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derivatives



edges

f
=

e connection between image recognition and segmentation

o database of human ‘ground truth’ to evaluate edge detection

Martin, Fowlkes, Tal, Malik. ICCV 2001. A Database of Human Segmented Natural Images and Its Application to Evaluating
Segmentation Algorithms and Measuring Ecological Statistics.



discrete derivative approximation
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derivative in one dimension
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derivative in two dimensions: gradient

fei=hexf fy=hyxf
hy =410 —1] hy:=3[10 —1]T



derivative in two dimensions: gradient
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gradient: magnitude and orientation
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noise




noise
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e Q: what happened to the edges?




noise

b

e Q: what happened to the edges?

e derivative is a high-pass filter: signal vanishes, noise remains



gxf

L(gxf)

smoothing
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e smooth signal first

e that's better: edges recovered



filter derivative

e this is equivalent to convolution with the filter derivative

e that's even better: filter is known in analytic form



1d Gaussian derivative

" d
o(e) = e i @) =~z

e performs derivation and smoothing at the same time

e o : “derivation scale”



2d Gaussian derivative

g(z,y)

U

L

9(x,y) = groze 27

e derivation in one direction, smoothing in both

e ‘derivative = convolution”



2d gradient
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2d gradient by Gaussian derivative




why is gradient efficient comparing to Gabor?
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e remember, the directional derivative of function f along vector v at
point X is
of of
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why is gradient efficient comparing to Gabor?

e remember, the directional derivative of function f along vector v at
point X is

VeI 60 = v+ V0 = vt (0 + 0,50 )

e when v is a unit vector, the directional derivative is maximum when v
points in the direction of the gradient



why is gradient efficient comparing to Gabor?

e remember, the directional derivative of function f along vector v at
point X is

Vel ) = v V100 = w5l 09 + 0,5l

e when v is a unit vector, the directional derivative is maximum when v
points in the direction of the gradient

e does the same hold for the convolution with the Gaussian derivative?
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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steerable filter
[Freeman and Adelson 1991]

. . 2
architecture basis sets of g—x%

Summing Adaptively
Junctlun filtered image

e an orientation-selective filter that can be expressed as a linear
combination of a small basis set of filters

e the basis set can be (a) a set of rotated versions of itself, or (b) a set
of separable filters

Freeman and Adelson. PAMI 1991. The Design and Use of Steerable Filters.



second derivative in one dimension

f(x)
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second derivative in one dimension
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second derivative in one dimension
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second derivative in two dimensions: Laplacian

fex + fyy
m:p = mz*f yy y*f

Ry = 3[1 —2 1] hyzz}I[1 —21)7



Laplacian operator
o discrete approximation
Rz 1 —21]
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Laplacian operator
e discrete approximation
1
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1d Gaussian second derivative

g(z) ﬁ(x)

dx?
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e ‘“center-surround” operator



2d Laplacian of Gaussian (LoG)

Vig(z,y)
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e rotationally symmetric

e “mexican hat”



edge detection







Lo(V2g* f)[Vg = [l



difference of Gaussians (DoG)
[Marr and Hildreth 1980]

()
o studied the V?g operator as a

model of retinal X-cells
e popularized it as a

computational theory of edge
detection

¢ hypothesized a biological
implementation as a difference
of Gaussians with o1/02 ~ 1.6

Marr and Hildreth. RSL 1980. Theory of Edge Detection.



feature detection



saliency and visual attention
[Itti et al. 1998]
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I of return
Attended location

e visual attention system, inspired by the early primate visual system

e multiple scales, multiple features, center-surround, normalization and
winner-take-all operations

Itti, Koch and Niebur. PAMI 1998. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.



saliency and visual attention

Itti, Koch and Niebur. PAMI 1998. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.



saliency and visual attention

Itti, Koch and Niebur. PAMI 1998. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.
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scale change



scale change

o for every scale factor s, and for every point x, the scaled image f’ at
the scaled point x’ := sx equals the original image f at the original
point x

F(x) = f(sx) = f(x)



scale space
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scale space
[Witkin 1983]

e the scale-space F' of f at point x and scale o, and its n-th derivative
with respect to some variable z, are defined as

F(x;0) := [g(;;0) * f](x)
Farlxia) = 550 = | -850 <] )

Witkin. 1JCAI 1983. Scale-Space Filtering.



