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computer vision in images
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psychology and neuroscience
background



non-invasive: Béla Julesz

e which happens first? stereopsis or recognition?

e random dot stereogram: two identical images, except for a central
square region that is displaced randomly in one image

e vyields the impression of the square floating over the background

Julesz. BLTJ 1960. Binocular Depth Perception of Computer-Generated Patterns.



non-invasive:

Béla Julesz
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e study of pre-attentive (effortless, instantaneous) texture discrimination
e texture pairs with identical second order statistics

e textons: “basic elements of pre-attentive human texture perception”

Julesz. N 1981. Textons, the Elements of Texture Perception, and Their Interactions.



invasive: Hubel & Wiesel

Hubel and Wiesel. JP 1959. Receptive Fields of Single Neurones in the Cat's Striate Cortex.




visual system of mammals
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Hubel 1995. Eye, Brain, and Vision.
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topographic representation

Hetna Opuc Lateral Cortex
nerve geniculate
bod

Iy

e as you move along the retina, the corresponding points in the cortex
trace a continuous path

e each column represents a two-dimensional array of cells

Hubel 1995. Eye, Brain, and Vision.



simple cells

e lower-order cells with radially symmetric receptive field with on-center
and off-surround

e cells centered along a line with excitatory synaptic connections to a
cell of higher order

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex.



complex cells

e simple cells respond to a vertically oriented edge

e cells scattered throughout a rectangle with excitatory synaptic
connections to a complex cell

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex.



electrode recordings

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex.



computer vision background



the summer vision project
[Papert 1966]

““The summer vision project is an attempt to use our
summer workers effectively in the construction of a
significant part of a visual system. The particular
task was chosen partly because it can be segmented into
sub-problems which allow individuals to work
independently and yet participate in the construction of
a system complex enough to be a real landmark in the
development of "pattern recognition".”

Papert 1966. The Summer Vision Project.



general goals

FIGURE-GROUND

“divide a picture into regions such as likely objects,
likely background areas and chaos’’

REGION DESCRIPTION
“analysis of shape and surface properties”
OBJECT IDENTIFICATION

“name objects by matching them with a vocabulary of
known objects”

Papert 1966. The Summer Vision Project.



specific goals

July
“non—overlapping objects like balls, bricks, cylinders”

““each face will be of uniform and distinct color and/or
texture’’

“background will be homogeneous”
August

“complex surfaces and background, e.g. cigarette pack

with writing, or a cylindrical battery”

“objects like tools, cups, etc. ”

Papert 1966. The Summer Vision Project.



David Marr, “Vision”
[Marr 1982]

¢ biological plausibility: turning
Vl S | O N psychology and neuroscience
results into models of visual
information processing

e inverse graphics: from images
to surfaces through geometric
and photometric models

BavidMan e philosophy: levels of analysis,
processing stages, generic
principles

Marr 1982. Vision.



edge detection

zero crossings

sign

Marr 1982. Vision.



raw primal sketch

Marr 1982. Vision.
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2.5d sketch
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surface orientation 2.5d sketch

e surface orientation (vector field), surface orientation discontinuities
(dotted lines), depth discontinuities (continuous lines)

e obtained via stereopsis, optical flow, motion parallax, photometric
stereo

Marr 1982. Vision.



3d model representation

Human
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e hierarchical 3d model description
e parts of limited complexity, specified in local coordinate systems

e flexible, allowing for relative part transformation

Marr 1982. Vision.



pictorial structures
[Fischler and Elschlager 1973]
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e manually specified object description
e parts-based model: part attributes and pairwise spatial relations

e efficient dynamic programming implementation

Fischler and Elschlager. TC 1973. The Representation and Matching of Pictorial Structures.



generalized Hough transform
[Ballard 1981]

¢ Hough transform detects analytic curves in parameter space
e generalized version detects arbitrary non-analytic curves

e detection based on a voting process

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



scale selection
[Lindeberg 1993]

e scale-space and scale-normalized derivatives
e automatic scale selection at local maxima over scale

e applies to blobs, junctions, corners, edges or ridges

Lindeberg. SCIA 1993. On Scale Selection for Differential Operators.



scale-invariant feature transform (SIFT)
[Lowe 1999]

o scale selection by difference of Gaussians (DoG)
e orientation assignment, local descriptor

e Hough transform on affine space

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



textons
[Malik et al. 1999]

oriented filter bank

texture segmentation

o textons defined as clusters of filter responses
o regions described by texton histograms

