Another improvement would be to define the object of in-
terest over more than a single frame to allow for search on
all its visual aspects.
The text retrieval analogy also raises interesting ques-

tions for future work. In text retrieval systems the tex-
tual vocabulary is not static, growing as new documents are
added to the collection. Similarly, we do not claim that our
vector quantization is universal for all images. So far we
have learnt vector quantizations sufficient for two movies,
but ways of upgrading the visual vocabulary will need to be
found. One could think of learning visual vocabularies for
different scene types (e.g. city scape vs a forest).
Finally, we now have the intriguing possibility of follow-

ing other successes of the text retrieval community, such as
latent semantic indexing to find content, and automatic clus-
tering to find the principal objects that occur throughout the
movie.

Acknowledgements We are grateful to David Lowe, Jiri
Matas, Krystian Mikolajczyk and Frederik Schaffalitzky for sup-
plying their region detector/descriptor codes. Thanks to Andrew
Blake, Mark Everingham, Andrew Fitzgibbon, Krystian Mikola-
jczyk and Frederik Schaffalitzky for fruitful discussions. This
work was funded by EC project VIBES.

Figure 7: Object query example I. First row: (left) frame with
user specified query region (a poster) in yellow, and (right) close
up of the query region. The four remaining rows show (left) the
1st, 12th, 16th, and 20th retrieved frames with the identified re-
gion of interest shown in yellow, and (right) a close up of the im-
age with matched elliptical regions superimposed. In this case 20
keyframes were retrieved: six from the same shot as the query
image, the rest from different shots at later points in the movie.
All retrieved frames contain the specified object. Note the poster
appears on various billboards throughout the movie (and Berlin).

7
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visual vocabulary video retrieval

• “visual words” defined as clusters of SIFT descriptors

• images described by visual word histograms

• text retrieval methods applied to video retrieval

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



histogram of oriented gradients (HOG)
[Dalal and Triggs 2005]

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 
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• dense, SIFT-like descriptors

• SVM classifier

• sliding window detection at all positions and scales

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection.



deformable part model (DPM)
[Felzenszwalb et al. 2008]
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Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction

We consider the problem of detecting and localizing ob-
jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty

This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

object categories. Figure 1 shows an example detection ob-
tained with our person model.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6, 10, 12, 13,15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a

1

• appearance represented by HOG

• spatial configuration inspired by “pictorial structures”

• part locations treated as latent variables

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.
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perceptron
[Rosenblatt 1962]

• Mark-I perceptron

• analog circuit implementation; parameters as potentiometers

Rosenblatt 1962. Principles of Neurodynamics
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• early forms of multi-layer networks, continuous activation functions,
back-propagating errors, convolution, skip connections, recurrent
networks, selective attention, program learning, and multi-modality

Rosenblatt 1962. Principles of Neurodynamics



perceptron
[Minsky and Papert 1969]

[12] 0.8 Introduction

made up of discrete little squares (instead of points) and treat as equiva­
lent figures that intersect the same squares. The other is to consider 
only bounded A'’s and choose <i> so that for any bounded X  only a finite 
number of will be nonzero.

Definition: A perceptron is a device capable of computing all 
predicates which are linear in some given set <i> of partial predi­
cates.

That is, we are given a set of (̂ ’s, but can select freely their 
“weights,’’ the a^’s, and also the threshold For reasons that 
will become clear as we proceed, there is little to say about all 
perceptrons in general. But, by imposing certain conditions and 
restrictions we will find much to say about certain particularly 
interesting/aw/7/>.y of perceptrons. Among these families are
1. Diameter-limited perceptrons: for each (p in the set of points 
upon which (p depends is restricted not to exceed a certain fixed 
diameter in the plane.

2. Order-restricted perceptrons: we say that a perceptron has 
order < /7 if no member of <i> depends on more than n points.

3. Gamba perceptrons: each member of ^  may depend on all the 
points but must be a “linear threshold function’’ (that is, each 
member of ^  is itself computed by a perceptron of order 1, as 
defined in 2 above).

4. Random perceptrons: These are the form most extensively 
studied by Rosenblatt’s group: the <̂’s are random Boolean func­
tions. That is to say, they are order-restricted and <i> is generated 
by a stochastic process according to an assigned distribution func­
tion.

5. Bounded perceptrons: <i> contains an infinite number of v?’s, 
but all the lie in a finite set of numbers.

ijTo give a preview of the kind of results we will obtain, we present 
here a simple example of a theorem about diameter-restricted per­
ceptrons.

