lecture 1: introduction deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

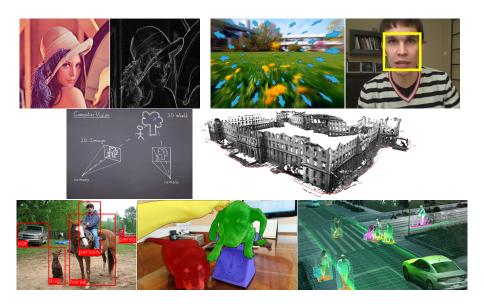
Rennes, Nov. 2019 - Jan. 2020

outline

research field
psychology and neuroscience background
computer vision background
machine learning background
modern deep learning
about this course

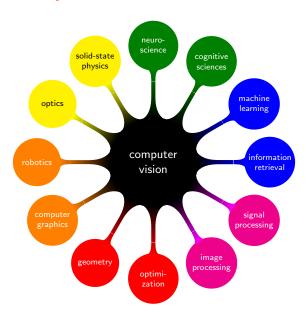
research field

computer vision in images

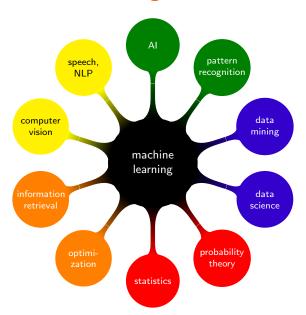


computer vision in images

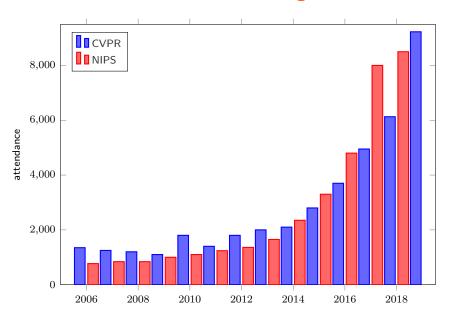
computer vision—related fields



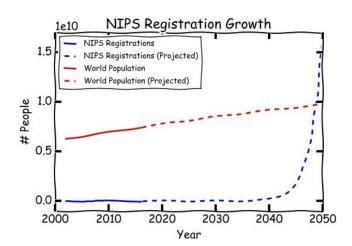
machine learning—related fields



conference attendance growth

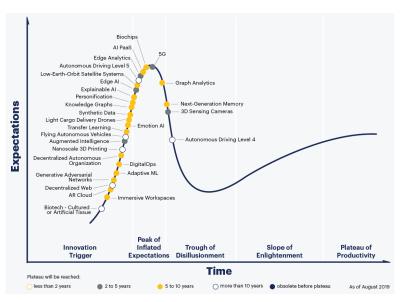


really?



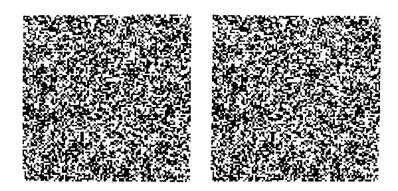
CVPR 2019 sponsors

hype cycle



psychology and neuroscience background

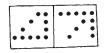
non-invasive: Béla Julesz

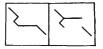


- which happens first? stereopsis or recognition?
- random dot stereogram: two identical images, except for a central square region that is displaced randomly in one image
- yields the impression of the square floating over the background

non-invasive: Béla Julesz

プレスシアイア イアン アストン 0000000000000000 アソマレアアマアシレンメイン ہا جا بہر کل کا بحہ کہ کہ بحر بحر بحر کل کا 9000000000000000 アンメアンバイア アンシーブ **ミスプグシ**などよどんだんしん AD TORYTE AKBBOOK **アイマン アイコンメストスア 7 7** VADOTE BEEF GGGGA シャトトレインシン OCCUPATE COACA アイメング アイス アスティン BEARTERKEROGOD - メグスマンメンシグス スマシン d Dop 3 7 K L TEE CO DO DEDAFESSORAVED کہ کہ سوسو ہے تھے کہ تھرجہ کہ ہم ہم ہم محم 4464664444 00000000000000000