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



real-time face detection
[Viola and Jones 2001]

o simple rectangle features in constant time on integral images
o learning weak classifiers by boosting

o classifier cascade provides a focus-of-attention mechanism

Viola and Jones. CVPR 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features.



bag of words
[Sivic and Zisserman 2003]

visual vocabulary video retrieval

e “visual words" defined as clusters of SIFT descriptors
e images described by visual word histograms

e text retrieval methods applied to video retrieval

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



histogram of oriented gradients (HOG)
[Dalal and Triggs 2005]

e dense, SIFT-like descriptors
e SVM classifier

e sliding window detection at all positions and scales

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection.



deformable part model (DPM)

[Felzenszwalb et al. 2008]
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e appearance represented by HOG
e spatial configuration inspired by “pictorial structures”

e part locations treated as latent variables

Felzenszwalb, Mcallester and Ramanan. CVPR 2008. A Discriminatively Trained, Multiscale, Deformable Part Model.



machine learning background



perceptron
[Rosenblatt 1962]

e Mark-I perceptron

e analog circuit implementation; parameters as potentiometers

Rosenblatt 1962. Principles of Neurodynamics



perceptron
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e early forms of multi-layer networks, continuous activation functions,
back-propagating errors, convolution, skip connections, recurrent
networks, selective attention, program learning, and multi-modality

Rosenblatt 1962. Principles of Neurodynamics



perceptron
[Minsky and Papert 1969]

Theorem 0.8: No_diameter-limited perceptron can determine
whether or not all the parts of any geometric figure are connected
to one another! That is, no such perceptron computes ¥ coxxecren-

The proof requires us to consider just four figures

= = = =

X

and a diameter-limited perceptron ¥ whose support sets have
diameters like those indicated by the circles below:

o (re-)define perceptron as a linear classifier
e then prove a series of negative results

e “Al winter" follows; misconception remains until today

Minsky and Papert 1969. Perceptrons: an Introduction to Computational Geometry.



automatic differentiation
[Werbos 1974]

Actual Variable Variable | Operation | Major | Minor
Number Category Source | Source

(v(2)) 20 product 19 19
b(2)-C(2)-lep(2) 19 difference 18 17
c(2) 18 input - N
kY (2) 17 product 16 1
1,2) 16 sun 15 13
Y, (2) 15 product IO 2
¥,@) 1 input - -
(1-k, )Yp(l) 13 product 12 4
(1)) 12 product 11 11
h(l)-C(l)-k‘Yp(l) 11 difference 10 9
c(1) 10 input - -
k(1) 9 product 8 1

e formulate an arbitrary function as a computational graph

o dynamic feedback: compute symbolic derivatives by dynamic
programming

Werbos 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.



neocognitron
[Fukushima 1980]

convolution feature hierarchy

e biologically-inspired convolutional network

e unsupervised learning

Fukushima. BC 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
By Shift in Position.



back-propagation
[Rumelhart et al. 1986]

The backward pass starts by computing 3E/3y for each of
the output units. Di iatil quati 3) for a icul
case, ¢, and suppressing the index ¢ gives

AE/9y;=y;—d; (4)

We can then apply the chain rule to compute 3E/dx;

AE/3x;=dE/dy; dy;/dx;
Differentiating equation (2) to get the value of dy;/dx; and
substituting gives

3E/ox; =0E/ay; y,(1-y;) 5)
This means that we know how a change in the total input x to
an output unit will affect the error. But this total input is just a
linear function of the states of the lower level units and it is
also a linear function of the weights on the connections, so it
is easy to compute how the error will be affected by changing
these states and weights. For a weight w;, from i to j the
derivative is

QE/dw;; =0dE[ax;-0x;/dwy
=9E/ax;y, (6)

e introduce back-propagation in multi-layer networks with sigmoid
nonlinearities and sum of squares loss function

e advocate batch gradient descent for supervised learning
e discuss online gradient descent, momentum and random initialization

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.



convolutional networks
[LeCun et al. 1990]
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e train a convolutional network by back-propagation

e advocate end-to-end feature learning for image classification

LeCun, Boser, Denker et al . NIPS 1990. Handwritten Digit Recognition with a Back-Propagation Network.



support vector machines
[Boser et al. 1992]

linear classifier, made nonlinear via kernel trick

e convex optimization

back to raw inputs; hand-crafted kernel functions

shift focus from neural networks to kernel methods

Boser, Guyon and Vapnik. COLT 1992. A Training Algorithm for Optimal Margin Classifiers.