Witkin.

scale space
[Witkin 1983]

the scale-space F' of f at point x and scale o, and its n-th derivative
with respect to some variable x, are defined as

F(x;0) == [g(;0) * fl(x)

o"F g
Farlxia) = 550 = | -850 <] )
gradient
VF = (Fy, Fy)
Laplacian

V2F ~ Fyp + Fy,

we write derivatives but we only compute convolutions

IJCAI 1983. Scale-Space Filtering.



scale space under scaling
[Witkin 1983]

e for every scale factor s, for every point x, and for every scale o, the
scale-space F’ at the point x’ := sx and scale ¢’ := so equals the
original scale-space F' at the original point x and scale ¢:

F'(X';0") = F'(sx,s0) = F(x;0)

and we would like the same for their derivatives

Witkin. 1JCAI 1983. Scale-Space Filtering.



scale-normalized derivatives*
[Lindeberg 1998]

e remember, however,

dg x d?g x? 1
7 (x;0) —;g(m,a) 7 5(T50) = 172 g(x;0)
1(x50") =5 'Fu(x;0)  Fl(X;0") =5 “Fup(x;0)

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



scale-normalized derivatives*
[Lindeberg 1998]

e remember, however,

dg x
99 (20 = ' glaz0) ( L) ataio)
'(x;0") =5 'Fu(x;0) F

zw,(x 0') =5 “Fpu(x;0)
e in general, we only have

Fln(X'50") = s "Fyn(x;0)

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



scale-normalized derivatives®
[Lindeberg 1998]

e remember, however,

99 (20 = ' glaz0) ( L) ataio)
'(x50") =5 'Fu(x;0)  FL (x 0') =5 “Fpu(x;0)
e in general, we only have
Fyn(x50') = s " Fyn(x;0)
e solution: we normalize the n-th order derivative by ¢”
. a”g

Fin(x;0) :=0"Fyn(x;0) =0 %(x o) * f(x)

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



scale-normalized derivatives®
[Lindeberg 1998]

e remember, however,

dg x d?g x? 1
Daio) == Lotwio)  Thwo)= (L= L) atwio)
1(x50") =5 'Fu(x;0)  Fl(X;0") =5 “Fup(x;0)

e in general, we only have
/ / / -
Fon(x'50") =5 "Fpn(x;0)

solution: we normalize the n-th order derivative by ¢”

[ ]
- n n ang
Fin(x;0) :=0"Fyn(x;0) =0 W(X; o) * f(x)
z
e then, indeed A A
Fln(X'50") = Fun(x;0)

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



normalized Laplacian and scale selection

e normalized Laplacian operator

V2F(x;0) := 0*V2F(x;0) = 02(Fy + Fyy)(x;0)

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



normalized Laplacian and scale selection

e normalized Laplacian operator
V2F(x;0) := 0*V2F(x;0) = 02(Fy + Fyy)(x;0)
o scale selection

scale(x) := arg max |V2F(x; )|

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



normalized Laplacian and scale selection

e normalized Laplacian operator
V2F(x;0) := 0*V2F(x;0) = 02(Fy + Fyy)(x;0)
o scale selection

scale(x) := arg max |V2F(x; 0)|
g

a2 2
0?54 (x50) = (& — Dg(w;0)

o let's try a blob centered at the origin, filter by a normalized LoG of
varying scale o, and measure the response at the origin

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



normalized Laplacian and scale selection
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Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



normalized Laplacian and scale selection
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V2F(0;0)

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



normalized Laplacian and scale selection
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V2F(0;0)
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Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



blob detection

e convolution with a circular symmetric center-surround pattern in
scale-space

e local maxima in scale-space yield positions and scales of blobs

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



blob detection

e convolution with a circular symmetric center-surround pattern in
scale-space

e local maxima in scale-space yield positions and scales of blobs

Lindeberg. 1JCV 1998. Feature Detection with Automatic Scale Selection.



difference of Gaussians

o Gaussian satisfies heat equation (try it!)

_ 99

2
oV 9_00

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



difference of Gaussians

o Gaussian satisfies heat equation (try it!), hence finite difference
approximation to % can be used

. dg  g(x3ko) — g(x;0)
vz — 7 9 9
avg Jo ko —o

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



difference of Gaussians

* Gaussian satisfies heat equation (try it!), hence finite difference
approximation to 9 can be used

Jg _ g(x;ka) — g(x;0)

do ko —o

oV?g =

e then, difference of Gaussians approximates its normalized Laplacian
g(x; ko) — g(x;0) = (k — 1)0?V?g,

incorporating scale normalization

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



scale-space computation

Scale ﬁ?