Theorem 0.8: No diameter-limited perceptron can determine 
whether or not all the parts of any geometric figure are connected 
to one another! That is, no such perceptron computes ĉoNSECTtD-

Introduction 0.8 [13]

The proof requires us to consider just four figures

0̂0 0̂1 X|o X||

and a diameter-limited perceptron \p whose support sets have 
diameters like those indicated by the circles below:

It is understood that the diameter in question is given at the start, 
and we then choose the Xijs to be several diameters in length. 
Suppose that such a perceptron could distinguish disconnected 
figures (like A'oo and A"n) from connected figures (like X and 
A'oi), according to whether or not

2 V? >

that is, according to whether or not 

y~! ^  a^ip(X) + ^  a„<p(A') -  9
group I group 2 group 3

> 0

where we have grouped the v?’s according to whether their support 
sets lie near the left, right, or neither end of the figures. Then for 
Xoo the total sum must be negative. In changing Xoo to Xxo only 
2 group I is affected, and its value must increase enough to make the

• (re-)define perceptron as a linear classifier

• then prove a series of negative results

• “AI winter” follows; misconception remains until today

Minsky and Papert 1969. Perceptrons: an Introduction to Computational Geometry.



automatic differentiation
[Werbos 1974]

• formulate an arbitrary function as a computational graph

• dynamic feedback: compute symbolic derivatives by dynamic
programming

Werbos 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.



neocognitron
[Fukushima 1980]
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 
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Fig. 4. Relation between S-planes and S-columns within an S-layer 

case only one candidate appears in an S-plane, the 
candidate is unconditionally determined as the repre- 
sentative from that S-plane. If no candidate appears in 
an S-plane, no representative is selected from that 
S-plane. 

Since the representatives are determined in this 
manner, each S-plane becomes selectively sensitive to 
one of the features of the stimulus patterns, and there is 
not a possibility of formation of redundant con- 
nections such that two or more S-planes are used for 
detection of one and the same feature. Incidentally, 
representatives are selected only from a small number 
of S-planes at a time, and the rest of the S-planes are to 
send representatives for other stimulus patterns. 

As is seen from these discussions, if we consider 
that a single S-plane in the neocognitron corresponds 
to a single excitatory cell in the conventional cognitron 
(Fukushima, 1975), the procedures of reinforcement in 
the both systems are analogous to each other. 

4. Rough Sketches of the Working of the Network 

In order to help the understanding of the principles 
with which the neocognitron performs pattern re- 
cognition, we will make rough sketches of the working 
of the network in the state after completion of self- 
organization. The description in this chapter, however, 
is not so strict, because the purpose of this chapter is 
only to show the outline of the working of the network. 

At first, let us assume that the neocognitron has 
been self-organized with repeated presentations of 
stimulus patterns like "A", "B", "C" and so on. In the 
state when the self-organization has been completed, 
various feature-extracting cells are formed in the net- 
work as shown in Fig. 5. (It should be noted that Fig. 5 
shows only an example. It does not mean that exactly 
the same feature extractors as shown in this figure are 
always formed in this network.) 

Here, if pattern "A" is presented to the input layer 
U o, the cells in the network yield outputs as shown in 

^ 

UsI Ucl Us2 

ki=I 

k1=3 

k1=4 

k1=5 
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Fig. 5. An example of the interconnections between ceils and the 
response of the cells after completion of self-organization 

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1 
consists of a two-dimensional array of S-cells which 
extract A-shaped features. Since the stimulus pattern 
"A" contains A-shaped feature at the top, an S-cell 
near the top of this S-plane yields a large output as 
shown in the enlarged illustration in the lower part of 
Fig. 5. 

A C-cell in the succeeding C-plane (i.e. C-plane in 
layer Ucl with k~ = 1) has synaptic connections from a 
group of S-cells in this S-plane. For example, the C-cell 
shown in Fig. 5 has synaptic connections from the 
S-cells situated within the thin-lined circle, and it 
responds whenever at least one of these S-cells yields a 
large output. Hence, the C-cell responds to a A-shaped 
feature situated in a certain area in the input layer, and 
its response is less affected by the shift in position of 
the stimulus pattern than that of presynaptic S-cells. 
Since this C-plane consists of an array of such C-cells, 
several C-cells which are situated near the top of this 
C-plane respond to the A-shaped feature contained in 
the stimulus pattern "A". In layer Ucl, besides this 
C-plane, we also have C-planes which extract features 
with shapes l ike/- ,  ~, and so on. 

In the next module, each S-cell receives signals 
from all the C-planes of layer Ucl. For example, the 

convolution feature hierarchy

• biologically-inspired convolutional network

• unsupervised learning

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



back-propagation
[Rumelhart et al. 1986]

©          Nature Publishing Group1986

• introduce back-propagation in multi-layer networks with sigmoid
nonlinearities and sum of squares loss function

• advocate batch gradient descent for supervised learning

• discuss online gradient descent, momentum and random initialization

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



convolutional networks
[LeCun et al. 1990]
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• train a convolutional network by back-propagation

• advocate end-to-end feature learning for image classification

LeCun, Boser, Denker et al . NIPS 1990. Handwritten Digit Recognition with a Back-Propagation Network.