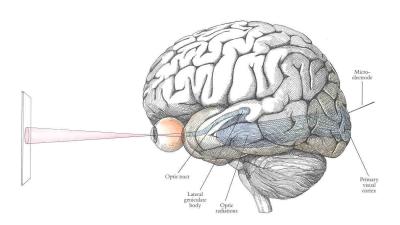




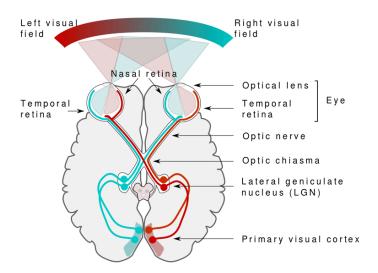
- study of pre-attentive (effortless, instantaneous) texture discrimination
- texture pairs with identical second order statistics
- textons: "basic elements of pre-attentive human texture perception"

invasive: Hubel & Wiesel

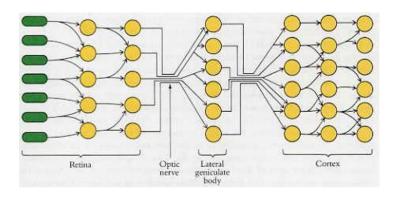
visual system of mammals



visual pathway

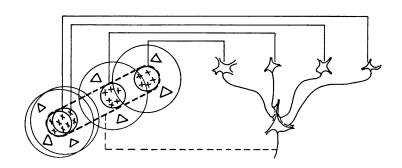


topographic representation



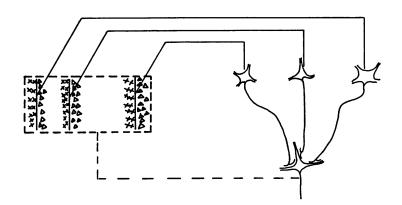
- as you move along the retina, the corresponding points in the cortex trace a continuous path
- each column represents a two-dimensional array of cells

simple cells



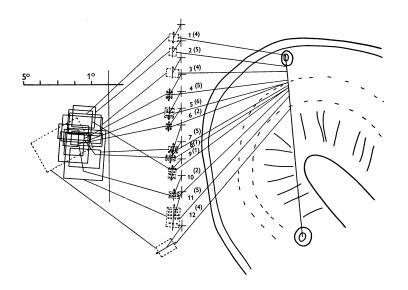
- lower-order cells with radially symmetric receptive field with on-center and off-surround
- cells centered along a line with excitatory synaptic connections to a cell of higher order

complex cells



- simple cells respond to a vertically oriented edge
- cells scattered throughout a rectangle with excitatory synaptic connections to a complex cell

electrode recordings



computer vision background

the summer vision project

[Papert 1966]

"The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition"."

general goals

FIGURE-GROUND

"divide a picture into regions such as likely objects, likely background areas and chaos"

REGION DESCRIPTION

"analysis of shape and surface properties"

OBJECT IDENTIFICATION

"name objects by matching them with a vocabulary of known objects"

specific goals

July

```
"non-overlapping objects like balls, bricks, cylinders"

each face will be of uniform and distinct color and/or texture"
```

"background will be homogeneous"

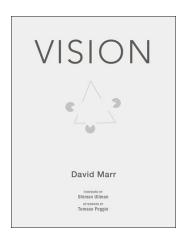
August

```
"complex surfaces and background, e.g. cigarette pack with writing, or a cylindrical battery"

"objects like tools, cups, etc."
```

David Marr, "Vision"

[Marr 1982]

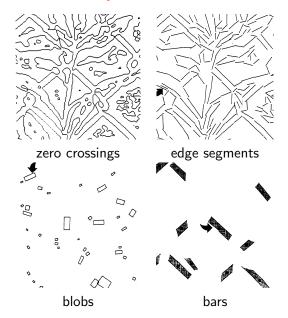


- biological plausibility: turning psychology and neuroscience results into models of visual information processing
- inverse graphics: from images to surfaces through geometric and photometric models
- philosophy: levels of analysis, processing stages, generic principles

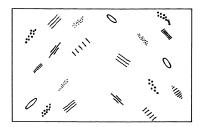
edge detection

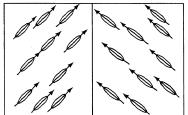


raw primal sketch



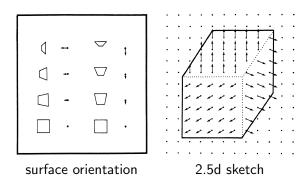
full primal sketch





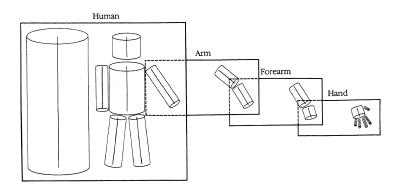
hierarchical grouping of tokens

2.5d sketch



- surface orientation (vector field), surface orientation discontinuities (dotted lines), depth discontinuities (continuous lines)
- obtained via stereopsis, optical flow, motion parallax, photometric stereo