LeNet-5

[LeCun et al. 1998]

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
30432 6@28x28

S2: f. maps
6@14x14

Full conAection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

e sub-sampling gradually introduces translation, scale and distortion
invariance

e non-linearity included in sub-sampling layers as feature maps are
increasing in dimension

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



modern deep learning



ImageNet
[Russakovsky et al. 2014]

e 22k classes, 156M samples

* ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000
classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



AlexNet

[Krizhevsky et al. 2012]
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e implementation on two GPUs; connectivity between the two
subnetworks is limited

e RelLU, data augmentation, local response normalization, dropout

e outperformed all previous models on ILSVRC by 10%

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



learned layer 1 kernels

e 96 kernels of size 11 x 11 x 3
o top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



ImageNet classification performance
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Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



object detection
[Redmon et al. 2016]

1. Resize image.
2. Run convolutional network.
3. Threshold detections.

o learn to detect objects as a single classification and regression task,
without scanning the image or detecting candidate regions

e first object detector to operate at 45fps

Redmon, Divvala, Girshick, Farhadi. CVPR 2016. You Only Look Once: Unified, Real-Time Object Detection.



semantic segmentation
[Long et al. 2015]

FCN-8s SDS [15]  Ground Truth Image
(= T

e learn to upsample

e apply to pixel-dense prediction tasks

Long, Shelhamer, Darrell. CVPR 2015. Fully Convolutional Networks for Semantic Segmentation.



instance segmentation and pose estimation
[He et al. 2017]

e semantic segmentation per detected region

e pose estimation as regression

He, Gkioxari, Dollar, Girshick. ICCV 2017. Mask R-CNN.



multi-task learning
[Kokkinos 2017]

Input Boundaries Saliency Normals

Detection Semantic Boundaries & Segmentation ~ Human Parts

e learn several vision tasks with a joint network architecture including
task-specific skip layers

Kokkinos. CVPR 2017. Ubernet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using
Diverse Datasets and Limited Memory.



geometric matching
[Rocco et al. 2017]

Image A Aligned A (affine) Aligned A (affine+TPS)

e mimic the standard steps of feature extraction, matching and
simultaneous inlier detection and model parameter estimation

e still trainable end-to-end

Rocco, Arandjelovic, Sivic. CVPR 2017. Convolutional Neural Network Architecture for Geometric Matching.



image retrieval
[Gordo et al. 2016]
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e learn to match

e apply as generic feature extractor

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



photorealistic style transfer
[Luan et al. 2017]

(a) Reference style image (b) Input image (c) Neural Style (distortions) (d) Our result Insets
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e generate same scene as input image
e transfer style from reference image

e photorealism regularization

Luan, Paris, Shechtman, Bala. CVPR 2017. Deep Photo Style Transfer.



image captioning
[Vinyals et al. 2017]

A person riding a
motorcycle on a dirt road.

Two dogs play in the grass. A skateboarder does a trick

A dog is jumping to catch a
frisbee.

erator filled with lots of

A group of young people
food and drinks.

playing a game of frisbee.

Two hockey players are
fighting over the puck.

&

A yellow school bus parked
~—===in a parking lot.

A red motorcycl
 of the roac

1 Descives witminorarrors | Somewhatrelteatotreimage NN

e image description by deep CNN
o language generation by RNN

Vinyals, Toshev, Bengio and Erhan. PAMI 2017. Show and Tell: Lessons Learned From the 2015 MSCOCO Image Captioning
Challenge.