support vector machines
[Boser et al. 1992]
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1Figure 1: Maximum margin linear decision function D(x) = w � x+ b (' = x). The gray levels encode the absolutevalue of the decision function (solid black corresponds to D(x) = 0). The numbers indicate the supporting patterns.These patterns are called the supporting patterns of thedecision boundary.A decision function with maximummargin is illustratedin �gure 1. The problem of �nding a hyperplane in'-space with maximum margin is therefore a minimaxproblem: maxw;kwk=1mink ykD(xk): (11)The norm of the parameter vector in equations 9 and11 is �xed to pick one of an in�nite number of possiblesolutions that di�er only in scaling. Instead of �xingthe norm of w to take care of the scaling problem, theproduct of the margin M and the norm of a weightvector w can be �xed.Mkwk = 1: (12)Thus, maximizing the margin M is equivalent to mini-mizing the norm kwk.1 Then the problem of �nding amaximummargin separating hyperplane w� stated in 9reduces to solving the following quadratic problem:minw kwk2 (13)under conditions ykD(xk) � 1; k = 1; 2; : : :; p:The maximummargin is M� = 1=kw�k.In principle the problem stated in 13 can be solved di-rectly with numerical techniques. However, this ap-proach is impractical when the dimensionality of the'-space is large or in�nite. Moreover, no information isgained about the supporting patterns.1If the training data is not linearly separable the maxi-mum margin may be negative. In this case, Mkwk = �1is imposed. Maximizing the margin is then equivalent tomaximizing kwk.

2.2 MAXIMIZING THE MARGIN IN THEDUAL SPACEProblem 13 can be transformed into the dual space bymeans of the Lagrangian [Lue84]L(w; b;�) = 12kwk2 � pXk=1�k [ykD(xk)� 1](14)subject to �k � 0; k = 1; 2; : : :; p:The factors �k are called Lagrange multipliers or K�uhn-Tucker coe�cients and satisfy the conditions�k (ykD(xk)� 1) = 0; k = 1; 2; : : : ; p: (15)The factor one half has been included for cosmetic rea-sons; it does not change the solution.The optimization problem 13 is equivalent to searchinga saddle point of the function L(w; b;�). This saddlepoint is a the minimum of L(w; b;�) with respect to w,and a maximum with respect to � (�k � 0). At thesolution, the following necessary condition is met:@L@w = w� � pXk=1��kyk'k = 0;hence w� = PXk=1��kyk'k: (16)The patterns which satisfy ykD(xk) = 1 are the sup-porting patterns. According to equation 16, the vectorw� that speci�es the hyperplane with maximummarginis a linear combination of only the supporting patterns,which are those patterns for which ��k 6= 0. Usually thenumber of supporting patterns is much smaller than thenumber p of patterns in the training set.

• linear classifier, made nonlinear via kernel trick

• convex optimization

• back to raw inputs; hand-crafted kernel functions

• shift focus from neural networks to kernel methods

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



LeNet-5
[LeCun et al. 1998]
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• sub-sampling gradually introduces translation, scale and distortion
invariance

• non-linearity included in sub-sampling layers as feature maps are
increasing in dimension

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.
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modern deep learning



ImageNet
[Russakovsky et al. 2014]

• 22k classes, 15M samples

• ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000
classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



AlexNet
[Krizhevsky et al. 2012]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

• implementation on two GPUs; connectivity between the two
subnetworks is limited

• ReLU, data augmentation, local response normalization, dropout

• outperformed all previous models on ILSVRC by 10%

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



learned layer 1 kernels

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][α1λ1, α2λ2, α3λ3]
T

where pi and λi are ith eigenvector and eigenvalue of the 3 × 3 covariance matrix of RGB pixel
values, respectively, and αi is the aforementioned random variable. Each αi is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11×11×3 learned by the first convolutional
layer on the 224×224×3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε ·
〈
∂L

∂w

∣∣
wi

〉

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ε is the learning rate, and
〈
∂L
∂w

∣∣
wi

〉
Di

is

the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and
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• 96 kernels of size 11× 11× 3

• top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



ImageNet classification performance
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object detection
[Redmon et al. 2016]

1. Resize image.
2. Run convolutional network.
3. Threshold detections.

Dog: 0.39

Person: 0.94

Sheep: 0.49

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our
system (1) resizes the input image to 448× 448, (2) runs a single convolutional network on the image, and (3)
thresholds the resulting detections by the model’s confidence.

these boxes [26]. The classifier then takes additional time to evaluate the proposals. The best per-
forming systems require 2-40 seconds per image and even those optimized for speed do not achieve
real-time performance. Additionally, even a highly accurate classifier will produce false positives
when faced with so many proposals. When viewed out of context, small sections of background can
resemble actual objects, causing detection errors.

Finally, these detection pipelines rely on independent techniques at every stage that cannot be opti-
mized jointly. A typical pipeline uses Selective Search for region proposals, a convolutional network
for feature extraction, a collection of one-versus-all SVMs for classification, non-maximal suppres-
sion to reduce duplicates, and a linear model to adjust the final bounding box coordinates. Selective
Search tries to maximize recall while the SVMs optimize for single class accuracy and the linear
model learns from localization error.

Our system is refreshingly simple, see Figure 1. A single convolutional network simultaneously
predicts multiple bounding boxes and class probabilities for those boxes. We train our network
on full images and directly optimize detection performance. Context matters in object detection.
Our network uses global image features to predict detections which drastically reduces its errors
from background detections. At test time, a single network evaluation of the full image produces
detections of multiple objects in multiple categories without any pre or post-processing.

