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derivatives



edges

• connection between image recognition and segmentation

• database of human ‘ground truth’ to evaluate edge detection

Martin, Fowlkes, Tal, Malik. ICCV 2001. A Database of Human Segmented Natural Images and Its Application to Evaluating
Segmentation Algorithms and Measuring Ecological Statistics.



discrete derivative approximation

x

f(x)

df

dx
(x) ≈ f(x+ 1)− f(x− 1)

2



discrete derivative approximation

x

f(x)

df

dx
(x) ≈ f(x+ 1)− f(x− 1)

2



discrete derivative approximation

x

f(x)

df

dx
(x) ≈ f(x+ 1)− f(x− 1)

2



discrete derivative approximation

x

f(x)

df

dx
(x) ≈ f(x+ 1)− f(x− 1)

2



derivative in one dimension
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derivative in two dimensions: gradient

f

‖(fx, fy)‖

fx := hx ∗ f fy := hy ∗ f
hx := 1

2 [1 0 −1] hy :=
1
2 [1 0 −1]>



derivative in two dimensions: gradient

f ‖(fx, fy)‖

fx := hx ∗ f fy := hy ∗ f
hx := 1

2 [1 0 −1] hy :=
1
2 [1 0 −1]>



gradient: magnitude and orientation

‖(fx, fy)‖ (fx, fy)

∇f(x) :=
(
∂f

∂x
,
∂f

∂y

)
(x) ≈ (hx ∗ f, hy ∗ f)(x) = (fx, fy)(x)



noise

f

d
dx (f)

• Q: what happened to the edges?

• derivative is a high-pass filter: signal vanishes, noise remains
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smoothing

g ∗ f

d
dx (g ∗ f)

• smooth signal first

• that’s better: edges recovered



filter derivative

f

d
dx (g) ∗ f

• this is equivalent to convolution with the filter derivative

• that’s even better: filter is known in analytic form



1d Gaussian derivative

x

g(x)

+

−

x

dg
dx

(x)

g(x) = 1√
2πσ

e−
x2

2σ2
dg
dx (x) = − x

σ2 g(x)

• performs derivation and smoothing at the same time

• σ : “derivation scale”



2d Gaussian derivative

x

y

g(x, y)

x

y

∂g
∂x

(x, y)

g(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 gx(x, y) :=
∂g
∂x (x, y) = − x

σ2 g(x, y)

• derivation in one direction, smoothing in both

• “derivative = convolution”



2d gradient

f ‖(fx, fy)‖

fx := hx ∗ f fy := hy ∗ f



2d gradient by Gaussian derivative

f ‖∇g ∗ f‖

gx ∗ f gy ∗ f



why is gradient efficient comparing to Gabor?

• remember, the directional derivative of function f along vector v at
point x is

∇vf(x) = v · ∇f(x) = vx
∂f

∂x
(x) + vy

∂f

∂y
(x)

• when v is a unit vector, the directional derivative is maximum when v
points in the direction of the gradient

• does the same hold for the convolution with the Gaussian derivative?
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2d Gaussian derivative is steerable
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2d Gaussian derivative is steerable
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steerable filter
[Freeman and Adelson 1991]

Input
image

Basis
filter
bank

Summing
junction

Adaptively
filtered image

Gain
maps

Steerable Filter Architecture

ki(θ)

Figure 3: Steerable �lter system block diagram. A bank of dedicated �lters process the image. Their

outputs are multiplied by a set of gain maps which adaptively control the orientation of the synthesized

�lter.
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(a)

(b)

architecture basis sets of ∂2g
∂x2

• an orientation-selective filter that can be expressed as a linear
combination of a small basis set of filters

• the basis set can be (a) a set of rotated versions of itself, or (b) a set
of separable filters

Freeman and Adelson. PAMI 1991. The Design and Use of Steerable Filters.



second derivative in one dimension
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second derivative in one dimension
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second derivative in two dimensions: Laplacian

f fxx + fyy

fxx := hxx ∗ f fyy := hyy ∗ f
hxx := 1

4 [1 −2 1] hy :=
1
4 [1 −2 1]>



Laplacian operator

• discrete approximation

hxx :=
1

4
[1 −2 1]

hyy :=
1

4
[1 −2 1]>

hL := hxx + hyy =
1

4

 0 1 0
1 −4 1
0 1 0


• differential operator

∇2f(x) :=

(
∂2f

∂x2
+
∂2f

∂y2

)
(x)