(next

R

Scale
(first
octave)

Difference of
Gaussian (DOG)

Gaussian

e incrementally convolve with Gaussian, subsample at each octave

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



scale-space local extrema

A

)
)
)

Scale )

)
)
)

e local maxima among 26 neighbors selected

e accurately localized, edge responses rejected, orientation normalized

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



scale-invariant feature transform (SIFT)
[Lowe 1999]

AN

Ay

o detected patches equivariant to translation, scale and rotation

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



desired properties of local features

e repeatable: in a transformed image, the same feature is detected at a
transformed position

e distinctive: different image features can be discriminated by their
local appearance

o localized: relatively small regions, robust to occlusion



desired properties of local features

repeatable: in a transformed image, the same feature is detected at a
transformed position

distinctive: different image features can be discriminated by their
local appearance

localized: relatively small regions, robust to occlusion

elongated: edges, ridges
isotropic: blobs, extremal regions

points: corners and junctions



the Hessian matrix

e defined as

HF(x,0):= o° ( ?M ?xy > (x,0)

yr vy

e the Laplacian is just its trace

V2F(x,0) = 0%(Fp + Fyy)(x,0) = tr HF (x,0)



the Hessian matrix

defined as

HF(x,0):= o° < ?M ?xy ) (x,0)

yr vy

the Laplacian is just its trace
V2F(x,0) = 0%(Fp + Fyy)(x,0) = tr HF (x,0)

where gradient magnitude is zero, f is locally maximized (concave),
minimized (convex), flat, or has a saddle point depending on
eigenvalues A1, Ay of the Hessian

good for blobs: maximum for A1, Ao < 0, minimum for Ay, Ao >0



the Hessian matrix

defined as

HF(x,0) := o° ( ?M ?xy ) (x,0)

yr vy

the Laplacian is just its trace
V2F(x,0) = 0%(Fp + Fyy)(x,0) = tr HF (x,0)

where gradient magnitude is zero, f is locally maximized (concave),
minimized (convex), flat, or has a saddle point depending on
eigenvalues A1, Ay of the Hessian

good for blobs: maximum for A1, Ao < 0, minimum for Ay, Ao >0

however, still fires on edges



the (windowed) second moment matrix
[Forstner 1986]

o defined as
[F(x,0) = w o> (VF)(VF) " (x,0)

F? FE,.F
_ 2 T 'y
—wxo ( o) yz )(x,a)

where w is another Gaussian at some higher integration scale; o is
called the derivation scale

Forstner 1986. A Feature Based Correspondence Algorithm for Image Processing.



the (windowed) second moment matrix
[Forstner 1986]

e defined as
(F(x,0) :=w*o*(VF)(VF)' (x,0)

F? F,F
2 T Ty
=w*o <FxFy F? )(x,a)

where w is another Gaussian at some higher integration scale; o is
called the derivation scale

o the (windowed) gradient is just its trace
w [V, 0)[2 = w02 (F2 + F2)(x,0) = tr iF (x, )

e good for edges, corners and junctions; again, depending on the
eigenvalues A\ > Ag

Forstner 1986. A Feature Based Correspondence Algorithm for Image Processing.



Harris corners
[Harris and Stevens 1988]

iS0-Tesponse contours

e if trace A1 + Ay is too low — flat
e if condition number A1 /A9 is too high — edge
e response function r(u) = det u — ktr?

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.

amplitude of response function



Harris corners (and junctions)

corners response

e response: positive on corners, negative on edges, zero otherwise

e detection: non-maxima suppression and thresholding

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.



motivation: local autocorrelation

e assume f is differentiable and ignore scale space

e assume an image patch at the origin defined by window w; how much
does it change when we shift by t7

E(t) =Y w)(f(x+1t) - f(x))*

X

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.



motivation: local autocorrelation

e assume f is differentiable and ignore scale space
e assume an image patch at the origin defined by window w; how much

does it change when we shift by t7
E(t) = Zw( )(f(x+1t) = f(x))?
~ Z YTV F(x))?  (Taylor)

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.