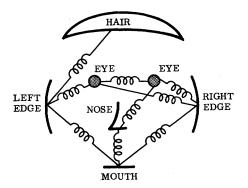
3d model representation



- hierarchical 3d model description
- parts of limited complexity, specified in local coordinate systems
- flexible, allowing for relative part transformation

pictorial structures

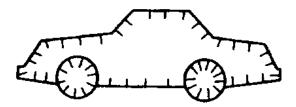
[Fischler and Elschlager 1973]



- manually specified object description
- parts-based model: part attributes and pairwise spatial relations
- efficient dynamic programming implementation
 Fischler and Elschlager. TC 1973. The Representation and Matching of Pictorial Structures.

generalized Hough transform

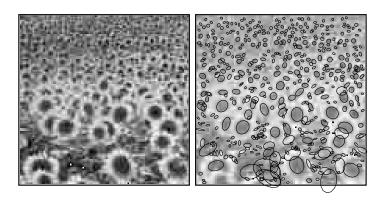
[Ballard 1981]



- Hough transform detects analytic curves in parameter space
- generalized version detects arbitrary non-analytic curves
- detection based on a voting process

scale selection

[Lindeberg 1993]



- scale-space and scale-normalized derivatives
- automatic scale selection at local maxima over scale
- applies to blobs, junctions, corners, edges or ridges

scale-invariant feature transform (SIFT)

[Lowe 1999]

- scale selection by difference of Gaussians (DoG)
- orientation assignment, local descriptor
- Hough transform on affine space

textons

[Malik et al. 1999]

oriented filter bank

image

texture segmentation

- textons defined as clusters of filter responses
- regions described by texton histograms

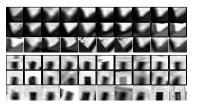
real-time face detection

[Viola and Jones 2001]

- simple rectangle features in constant time on integral images
- learning weak classifiers by boosting
- classifier cascade provides a focus-of-attention mechanism

bag of words

[Sivic and Zisserman 2003]



visual vocabulary

video retrieval

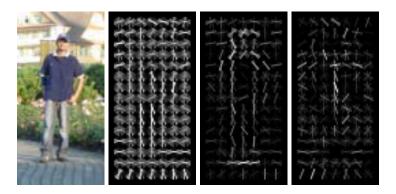
"visual words" defined as clusters of SIFT descriptors

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.

- images described by visual word histograms
- text retrieval methods applied to video retrieval

histogram of oriented gradients (HOG)

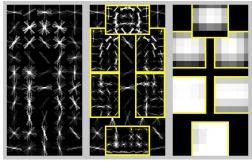
[Dalal and Triggs 2005]



- dense, SIFT-like descriptors
- SVM classifier
- sliding window detection at all positions and scales

deformable part model (DPM)

[Felzenszwalb et al. 2008]

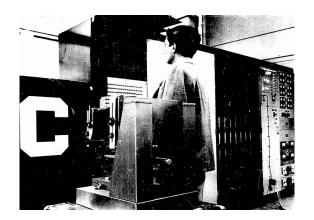


- appearance represented by HOG
- spatial configuration inspired by "pictorial structures"
- part locations treated as latent variables

machine learning background

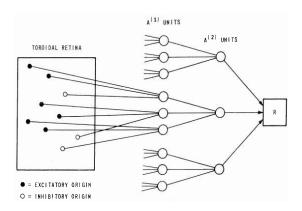
perceptron

[Rosenblatt 1962]



- Mark-I perceptron
- analog circuit implementation; parameters as potentiometers

perceptron



 early forms of multi-layer networks, continuous activation functions, back-propagating errors, convolution, skip connections, recurrent networks, selective attention, program learning, and multi-modality

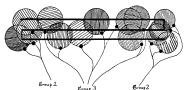
perceptron

[Minsky and Papert 1969]

Theorem 0.8: No diameter-limited perceptron can determine whether or not all the parts of any geometric figure are connected to one another! That is, no such perceptron computes \$\psi_{\text{CONNECTED}}\$.