≈ (hxx ∗ f + hyy ∗ f)(x) = (fxx + fyy)(x)



Laplacian operator

• discrete approximation
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1d Gaussian second derivative

x

g(x)

+ +

−

x

d2g
dx2

(x)

g(x) = 1√
2πσ

e−
x2

2σ2
d2g
dx2

(x) =
(
x2

σ4 − 1
σ2

)
g(x)

• “center-surround” operator



2d Laplacian of Gaussian (LoG)

x

y

∂2g
∂x2

(x, y)

x

y

∇2g(x, y)

∂2g
∂x2

(x, y) =
(
x2

σ4 − 1
σ2

)
g(x, y) ∇2g(x, y) :=

(
∂2g
∂x2

+ ∂2g
∂y2

)
(x, y)

• rotationally symmetric

• “mexican hat”



edge detection

f L0(∇2g ∗ f)

‖∇g ∗ f‖ ∇2g ∗ f



edge detection

L0(∇2g ∗ f)



edge detection

L0(∇2g ∗ f)‖∇g ∗ f‖



difference of Gaussians (DoG)
[Marr and Hildreth 1980]

The raw primal sketch 

FIGURE 11. The values of certain parameters associated with difference-of-Gaussian (DOG) 

masks, with excitatory and inhibitory space constants a, and a,. (a )For various values 
of a,/u,,we show the half-sensitivity bandwidth ( + ) and the half-power bandwidth (a)of 
the filter. In  ( b )is shown its peak sensitivity in the Fourier plane. (The peak sensitivity 
of the excitatory component alone equals 100 % on this scale.) (c) The arguments in the 
appendix show that the best engineering approximation to VaG using a DOG occurs with 
ai/uearound 1.6. In figure (c), this particular Doa is shown dotted against the operator 
V20 with the appropriate a. The two profiles are very similar. 

• studied the ∇2g operator as a
model of retinal X-cells

• popularized it as a
computational theory of edge
detection

• hypothesized a biological
implementation as a difference
of Gaussians with σ1/σ2 ≈ 1.6

Marr and Hildreth. RSL 1980. Theory of Edge Detection.
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feature detection



saliency and visual attention
[Itti et al. 1998]

• visual attention system, inspired by the early primate visual system

• multiple scales, multiple features, center-surround, normalization and
winner-take-all operations

Itti, Koch and Niebur. PAMI 1998. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.
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saliency and visual attention

Itti, Koch and Niebur. PAMI 1998. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.
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scale change

• for every scale factor s, and for every point x, the scaled image f ′ at
the scaled point x′ := sx equals the original image f at the original
point x

f ′(x′) = f ′(sx) = f(x)
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scale space
[Witkin 1983]

• the scale-space F of f at point x and scale σ, and its n-th derivative
with respect to some variable x, are defined as

F (x;σ) := [g(·;σ) ∗ f ](x)

Fxn(x;σ) :=
∂nF

∂xn
(x;σ) =

[
∂ng

∂xn
(·;σ) ∗ f

]
(x)

• gradient
∇F ≈ (Fx, Fy)

• Laplacian
∇2F ≈ Fxx + Fyy

• we write derivatives but we only compute convolutions

Witkin. IJCAI 1983. Scale-Space Filtering.
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scale space under scaling
[Witkin 1983]

• for every scale factor s, for every point x, and for every scale σ, the
scale-space F ′ at the point x′ := sx and scale σ′ := sσ equals the
original scale-space F at the original point x and scale σ:

F ′(x′;σ′) = F ′(sx, sσ) = F (x;σ)

and we would like the same for their derivatives

Witkin. IJCAI 1983. Scale-Space Filtering.



scale-normalized derivatives∗
[Lindeberg 1998]

• remember, however,

dg

dx
(x;σ) = − x

σ2
g(x;σ)

d2g

dx2
(x;σ) =

(
x2

σ4
− 1

σ2

)
g(x;σ)