about this course



logistics

e course website: https://sif-dlv.github.io/
e piazza: https://piazza.com/inria.fr/fall12019/d1lv


https://sif-dlv.github.io/
https://piazza.com/inria.fr/fall2019/dlv

prerequisites

basic knowledge of

linear algebra
calculus
probabilities
signal processing
machine learning

python



goals

discuss well-known methods from low-level description to intermediate
representation, and their dependence on the end task

study a data-driven approach where the entire pipeline is optimized
jointly in a supervised fashion, according to a task-dependent objective

study deep learning models in detail
interpret them in connection to conventional models

focus on recent, state of the art methods and large scale applications



conventional methods

e representation: global/local visual descriptors, dense/sparse
representation, feature detectors; encoding/pooling, vocabularies,
bag-of-words; VLAD*, Fisher vectors*, embeddings*, HMAX*

e local features and spatial matching: derivatives, scale space and
scale selection; edges, blobs, corners/junctions; dense optical flow /
sparse feature tracking™; wide-baseline matching; geometric models,
RANSAC, Hough transform; fast spatial matching*

e codebooks and kernels: geometry/appearance matching;
bag-of-words; k-means clustering, hierarchical®, approximate®,
vocabulary tree*; soft assignment, max pooling; match kernels,
hamming embedding, ASMK*; pyramid matching, spatial pyramids,
Hough pyramids®*.



deep learning approach (1)

e learning: binary classification; perceptron, support vector machines,
logistic regression; gradient descent, regularization, loss functions,
unified model; multi-class classification; linear regression®, basis
functions; neural networks, activation functions

e differentiation: stochastic gradient descent; numerical gradient
approximation; function decomposition, chain rule, analytical gradient
computation, back-propagation; chaining, splitting and sharing;
common forward and backward flow patterns; dynamic automatic
differentiation™



deep learning approach (2)

e convolution: convolution, cross-correlation, linearity, equivariance,
weight sharing; feature maps, matrix multiplication, 1 x 1 convolution;
padded, strided, dilated convolution; pooling and invariance;
convolutional networks: LeNet-5, AlexNet, ZFNet*, VGG, NiN*,
GoogleNet.

e optimization and deeper architectures: optimizers: momentum,
RMSprop, Adam, second-order™; initialization: Gaussian matrices, unit
variance, orthogonal*, data-dependent®; normalization: input, batch,
layer®, weight®; deeper networks: residual, identity mappings™,
stochastic depth*, densely connected



applications

e object detection: background: Viola and Jones, DPM, ISM, ESS,
object proposals, non-maximum suppression; two-stage: R-CNN, SPP,
fast/faster R-CNN, RPN; bounding box regression; part-based:
R-FCN, spatial transformers*, deformable convolution; upsampling™:
FCN, feature pyramids; one-stage: OverFeat*, YOLO, SSD*,
RetinaNet*, focal loss

e retrieval: local/global descriptors; pooling from CNN representations:
MAC, R-MAC, SPoC*, CroW*; manifold learning, siamese and triplet
architectures; fine-tuning: constrastive/triplet loss, learning to rank;
graph-based methods, diffusion, unsupervised fine-tuning



related courses at sif

ADM Advanced Probabilistic Data Analysis and Modeling (Guillaume
Gravier)

BSI Big Data Storage and Processing Infrastructures (Gabriel Antoniu)

CG Computer Graphics: Rendering and Modeling 3D Scenes (Rémi
Cozot)

CV Computer Vision (Eric Marchand)

DMV Data Mining and Visualization (Alexandre Termier)

GDP Graph Data Processing (Pierre Vandergheynst)

HDL High-Dimensional Statistical Learning (Rémi Gribonval)

REP Image Representation, Editing and Perception (Olivier Le Meur)
SML Supervised Machine Learning (Frangois Coste)



computer vision: algorithms and applications
http://szeliski.org/Book/

LTEXTS IN COMPUTER SCIENCE

Computer Vision

Algorithms and Applications . .
1 introduction

3 image processing
4 feature detection and matching
6 feature-based alignment

14 recognition
Richard Szeliski

@ Springer



http://szeliski.org/Book/

deep learning book
http://www.deeplearningbook.org/

0 N o o1 =

introduction

machine learning basics

deep feedforward networks
regularizaton for deep learning

optimization for training deep
models

9 convolutional networks

practical methodology


http://www.deeplearningbook.org/

evaluation

e oral presentation: 50%

o written exam: 50%



oral presentations

teams of two

instructions, paper list: https://sif-dlv.github.io/oral
choose 2-5 papers, report your choice by mid-December
should be interesting but not too hard

study and find more related work; find connections

present on second half of January

focus presentation on ideas; not too detailed

8 min/talk, 4 min questions: total 20 min/team

the class is your audience

ask questions!


https://sif-dlv.github.io/oral

good luck!
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