The proof requires us to consider just four figures

and a diameter-limited perceptron ψ whose support sets have diameters like those indicated by the circles below:



- (re-)define perceptron as a linear classifier
- then prove a series of negative results
- "Al winter" follows; misconception remains until today

automatic differentiation

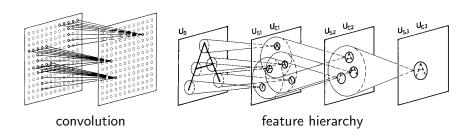
[Werbos 1974]

Actual Variable	Variable Number	Operation Category	Major Source	Minor Source
(b(2)) ²	20	product	19	19
b(2)=C(2)-k ₁ Y _p (2)	19	difference	18	17
C(2)	18	input	-	-
k ₁ Y _p (2)	17	product	16	1
Y _p (2)	16	sun	15	13
k2YA(2)	15	product	14	2
Y _A (2)	14	input	-	-
(1-k ₂)Y _p (1)	13	product	12	4
(b(1)) ²	12	product	11	11
b(1)=C(1)-k ₁ Y _p (1)	11	difference	10	9
C(1)	10	input	-	-
k ₁ Y _p (1)	9	product	8	1

- formulate an arbitrary function as a computational graph
- dynamic feedback: compute symbolic derivatives by dynamic programming

neocognitron

[Fukushima 1980]



- biologically-inspired convolutional network
- unsupervised learning

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected By Shift in Position.

back-propagation

[Rumelhart et al. 1986]

The backward pass starts by computing $\partial E/\partial y$ for each of the output units. Differentiating equation (3) for a particular case, c, and suppressing the index c gives

$$\partial E/\partial y_i = y_i - d_i$$
 (4)

We can then apply the chain rule to compute $\partial E/\partial x_i$

$$\partial E/\partial x_j = \partial E/\partial y_j \cdot dy_j/dx_j$$

Differentiating equation (2) to get the value of $\mathrm{d}y_i/\mathrm{d}x_j$ and substituting gives

$$\partial E/\partial x_j = \partial E/\partial y_j \cdot y_j (1-y_j)$$
 (5)

This means that we know how a change in the total input x to an output unit will affect the error. But this total input is just a linear function of the states of the lower level units and it is also a linear function of the weights on the connections, so it is easy to compute how the error will be affected by changing these states and weights. For a weight w_{ji} , from i to j the derivative is

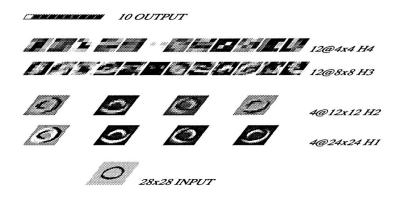
$$\partial E/\partial w_{ji} = \partial E/\partial x_j \cdot \partial x_j/\partial w_{ji}$$

= $\partial E/\partial x_j \cdot y_i$ (6)

- introduce back-propagation in multi-layer networks with sigmoid nonlinearities and sum of squares loss function
- advocate batch gradient descent for supervised learning
- · discuss online gradient descent, momentum and random initialization

convolutional networks

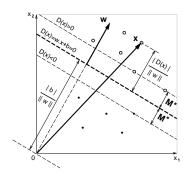
[LeCun et al. 1990]

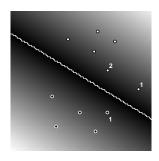


- train a convolutional network by back-propagation
- advocate end-to-end feature learning for image classification

support vector machines

[Boser et al. 1992]

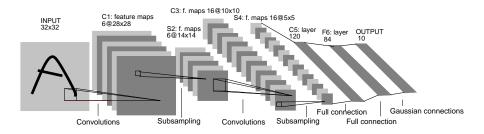




- linear classifier, made nonlinear via kernel trick
- convex optimization
- back to raw inputs; hand-crafted kernel functions
- shift focus from neural networks to kernel methods

LeNet-5

[LeCun et al. 1998]



- sub-sampling gradually introduces translation, scale and distortion invariance
- non-linearity included in sub-sampling layers as feature maps are increasing in dimension

modern deep learning

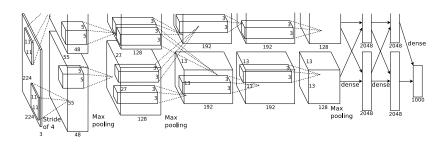
ImageNet

[Russakovsky et al. 2014]