Our training and testing code are open source and available online at http://pjreddie.com/
darknet/yolo/. A variety of pre-trained models are also available to download.

2 Unified Detection

We unify the separate components of object detection into a single neural network. Using our
system, you only look once (YOLO) at an image to predict what objects are present and where they
are. Our network uses features from the entire image to predict each bounding box. It also predicts
all bounding boxes for an image simultaneously. This means our network reasons globally about
the full image and all the objects in the image. The YOLO design enables end-to-end training and
real-time speeds while maintaining high average precision.

(x, y)

(x, y)

(x, y)

Divide The Image
Into a 7 x 7 grid. Assign detections to
grid cells based on their centers.

class = 12
x, y, w, h

class = 2
x, y, w, h

class = 7
x, y, w, h

Train The Network
To predict this grid of class probabilities
and bounding box coordinates.

Resize The Image
And bounding boxes to 448 x 448.

...

1st - 20th Channels:
Class probabilities
Pr(Airplane), Pr(Bike)...

Last 4 Channels:
Box coordinates

x, y, w, h

Figure 2: The Model. Our system models detection as a regression problem to a 7× 7× 24 tensor.
This tensor encodes bounding boxes and class probabilities for all objects in the image.

2

• learn to detect objects as a single classification and regression task,
without scanning the image or detecting candidate regions

• first object detector to operate at 45fps

Redmon, Divvala, Girshick, Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



semantic segmentation
[Long et al. 2015]

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [13] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [13] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [12]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [13], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

6. Conclusion
Fully convolutional networks are a rich class of mod-

els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation.

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [33] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (◦3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [23] 76.7 - - - -
Tighe et al. [33] - - - - 90.8

Tighe et al. [34] 1 75.6 41.1 - - -
Tighe et al. [34] 2 78.6 39.2 - - -
Farabet et al. [7] 1 72.3 50.8 - - -
Farabet et al. [7] 2 78.5 29.6 - - -
Pinheiro et al. [28] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [15] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [15]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part
by DARPA’s MSEE and SMISC programs, NSF awards IIS-
1427425, IIS-1212798, IIS-1116411, and the NSF GRFP,
Toyota, and the Berkeley Vision and Learning Center. We
gratefully acknowledge NVIDIA for GPU donation. We
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• learn to upsample

• apply to pixel-dense prediction tasks

Long, Shelhamer, Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.



instance segmentation and pose estimation
[He et al. 2017]

Figure 6. Keypoint detection results on COCO test using Mask R-CNN (ResNet-50-FPN), with person segmentation masks predicted
from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

APkp APkp
50 APkp

75 APkp
M APkp

L

CMU-Pose+++ [4] 61.8 84.9 67.5 57.1 68.2
G-RMI [25]† 62.4 84.0 68.5 59.1 68.1
Mask R-CNN, keypoint-only 62.7 87.0 68.4 57.4 71.1
Mask R-CNN, keypoint & mask 63.1 87.3 68.7 57.8 71.4

Table 4. Keypoint detection AP on COCO test-dev. Ours
(ResNet-50-FPN) is a single model that runs at 5 fps. CMU-
Pose+++ [4] is the 2016 competition winner that uses multi-scale
testing, post-processing with CPM [33], and filtering with an ob-
ject detector, adding a cumulative ∼5 points (clarified in personal
communication). †: G-RMI was trained on COCO plus MPII [1]
(25k images), using two models (Inception-ResNet-v2 + ResNet-
101). As they use more data, this is not a direct comparison with
Mask R-CNN.

a relatively high resolution output (compared to masks) is
required for keypoint-level localization accuracy.

Models are trained on all COCO trainval35k im-
ages that contain annotated keypoints. To reduce overfit-
ting, as this training set is smaller, we train the models us-
ing image scales randomly sampled from [640, 800] pixels;
inference is on a single scale of 800 pixels. We train for 90k
iterations, starting from a learning rate of 0.02 and reducing
it by 10 at 60k and 80k iterations. We use bounding-box
non-maximum suppression with a threshold of 0.5. Other
implementations are identical as in §3.1.

Experiments on Human Pose Estimation: We evaluate
the person keypoint AP (APkp) using ResNet-50-FPN. We
have experimented with ResNet-101 and found it achieves
similar results, possibly because deeper models benefit from
more training data, but this dataset is relatively small.

Table 4 shows that our result (62.7 APkp) is 0.9 points
higher than the COCO 2016 keypoint detection winner [4]
that uses a multi-stage processing pipeline (see caption of
Table 4). Our method is considerably simpler and faster.