motivation: local autocorrelation

e assume f is differentiable and ignore scale space

e assume an image patch at the origin defined by window w; how much
does it change when we shift by t7

E(t) = Zw( )(f(x +t) = f(x))*
~ Z YTV F(x))?  (Taylor)
= Z Xt (VF(x))(VF(x) 't

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.



motivation: local autocorrelation

e assume f is differentiable and ignore scale space

e assume an image patch at the origin defined by window w; how much
does it change when we shift by t7

E(t) = Zw( )(f(x +t) = f(x))”
~Z )&V (%)) (Taylor)
—Z )t (V()(VF(x)t
th(w*(Vf)(Vf) (0))t

o quadratic form defined by p = w * (Vf)(Vf) T

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.



guadratic form

P A

u9 u;

o locus of (x y)T A(z y) = 1, where A has eigenvectors uy, us and
eigenvalues Aq, Ao



Harris pipeline

w
e

e 3-channel RGB input — 1-channel gray-scale



Harris pipeline

w w
__— _—

conv

e 3-channel RGB input — 1-channel gray-scale
e compute gradient VF = (F},, F})) at derivation scale



Harris pipeline

w w
/ I
— —
h conv h enc h
1 2 4

e 3-channel RGB input — 1-channel gray-scale
e compute gradient VF = (F},, F})) at derivation scale
o encode into tensor product VF @ VF = (F2, F,F,, F,.F,, Fi)



Harris pipeline

w w w
__— _—
— — —
h conv h enc h pool h
1 2 4 4

3-channel RGB input — 1-channel gray-scale
compute gradient VF = (F,, F,) at derivation scale
encode into tensor product VF @ VF = (F2, F,F,, F,.F,, Fi)

average pooling by window w at integration scale



Harris pipeline

w w w
— — — —
h h h h
conv enc pool resp
1 2 4 4 1

3-channel RGB input — 1-channel gray-scale

compute gradient VF = (F,, F,) at derivation scale

encode into tensor product VF @ VF = (F2, F,F,, F,.F,, Fi)
average pooling by window w at integration scale

compute point-wise nonlinear response function r



Harris affine & Hessian affine*
[Mikolajczyk and Schmid 2004]

e multi-scale Harris or Hessian detection, Laplacian scale selection
e iterative affine shape adaptation, based on Lindeberg

o Hessian-affine de facto standard on image retrieval for several years

Mikolajczyk and Schmid 1JCV 2004. Scale & Affine Invariant Interest Point Detectors.



spatial matching



dense registration”
[Lucas and Kanade 1981]

o for each location in an image, find a displacement with respect to
another reference image

o appropriate for small displacements, e.g. stereopsis or optical flow

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.
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dense registration”
[Lucas and Kanade 1981]

o for each location in an image, find a displacement with respect to
another reference image

o appropriate for small displacements, e.g. stereopsis or optical flow

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



one dimension®

g(z)
I(=)

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



one dimension®

9(z) — f(z)

g(x)

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



one dimension®

9(z) — f(z)

g(x)

e assuming g(z) = f(z +¢) and t is small,

ﬁ(x) LAt = flx) _ gla) - f(z)
dx t t

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



two dimensions: least squares®

e again, assume an image patch defined by window w; what is the error
between the patch shifted by t in reference image f and a patch at
the origin in shifted image ¢7

E(t) =) w(x)(f(x+t) - g(x))?

X

Lucas and Kanade IJCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



two dimensions: least squares®

e again, assume an image patch defined by window w; what is the error
between the patch shifted by t in reference image f and a patch at
the origin in shifted image ¢7

E(t) = Zw(X)(f(X+ t) — g(x))*
~Z x) +t'Vf(x) - g(x))*

Lucas and Kanade IJCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



two dimensions: least squares®

e again, assume an image patch defined by window w; what is the error
between the patch shifted by t in reference image f and a patch at
the origin in shifted image ¢7

E(t) = Zw( )(f(x+1t) — g(x))
~Z x) +t'Vf(x) - g(x))*

e error minimized when gradient vanishes

0= 28 = 3" w2V () + 6TV F(x) ~ 9(x)

Lucas and Kanade IJCAI 1981. An lIterative Image Registration Technique With an Application to Stereo Vision.



two dimensions: least squares®

e again, assume an image patch defined by window w; what is the error
between the patch shifted by t in reference image f and a patch at
the origin in shifted image ¢7