- 22k classes, 15M samples
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000 classes, 1.2M training images, 50k validation images, 150k test images

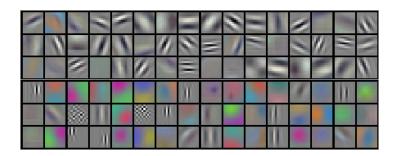
AlexNet

[Krizhevsky et al. 2012]



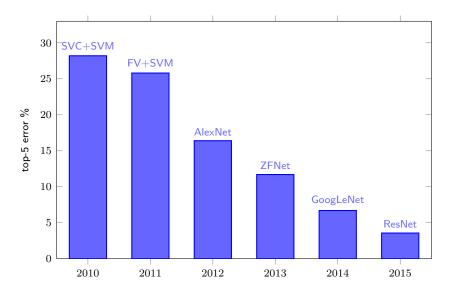
- implementation on two GPUs; connectivity between the two subnetworks is limited
- ReLU, data augmentation, local response normalization, dropout
- outperformed all previous models on ILSVRC by 10%

learned layer 1 kernels



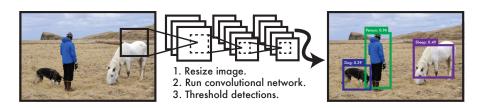
- 96 kernels of size $11 \times 11 \times 3$
- top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

ImageNet classification performance



object detection

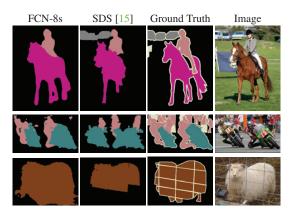
[Redmon et al. 2016]



- learn to detect objects as a single classification and regression task, without scanning the image or detecting candidate regions
- first object detector to operate at 45fps

semantic segmentation

[Long et al. 2015]



- learn to upsample
- apply to pixel-dense prediction tasks

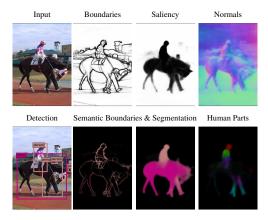
instance segmentation and pose estimation

[He et al. 2017]

- semantic segmentation per detected region
- pose estimation as regression

multi-task learning

[Kokkinos 2017]

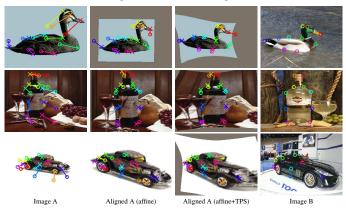


 learn several vision tasks with a joint network architecture including task-specific skip layers

Kokkinos. CVPR 2017. Ubernet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory.

geometric matching

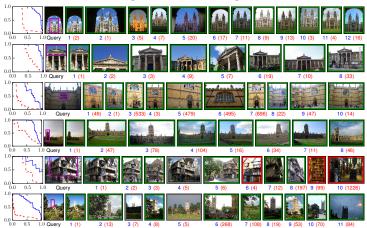
[Rocco et al. 2017]



- mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation
- still trainable end-to-end

image retrieval

[Gordo et al. 2016]

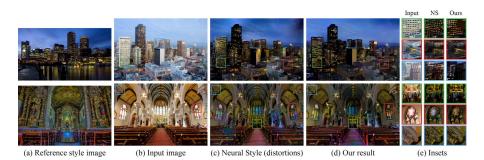


- learn to match
- apply as generic feature extractor

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.

photorealistic style transfer

[Luan et al. 2017]



- generate same scene as input image
- transfer style from reference image
- photorealism regularization

image captioning

[Vinyals et al. 2017]

- image description by deep CNN
- language generation by RNN

Vinyals, Toshev, Bengio and Erhan. PAMI 2017. Show and Tell: Lessons Learned From the 2015 MSCOCO Image Captioning Challenge.