More importantly, we have a unified model that can si-
multaneously predict boxes, segments, and keypoints while
running at 5 fps. Adding a segment branch (for the per-

APbb
person APmask

person APkp

Faster R-CNN 52.5 - -
Mask R-CNN, mask-only 53.6 45.8 -
Mask R-CNN, keypoint-only 50.7 - 64.2
Mask R-CNN, keypoint & mask 52.0 45.1 64.7

Table 5. Multi-task learning of box, mask, and keypoint about the person
category, evaluated on minival. All entries are trained on the same data
for fair comparisons. The backbone is ResNet-50-FPN. The entry with
64.2 AP on minival has 62.7 AP on test-dev. The entry with 64.7
AP on minival has 63.1 AP on test-dev (see Table 4).

APkp APkp
50 APkp

75 APkp
M APkp

L

RoIPool 59.8 86.2 66.7 55.1 67.4
RoIAlign 64.2 86.6 69.7 58.7 73.0

Table 6. RoIAlign vs. RoIPool for keypoint detection on minival.

son category) improves the APkp to 63.1 (Table 4) on
test-dev. More ablations of multi-task learning on
minival are in Table 5. Adding the mask branch to the
box-only (i.e., Faster R-CNN) or keypoint-only versions
consistently improves these tasks. However, adding the
keypoint branch reduces the box/mask AP slightly, suggest-
ing that while keypoint detection benefits from multitask
training, it does not in turn help the other tasks. Neverthe-
less, learning all three tasks jointly enables a unified system
to efficiently predict all outputs simultaneously (Figure 6).

We also investigate the effect of RoIAlign on keypoint
detection (Table 6). Though this ResNet-50-FPN backbone
has finer strides (e.g., 4 pixels on the finest level), RoIAlign
still shows significant improvement over RoIPool and in-
creases APkp by 4.4 points. This is because keypoint detec-
tions are more sensitive to localization accuracy. This again
indicates that alignment is essential for pixel-level localiza-
tion, including masks and keypoints.

Given the effectiveness of Mask R-CNN for extracting
object bounding boxes, masks, and keypoints, we expect it
be an effective framework for other instance-level tasks.

8

• semantic segmentation per detected region

• pose estimation as regression

He, Gkioxari, Dollar, Girshick. ICCV 2017. Mask R-CNN.



multi-task learning
[Kokkinos 2017]

UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-,
and High-Level Vision using Diverse Datasets and Limited Memory

Iasonas Kokkinos
University College London & Facebook Artificial Intelligence Research

i.kokkinos@cs.ucl.ac.uk

Abstract

In this work we train in an end-to-end manner a con-
volutional neural network (CNN) that jointly handles low-,
mid-, and high-level vision tasks in a unified architecture.
Such a network can act like a ‘swiss knife’ for vision tasks;
we call it an “UberNet” to indicate its overarching nature.

The main contribution of this work consists in handling
challenges that emerge when scaling up to many tasks. We
introduce techniques that facilitate (i) training a deep archi-
tecture while relying on diverse training sets and (ii) train-
ing many (potentially unlimited) tasks with a limited mem-
ory budget.

This allows us to train in an end-to-end manner a unified
CNN architecture that jointly handles (a) boundary detec-
tion (b) normal estimation (c) saliency estimation (d) se-
mantic segmentation (e) human part segmentation (f) se-
mantic boundary detection, (g) region proposal generation
and object detection. We obtain competitive performance
while jointly addressing all tasks in 0.7 seconds on a GPU.
Our system will be made publicly available.

1. Introduction
Computer vision involves a host of tasks, such as bound-

ary detection, semantic segmentation, surface estimation,
object detection, image classification, to name a few. While
Convolutional Neural Networks (CNNs) [32] have been
shown to be successful at effectively handling most vision
tasks, in the current literature most works focus on indi-
vidual tasks and devote all of a CNN’s power to maximiz-
ing task-specific performance. In our understanding a joint
treatment of multiple problems can result not only in sim-
pler and faster models, but will also be a catalyst for reach-
ing out to other fields. One can expect that such all-in-one,
“swiss knife” architectures will become indispensable for
general AI, involving, for instance, robots that will be able
to recognize the scene they are in, identify objects, navigate
towards them, and manipulate them.

The problem of using a single network to solve multi-
ple tasks has been recently pursued in the context of deep

Input Boundaries Saliency Normals

Detection Semantic Boundaries & Segmentation Human Parts

Figure 1: We train in an end-to-end manner a CNN that
jointly performs tasks spanning low-, mid- and high- level
vision; all results are obtained in 0.7 seconds per frame.

learning for computer vision. In [50] a CNN is used for joint
localization, detection and classification, [17] propose a net-
work that jointly solves surface normal estimation, depth es-
timation and semantic segmentation, while [20] train a sys-
tem for joint detection, pose estimation and region proposal
generation. More recently [41] study the effects of shar-
ing information across networks trained for complementary
tasks, [6] propose the introduction of inter-task connections
that improves performance through task synergy and [47]
propose an architecture for a host of face-related tasks.

Inspired by these works, in Sec. 2 we introduce a CNN
architecture that jointly handles multiple tasks by using a
shared trunk which feeds into many task-specific branches.
Our contribution consists in introducing techniques that en-
able training to scale up to a large number of tasks.

Our first contribution enables us to train a CNN from
diverse datasets that contain annotations for distinct tasks.