E(t) = Zw( )(f(x+1t) — g(x))
~Z x) +t'Vf(x) - g(x))*

e error minimized when gradient vanishes

0= 28 = 3" w2V () + 6TV F(x) ~ 9(x)

e least-squares solution

(w s (VNENT) b= w = (V9= 1)

Lucas and Kanade IJCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



dense optical flow*

e camera follows background, two objects at opposite horizontal
directions

e motion noisy on uniform regions

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



dense optical flow*

e camera follows background, two objects at opposite horizontal
directions

e motion noisy on uniform regions

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



dense optical flow*

e parallax: tree closer to viewer than background
o stable on textured regions

e window size visible on edges

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



dense optical flow*

e parallax: tree closer to viewer than background
o stable on textured regions

e window size visible on edges

Lucas and Kanade [JCAI 1981. An lterative Image Registration Technique With an Application to Stereo Vision.



the aperture problem*




the aperture problem*




feature point tracking*
[Tomasi and Kanade 1991]

o linear system can be solved reliably if matrix p is well-conditioned:
A1/A2 is not too large

o detect feature points at local maxima of response min (A1, \2)

Tomasi and Kanade 1991. Detection and Tracking of Point Features.



feature point tracking*

e uniform regions are not tracked now
* nearly same response as Harris corners

e Q: why do we need the window? what should the size be?

Tomasi and Kanade 1991. Detection and Tracking of Point Features.



feature point tracking*

L

e uniform regions are not tracked now
* nearly same response as Harris corners

e Q: why do we need the window? what should the size be?

Tomasi and Kanade 1991. Detection and Tracking of Point Features.



wide-baseline matching

e in dense registration, we started from a local "template matching”
process and found an efficient solution based on a Taylor
approximation

e both make sense for small displacements



wide-baseline matching

in dense registration, we started from a local “template matching”
process and found an efficient solution based on a Taylor
approximation

both make sense for small displacements

in wide-baseline matching, every part of one image may appear
anywhere in the other

we start by pairwise matching of local descriptors without any order
and then attempt to enforce some geometric consistency according to
a rigid motion model



wide-baseline matching

e a region in one image may appear anywhere in the other



wide-baseline matching

o features detected independently in each image



wide-baseline matching

e tentative correspondences by pairwise descriptor matching



wide-baseline matching

to a rigid transformation

inlier

e subset of correspondences that are



descriptor extraction

for each detected feature in each image
e construct a local histogram of gradient orientations

e find one or more dominant orientations corresponding to peaks in the
histogram

e resample local patch at given location, scale, affine shape and
orientation

e extract one descriptor for each dominant orientation

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

e detect features

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

o detect features - find dominant orientation, resample patches

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

o detect features - find dominant orientation, resample patches - extract
descriptors

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

o detect features - find dominant orientation, resample patches - extract
descriptors - match pairwise

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

e for each descriptor in one image, find its two nearest neighbors in the
other

e if ratio of distance of first to distance of second is small, make a
correspondence

e this yields a list of tentative correspondences

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



ratio test
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e ratio of first to second nearest neighbor distance can determine the
probability of a true correspondence

Lowe. 1JCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



spatial matching

why is it difficult?

should allow for a geometric transformation

fitting the model to data (correspondences) is sensitive to outliers:
should find a subset of inliers first

finding inliers to a transformation requires finding the transformation
in the first place

correspondences have gross error

inliers are typically less than 50%



geometric transformations

e two images f, f’ are equal at points x, x’

e X is mapped to x’

o T is a bijection of R? to itself:

T:R? - R?



geometric transformations

e translation: 2 degrees of freedom



geometric transformations
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geometric transformations

e scale: 2 degrees of freedom

o O

o S o



geometric transformations

o similarity: 4 degrees of freedom

e rcosf —rsinf t, T

Yy = | rsinf rcosf t, Y
1 0 0 1 1



geometric transformations
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geometric transformations

o affine: 6 degrees of freedom

/

T aj; a2 @13 T
/

Yy = a1 Qg2 Q23 Y

1 0 0 1 1



however

e details don't matter; in all cases, the problem is transformed to a
linear system (why?7)
Ax=Db

where A, b contain coordinates of known point correspondences from
images f, f’ respectively, and x contains our model parameters



however

e details don't matter; in all cases, the problem is transformed to a
linear system (why?7)
Ax=Db
where A, b contain coordinates of known point correspondences from
images f, f’ respectively, and x contains our model parameters