about this course

logistics

- course website: https://sif-dlv.github.io/
- piazza: https://piazza.com/inria.fr/fall2019/dlv

prerequisites

basic knowledge of

- linear algebra
- calculus
- probabilities
- signal processing
- machine learning
- python

goals

- discuss well-known methods from low-level description to intermediate representation, and their dependence on the end task
- study a data-driven approach where the entire pipeline is optimized jointly in a supervised fashion, according to a task-dependent objective
- study deep learning models in detail
- interpret them in connection to conventional models
- focus on recent, state of the art methods and large scale applications

conventional methods

- representation: global/local visual descriptors, dense/sparse representation, feature detectors; encoding/pooling, vocabularies, bag-of-words; VLAD*, Fisher vectors*, embeddings*, HMAX*
- local features and spatial matching: derivatives, scale space and scale selection; edges, blobs, corners/junctions; dense optical flow / sparse feature tracking*; wide-baseline matching; geometric models, RANSAC, Hough transform; fast spatial matching*
- codebooks and kernels: geometry/appearance matching; bag-of-words; k-means clustering, hierarchical*, approximate*, vocabulary tree*; soft assignment, max pooling; match kernels, hamming embedding, ASMK*; pyramid matching, spatial pyramids, Hough pyramids*.

deep learning approach (1)

- learning: binary classification; perceptron, support vector machines, logistic regression; gradient descent, regularization, loss functions, unified model; multi-class classification; linear regression*, basis functions: neural networks, activation functions
- differentiation: stochastic gradient descent; numerical gradient approximation; function decomposition, chain rule, analytical gradient computation, back-propagation; chaining, splitting and sharing; common forward and backward flow patterns; dynamic automatic differentiation*

deep learning approach (2)

- convolution: convolution, cross-correlation, linearity, equivariance, weight sharing; feature maps, matrix multiplication, 1 × 1 convolution; padded, strided, dilated convolution; pooling and invariance; convolutional networks: LeNet-5, AlexNet, ZFNet*, VGG, NiN*, GoogLeNet.
- optimization and deeper architectures: optimizers: momentum, RMSprop, Adam, second-order*; initialization: Gaussian matrices, unit variance, orthogonal*, data-dependent*; normalization: input, batch, layer*, weight*; deeper networks: residual, identity mappings*, stochastic depth*, densely connected

applications

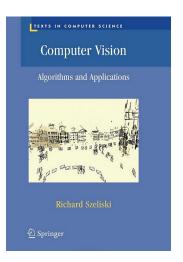
- object detection: background: Viola and Jones, DPM, ISM, ESS, object proposals, non-maximum suppression; two-stage: R-CNN, SPP, fast/faster R-CNN, RPN; bounding box regression; part-based: R-FCN, spatial transformers*, deformable convolution; upsampling*: FCN, feature pyramids; one-stage: OverFeat*, YOLO, SSD*, RetinaNet*, focal loss
- retrieval: local/global descriptors; pooling from CNN representations: MAC, R-MAC, SPoC*, CroW*; manifold learning, siamese and triplet architectures; fine-tuning: constrastive/triplet loss, learning to rank; graph-based methods, diffusion, unsupervised fine-tuning

related courses at sif

- ADM Advanced Probabilistic Data Analysis and Modeling (Guillaume Gravier)
- BSI Big Data Storage and Processing Infrastructures (Gabriel Antoniu)
- CG Computer Graphics: Rendering and Modeling 3D Scenes (Rémi Cozot)
- CV Computer Vision (Eric Marchand)
- DMV Data Mining and Visualization (Alexandre Termier)
- GDP Graph Data Processing (Pierre Vandergheynst)
- HDL High-Dimensional Statistical Learning (Rémi Gribonval)
- REP Image Representation, Editing and Perception (Olivier Le Meur)
- SML Supervised Machine Learning (François Coste)

computer vision: algorithms and applications

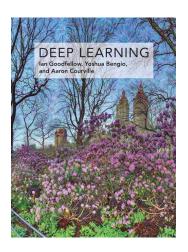
http://szeliski.org/Book/



- 1 introduction
- 3 image processing
- 4 feature detection and matching
- 6 feature-based alignment
- 14 recognition

deep learning book

http://www.deeplearningbook.org/



- 1 introduction
- 5 machine learning basics
- 6 deep feedforward networks
- 7 regularizaton for deep learning
- 8 optimization for training deep models
- 9 convolutional networks
- 11 practical methodology

evaluation

• oral presentation: 50%

• written exam: 50%

oral presentations

- teams of two
- instructions, paper list: https://sif-dlv.github.io/oral
- choose 2-5 papers, report your choice by mid-December
- should be interesting but not too hard
- study and find more related work; find connections
- present on second half of January
- focus presentation on ideas; not too detailed
- 8 min/talk, 4 min questions: total 20 min/team
- the class is your audience
- ask questions!

good luck!