6129

• learn several vision tasks with a joint network architecture including
task-specific skip layers

Kokkinos. CVPR 2017. Ubernet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using
Diverse Datasets and Limited Memory.



geometric matching
[Rocco et al. 2017]

Figure 7: Filter visualization. Some convolutional filters from the first layer of the regressor, acting on the tentative correspondence
map, show preferences to spatially co-located features that transform consistently to the other image, thus learning to perform the local
neighborhood consensus criterion often used in classical feature matching. Refer to the text for more details on the visualization.

Image A Aligned A (affine) Aligned A (affine+TPS) Image B

Figure 8: Qualitative results on the Proposal Flow dataset. Each row shows one test example from the Proposal Flow dataset. Ground
truth matching keypoints, only used for alignment evaluation, are depicted as crosses and circles for images A and B, respectively. Key-
points of same color are supposed to match each other after image A is aligned to image B. To illustrate the matching error, we also overlay
keypoints of B onto different alignments of A so that lines that connect matching keypoints indicate the keypoint position error vector. Our
method manages to roughly align the images with an affine transformation (column 2), and then perform finer alignment using thin-plate
spline (TPS, column 3). It successfully handles background clutter, translations, rotations, and large changes in appearance and scale, as
well as non-rigid transformations and some perspective changes. Further examples are shown in the supplementary material [2] .

Methods StreetView-synth-aff Pascal-synth-aff

Concatenation [14] 26 29
Subtraction [29] 18 21
Ours without normalization 44 –
Ours 49 45

Table 2: Ablation studies. Matching quality on the Proposal Flow
dataset measured in terms of PCK. All methods use the same fea-
tures (VGG-16 cropped at pool4). The networks were trained on
the StreetView-synth-aff and Pascal-synth-aff datasets. For these
experiments, only the affine transformation is estimated.

respectively, incurs a large performance drop. The behavior
is expected as we designed the matching layer to only keep

information on pairwise descriptor similarities rather than
the descriptors themselves, as is good practice in classical
geometry estimation methods, while concatenation and sub-
traction do not follow this principle.

Generalization. As seen in Tab. 2, our method is relatively
unaffected by the choice of training data as its performance
is similar regardless whether it was trained with StreetView
or Pascal images. We also attribute this to the design choice
of operating on pairwise descriptor similarities rather than
the raw descriptors.

Normalization. Tab. 2 also shows the importance of the
correlation map normalization step, where the normaliza-
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• mimic the standard steps of feature extraction, matching and
simultaneous inlier detection and model parameter estimation

• still trainable end-to-end

Rocco, Arandjelovic, Sivic. CVPR 2017. Convolutional Neural Network Architecture for Geometric Matching.



image retrieval
[Gordo et al. 2016]

18 A. Gordo, J. Almazán, J. Revaud, D. Larlus

A Qualitative results

In Figure 5 we show the top retrieved results by our method, together with AP
curves, for a few Oxford 5k queries, and compare them to the results of the
R-MAC baseline with VGG16 and no extra training [14]. The results obtained
with the proposed trained model are consistently better in terms of accuracy.
In many cases, several of the correctly retrieved images by our method were
not well scored by the baseline method, that placed them far down in the list
of results. Note also the bad annotation of one of the images in the fifth query
(Corn Market), incorrectly labeled as not relevant.

In Figure 6 we show the image patches that produce the largest activations
for several neurons of VGG16’s “conv5 3” layer, before and after the proposed
training. First we can observe that, before training, many neurons tend to acti-
vate on “semantic” patches such as shoulders / bow ties, waists, or sunglasses,
even when they do not belong to the same instance, which is not desirable for
the task of instance-level retrieval. After training, many of these neurons have
been repurposed to a different task, e.g. , shoulders becoming domes. Many of the
new activations do belong to the same instance, which is more useful for the task
of instance retrieval. Note also how the “sunglasses” neuron was not correctly
repurposed, suggesting that improvements during training are still possible.

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (2) 2 (1) 3 (5) 4 (7) 5 (20) 6 (17) 7 (11) 8 (9) 9 (13) 10 (3) 11 (4) 12 (16)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (2) 3 (3) 4 (9) 5 (7) 6 (19) 7 (10) 8 (33)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (49) 2 (1) 3 (533) 4 (3) 5 (479) 6 (495) 7 (696) 8 (22) 9 (47) 10 (14)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (47) 3 (78) 4 (104) 5 (16) 6 (34) 7 (11) 8 (46)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (2) 3 (3) 4 (5) 5 (6) 6 (4) 7 (12) 8 (197) 9 (99) 10 (1226)

0.0 0.5 1.0
0.0

0.5

1.0

Query 1 (1) 2 (13) 3 (7) 4 (8) 5 (5) 6 (268) 7 (108) 8 (19) 9 (53) 10 (70) 11 (84)

Fig. 5. Top retrieval results and AP curves for a few Oxford queries. R-MAC baseline
and our method (ranking-loss+proposals) are resp. color-coded as red and blue in the
AP plots and in the ranks obtained for each image. Green, gray and red borders resp.
denote positive, null and negative images.