» we need n = [d/2] correspondences, where d are the degrees of
freedom of our model



however

e details don't matter; in all cases, the problem is transformed to a
linear system (why?7)
Ax=Db
where A, b contain coordinates of known point correspondences from
images f, f’ respectively, and x contains our model parameters

» we need n = [d/2] correspondences, where d are the degrees of
freedom of our model

o let's take the simplest model as an example: fit a line to two points



least squares and gross outliers

e clean data, no outliers



least squares and gross outliers

o clean data, no outliers : least squares fit ok



least squares and gross outliers

e one gross outlier



least squares and gross outliers

e one gross outlier : least squares fit fails



random sample consensus (RANSAC)
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e data with outliers

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis

and Automated Cartography.



random sample consensus (RANSAC)
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e data with outliers - pick two points at random

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis

and Automated Cartography.



random sample consensus (RANSAC)

° . .
° L] L]
. °® .
.
o0 °
.
° ° ... ‘o.l
® o L
° . . b )
° °® . ofe. ° .
o o .o °° . M
-." L e
* o . L] .
L] L] °
.
. °
. ° °
° ¢ o *
. .
° ° ° ¢
4 o
°® . ° o
o
3

e data with outliers - pick two points at random - draw line through
them

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)
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e data with outliers - pick two points at random - draw line through
them - set margin on either side

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)
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e data with outliers - pick two points at random - draw line through
them - set margin on either side - count inlier points

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)

o repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)

o repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)

o repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)

o repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)
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o repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)

o repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



random sample consensus (RANSAC)
[Fischler and Bolles 1981]

X': data (tentative correspondences)

e n: minimum number of samples to fit a model

s(x;0): score of sample x given model parameters 6
e repeat
e hypothesis

e draw n samples H C X at random
o fit model to H, compute parameters 6

e verification

e are data consistent with hypothesis? compute score

S = ZazeX s(x;@)
o if S* > S, store solution 6* :=0, S* := S

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



RANSAC issues

e inlier ratio w unknown

* too expensive when minimum number of samples is large (e.g. n > 6)
and inlier ratio is small e.g. w < 10%): 108 iterations for 1%

probability of failure

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



Hough transform
[Hough 1962]
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e detect lines by a voting process in parameter space
e slope-intercept parametrization unbounded for vertical lines
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Hough transform
[Duda and Hart 1972]

\a

\x

e polar parametrization makes parameter space bounded

e discusses generalization to analytic curves; space exponential in
number of parameters
e equivalent to Radon transform, but makes sense for sparse input

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



Hough transform

idea
» n samples are needed to fit a model (e.g. 2 points for a line)

e but even one sample brings some information

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



Hough transform

idea
» n samples are needed to fit a model (e.g. 2 points for a line)
e but even one sample brings some information

e in the space of all possible models, vote for the ones that satisfy a
given sample

e collect votes from all samples, and seek for consensus

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



voting in parameter space
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Duda and Hart. CACM 1972. Use of the Hough Transformation to Detect Lines and Curves in Pictures.
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voting in parameter space
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voting in parameter space
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Duda and Hart. CACM 1972. Use of the Hough Transformation to Detect Lines and Curves in Pictures.



voting in parameter space
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e all lines through x; = (21, ) are defined by (r,8) that satisfy

r=x1cosf + y;sinf

Duda and Hart. CACM 1972. Use of the Hough Transformation to Detect Lines and Curves in Pictures.
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voting in parameter space
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voting in parameter space
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voting in parameter space
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voting in parameter space
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voting in parameter space
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voting in parameter space
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voting in parameter space
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e all lines through x5 = (25, 1) are defined by (r,8) that satisfy

r = 9 cosf + 1o sin b

Duda and Hart. CACM 1972. Use of the Hough Transformation to Detect Lines and Curves in Pictures.
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voting in parameter space
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voting in parameter space
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voting in parameter space
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line detection

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



line detection

points accumulator

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



line detection

points accumulator

thresholding

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



line detection

points accumulator

local maxima

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



line detection

points accumulator

e

labels local maxima

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



Hough voting

X: data

e n: number of model parameters

A: n-dimensional accumulator array, initially zero

hypotheses: for each sample x € X
o for each set of model parameters 6 consistent with =
e voting: increment A[6]