• learn to match

• apply as generic feature extractor

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



photorealistic style transfer
[Luan et al. 2017]

Deep Photo Style Transfer

Fujun Luan
Cornell University

fujun@cs.cornell.edu

Sylvain Paris
Adobe

sparis@adobe.com

Eli Shechtman
Adobe

elishe@adobe.com

Kavita Bala
Cornell University
kb@cs.cornell.edu

Figure 1: Given a reference style image (a) and an input image (b), we seek to create an output image of the same scene as
the input, but with the style of the reference image. The Neural Style algorithm [5] (c) successfully transfers colors, but also
introduces distortions that make the output look like a painting, which is undesirable in the context of photo style transfer. In
comparison, our result (d) transfers the color of the reference style image equally well while preserving the photorealism of
the output. On the right (e), we show 3 insets of (b), (c), and (d) (in that order). Zoom in to compare results.

Abstract

This paper introduces a deep-learning approach to pho-
tographic style transfer that handles a large variety of image
content while faithfully transferring the reference style. Our
approach builds upon the recent work on painterly transfer
that separates style from the content of an image by consid-
ering different layers of a neural network. However, as is,
this approach is not suitable for photorealistic style transfer.
Even when both the input and reference images are pho-
tographs, the output still exhibits distortions reminiscent of a
painting. Our contribution is to constrain the transformation
from the input to the output to be locally affine in colorspace,
and to express this constraint as a custom fully differentiable
energy term. We show that this approach successfully sup-
presses distortion and yields satisfying photorealistic style
transfers in a broad variety of scenarios, including transfer
of the time of day, weather, season, and artistic edits.

1. Introduction

Photographic style transfer is a long-standing problem
that seeks to transfer the style of a reference style photo
onto another input picture. For instance, by appropriately
choosing the reference style photo, one can make the input
picture look like it has been taken under a different illumina-
tion, time of day, or weather, or that it has been artistically
retouched with a different intent. So far, existing techniques
are either limited in the diversity of scenes or transfers that
they can handle or in the faithfulness of the stylistic match
they achieve. In this paper, we introduce a deep-learning
approach to photographic style transfer that is at the same
time broad and faithful, i.e., it handles a large variety of
image content while accurately transferring the reference
style. Our approach builds upon the recent work on Neural
Style transfer by Gatys et al. [5]. However, as shown in
Figure 1, even when the input and reference style images
are photographs, the output still looks like a painting, e.g.,
straight edges become wiggly and regular textures wavy.
One of our contributions is to remove these painting-like
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• generate same scene as input image

• transfer style from reference image

• photorealism regularization

Luan, Paris, Shechtman, Bala. CVPR 2017. Deep Photo Style Transfer.



image captioning
[Vinyals et al. 2017]

(where humans rank 6th); METEOR is the automatic metric
where humans rank the highest (third).

5.2 Improvements Over Our CVPR15 Model

In this section we analyze what components were improved
with respect to the model which we originally studied in
our CVPR 2015 work [46]. Section 5.3 shows a summary of
the results on both automatic and human metrics from the
MSCOCO competition. We summarize all the improve-
ments in Table 8.

5.2.1 Image Model Improvement

When we first submitted our image captioning paper to
CVPR 2015, we used the best convolutional neural network
at the time, known as GoogleLeNet [48], which had 22 layers,
and was the winner of the 2014 ImageNet competition. Later
on, an even better approach was proposed in [24] and
included a new method, called Batch Normalization, to better
normalize each layer of a neural network with respect to the
current batch of examples, so as to be more robust to nonli-
nearities. The new approach got significant improvement on

the ImageNet task (going from 6.67 percent down to 4.8 per-
cent top-5 error) and the MSCOCO image captioning task,
improving BLEU-4 by 2 points absolute.

5.2.2 Image Model Fine Tuning

In the original set of experiments, to avoid overfitting we
initialized the image convolutional network with a pre-
trained model (we first used GoogleLeNet, then switched to
the better Batch Normalization model), but then fixed its
parameters and only trained the LSTM part of the model on
the MS COCO training set.

For the competition, we also considered adding some
fine tuning of the image model while training the LSTM,
which helped the image model focus more on the kind of
images provided in the MS COCO training set, and ended
up improving the performance on the captioning task.

It is important to note that fine tuning the image model
must be carried after the LSTM parameters have settled on

Fig. 5. A selection of evaluation results, grouped by human rating.

TABLE 6
Nearest Neighbors of a Few Example Words

Word Neighbors

car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

TABLE 7
Pearson Correlation and Human Rankings Found in the
MSCOCO Official Website Competition Table for Several

Automatic Metrics (Using 40 Ground Truth Captions
in the Test Set)

Correlation (versus CIDER) Human Rank

CIDER 1.0 6
METEOR 0.98 3
ROUGE 0.91 11
BLEU-4 0.87 13

VINYALS ET AL.: SHOW AND TELL: LESSONS LEARNED FROM THE 2015 MSCOCO IMAGE CAPTIONING CHALLENGE 659

• image description by deep CNN

• language generation by RNN

Vinyals, Toshev, Bengio and Erhan. PAMI 2017. Show and Tell: Lessons Learned From the 2015 MSCOCO Image Captioning
Challenge.
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logistics

• course website: https://sif-dlv.github.io/

• piazza: https://piazza.com/inria.fr/fall2019/dlv

https://sif-dlv.github.io/
https://piazza.com/inria.fr/fall2019/dlv


prerequisites

basic knowledge of

• linear algebra

• calculus

• probabilities

• signal processing

• machine learning

• python



goals

• discuss well-known methods from low-level description to intermediate
representation, and their dependence on the end task

• study a data-driven approach where the entire pipeline is optimized
jointly in a supervised fashion, according to a task-dependent objective

• study deep learning models in detail

• interpret them in connection to conventional models

• focus on recent, state of the art methods and large scale applications



conventional methods

• representation: global/local visual descriptors, dense/sparse
representation, feature detectors; encoding/pooling, vocabularies,
bag-of-words; VLAD∗, Fisher vectors∗, embeddings∗, HMAX∗

• local features and spatial matching: derivatives, scale space and
scale selection; edges, blobs, corners/junctions; dense optical flow /
sparse feature tracking∗; wide-baseline matching; geometric models,
RANSAC, Hough transform; fast spatial matching∗

• codebooks and kernels: geometry/appearance matching;
bag-of-words; k-means clustering, hierarchical∗, approximate∗,
vocabulary tree∗; soft assignment, max pooling; match kernels,
hamming embedding, ASMK∗; pyramid matching, spatial pyramids,
Hough pyramids∗.



deep learning approach (1)

• learning: binary classification; perceptron, support vector machines,
logistic regression; gradient descent, regularization, loss functions,
unified model; multi-class classification; linear regression∗, basis
functions; neural networks, activation functions

• differentiation: stochastic gradient descent; numerical gradient
approximation; function decomposition, chain rule, analytical gradient
computation, back-propagation; chaining, splitting and sharing;
common forward and backward flow patterns; dynamic automatic
differentiation∗



deep learning approach (2)

• convolution: convolution, cross-correlation, linearity, equivariance,
weight sharing; feature maps, matrix multiplication, 1× 1 convolution;
padded, strided, dilated convolution; pooling and invariance;
convolutional networks: LeNet-5, AlexNet, ZFNet∗, VGG, NiN∗,
GoogLeNet.

• optimization and deeper architectures: optimizers: momentum,
RMSprop, Adam, second-order∗; initialization: Gaussian matrices, unit
variance, orthogonal∗, data-dependent∗; normalization: input, batch,
layer∗, weight∗; deeper networks: residual, identity mappings∗,
stochastic depth∗, densely connected



applications

• object detection: background: Viola and Jones, DPM, ISM, ESS,
object proposals, non-maximum suppression; two-stage: R-CNN, SPP,
fast/faster R-CNN, RPN; bounding box regression; part-based:
R-FCN, spatial transformers∗, deformable convolution; upsampling∗:
FCN, feature pyramids; one-stage: OverFeat∗, YOLO, SSD∗,
RetinaNet∗, focal loss

• retrieval: local/global descriptors; pooling from CNN representations:
MAC, R-MAC, SPoC∗, CroW∗; manifold learning, siamese and triplet
architectures; fine-tuning: constrastive/triplet loss, learning to rank;
graph-based methods, diffusion, unsupervised fine-tuning



related courses at sif

• ADM Advanced Probabilistic Data Analysis and Modeling (Guillaume
Gravier)

• BSI Big Data Storage and Processing Infrastructures (Gabriel Antoniu)

• CG Computer Graphics: Rendering and Modeling 3D Scenes (Rémi
Cozot)

• CV Computer Vision (Eric Marchand)

• DMV Data Mining and Visualization (Alexandre Termier)

• GDP Graph Data Processing (Pierre Vandergheynst)

• HDL High-Dimensional Statistical Learning (Rémi Gribonval)

• REP Image Representation, Editing and Perception (Olivier Le Meur)

• SML Supervised Machine Learning (François Coste)



computer vision: algorithms and applications
http://szeliski.org/Book/

1 introduction

3 image processing

4 feature detection and matching

6 feature-based alignment

14 recognition

http://szeliski.org/Book/


deep learning book
http://www.deeplearningbook.org/

1 introduction

5 machine learning basics

6 deep feedforward networks

7 regularizaton for deep learning

8 optimization for training deep
models

9 convolutional networks

11 practical methodology

http://www.deeplearningbook.org/


evaluation

• oral presentation: 50%

• written exam: 50%



oral presentations

• teams of two

• instructions, paper list: https://sif-dlv.github.io/oral

• choose 2-5 papers, report your choice by mid-December

• should be interesting but not too hard

• study and find more related work; find connections

• present on second half of January

• focus presentation on ideas; not too detailed

• 8 min/talk, 4 min questions: total 20 min/team

• the class is your audience

• ask questions!

https://sif-dlv.github.io/oral


..

good luck!
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