“verification”:
e threshold A, relative to maximum
e non-maxima suppression: detect local maxima

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



generalized Hough transform
[Ballard 1981]

e generalize to arbitrary shapes

e similarity transformation, 4d parameter space: translation, scaling,
rotation

e use gradient orientation to reduce number of votes per sample

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



translation space

model image

e model: record coordinates relative to reference point

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



translation space

model image

test image

e model: record coordinates relative to reference point
e test: each point votes for all possible coordinates of reference point,
which are reversed

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



translation space

model image

test image

e model: record coordinates relative to reference point
e test: each point votes for all possible coordinates of reference point,
which are reversed

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.
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model image

test image

e model: record coordinates relative to reference point
e test: each point votes for all possible coordinates of reference point,
which are reversed

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



translation space

model image

test image

e model: record coordinates relative to reference point
e test: each point votes for all possible coordinates of reference point,

which are reversed

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



translation space

model image

test image

e model: record coordinates relative to reference point
e test: each point votes for all possible coordinates of reference point,

which are reversed

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



Eiffel tower detection

model image

test image

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



Eiffel tower detection

test image points

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



Eiffel tower detection

accumulator

test image points

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes



Eiffel tower detection

accumulator

test image points local maxima

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes



Eiffel tower detection

accumulator

detected location local maxima

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes



Hough is (sparse) cross-correlation®

e model points H, test points X as signals

h[n] = ) 5[n —h]

heH

z[n] = Z d[n — x|

xeX
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e model points H, test points X as signals
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Hough is (sparse) cross-correlation*

e model points H, test points X as signals

h[n] = > d[n—h]
heH

z[n] = Z d[n — x|
xeX

e for each test point x € X
o for each translation x — h consistent with x (for h € H)
e voting: increment accumulator A at x — h

e in symbols

A= én-(x—h)

x€X heH



Hough is (sparse) cross-correlation*

e model points H, test points X as signals

h[n] = > d[n—h]
heH

z[n] = Z d[n — x|
xeX

e for each test point x € X
o for each translation x — h consistent with x (for h € H)
e voting: increment accumulator A at x — h

e in symbols - try it!

A=Y 6m—(x—h)]=> zklik-n

x€X heH k



local shape*
[Lowe 2004]

e a SIFT feature is determined by location, scale and orientation; a
single feature correspondence can yield a 4-dof similarity
transformation

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



local shape*
[Lowe 2004]

e a SIFT feature is determined by location, scale and orientation; a
single feature correspondence can yield a 4-dof similarity
transformation

e hypotheses: sparse Hough voting in 4-dimensional space; each
correspondence casts a single vote in a hash table

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



local shape*
[Lowe 2004]

e a SIFT feature is determined by location, scale and orientation; a
single feature correspondence can yield a 4-dof similarity
transformation

e hypotheses: sparse Hough voting in 4-dimensional space; each
correspondence casts a single vote in a hash table

e verification: on each bin with at least 3 votes, find inliers, form linear
system Ax = b and fit a 6-dof affine transformation by least-squares

x=(ATA)'ATb

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



object recognition®

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



Philbin,

fast spatial matching*
[Philbin et al. 2007]

Transformation | dof | Matrix
translation + 3 a 0ty
isotropic scale 0aty
translation + a 0 tg
- . 4
anisotropic scale 0bty
translation + 5 a 0 t,
vertical shear b cty

(2
b4

same idea, a single feature correspondence can yield a transformation

that can be 3,4,5-dof

but now use RANSAC where there is only one hypothesis per
correspondence; all hypotheses can be enumerated and verified

again, 6-dof fitting on inliers in the end

so Hough can be seen as filtering of hypotheses by agreement

Chum, lIsard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



object retrieval®

e image retrieval based on a bag-of-words representation

o fast spatial verification performed on top-ranking images

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.



summary

derivatives as convolution

edges: gradient magnitude and Laplacian
scale-space and scale selection

blobs: normalized Laplacian

corners/junctions: windowed second moment matrix
dense registration® / sparse feature tracking™
wide-baseline matching by local features

robust fitting: RANSAC, Hough transform

Hough as cross-correlation*

local shape for global transformation hypotheses*
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