F ′x′(x
′;σ′) = s−1Fx(x;σ) F ′x′x′(x

′;σ′) = s−2Fxx(x;σ)

• in general, we only have

F ′x′n(x
′;σ′) = s−nFxn(x;σ)

• solution: we normalize the n-th order derivative by σn

F̂xn(x;σ) := σnFxn(x;σ) = σn
∂ng

∂xn
(x;σ) ∗ f(x)

• then, indeed
F̂ ′x′n(x

′;σ′) = F̂xn(x;σ)

Lindeberg. IJCV 1998. Feature Detection with Automatic Scale Selection.
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normalized Laplacian and scale selection

• normalized Laplacian operator

∇̂2F (x;σ) := σ2∇2F (x;σ) ≈ σ2(Fxx + Fyy)(x;σ)

• scale selection

scale(x) := argmax
σ
|∇̂2F (x;σ)|

x

σ2 d
2g
dx2

(x;σ) = ( x
2

σ2 − 1)g(x;σ)

• let’s try a blob centered at the origin, filter by a normalized LoG of
varying scale σ, and measure the response at the origin

Lindeberg. IJCV 1998. Feature Detection with Automatic Scale Selection.
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normalized Laplacian and scale selection
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normalized Laplacian and scale selection
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blob detection

• convolution with a circular symmetric center-surround pattern in
scale-space

• local maxima in scale-space yield positions and scales of blobs

Lindeberg. IJCV 1998. Feature Detection with Automatic Scale Selection.
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difference of Gaussians

• Gaussian satisfies heat equation (try it!), hence finite difference
approximation to ∂g

∂σ can be used

σ∇2g =
∂g

∂σ
≈ g(x; kσ)− g(x;σ)

kσ − σ

• then, difference of Gaussians approximates its normalized Laplacian

g(x; kσ)− g(x;σ) ≈ (k − 1)σ2∇2g,

incorporating scale normalization

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.
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scale-space computation

 Scale

 (first

 octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship between D and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) − G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) − G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant

6

• incrementally convolve with Gaussian, subsample at each octave

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



scale-space local extrema

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such as k =

√
2.

An efficient approach to construction of D(x, y, σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of σ) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that final
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of σ (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima of D(x, y, σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

• local maxima among 26 neighbors selected

• accurately localized, edge responses rejected, orientation normalized

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



scale-invariant feature transform (SIFT)
[Lowe 1999]

The input image is first convolved with the Gaussian
function using � =

p
2 to give an image A. This is then

repeated a second time with a further incremental smooth-
ing of � =

p
2 to give a new image, B, which now has an

effective smoothing of � = 2. The difference of Gaussian
function is obtained by subtracting image B from A, result-
ing in a ratio of 2=

p
2 =

p
2 between the two Gaussians.

To generate the next pyramid level, we resample the al-
ready smoothed image B using bilinear interpolation with a
pixel spacing of 1.5 in each direction. While it may seem
more natural to resample with a relative scale of

p
2, the

only constraint is that sampling be frequent enough to de-
tect peaks. The 1.5 spacing means that each new sample will
be a constant linear combination of 4 adjacent pixels. This
is efficient to compute and minimizes aliasing artifacts that
would arise from changing the resampling coefficients.

Maxima and minima of this scale-space function are de-
termined by comparing each pixel in the pyramid to its
neighbours. First, a pixel is compared to its 8 neighbours at
the same level of the pyramid. If it is a maxima or minima
at this level, then the closest pixel location is calculated at
the next lowest level of the pyramid, taking account of the
1.5 times resampling. If the pixel remains higher (or lower)
than this closest pixel and its 8 neighbours, then the test is
repeated for the level above. Since most pixels will be elim-
inated within a few comparisons, the cost of this detection is
small and much lower than that of building the pyramid.

If the first level of the pyramid is sampled at the same rate
as the input image, the highest spatial frequencies will be ig-
nored. This is due to the initial smoothing, which is needed
to provide separation of peaks for robust detection. There-
fore, we expand the input image by a factor of 2, using bilin-
ear interpolation, prior to building the pyramid. This gives
on the order of 1000 key points for a typical 512�512 pixel
image, compared to only a quarter as many without the ini-
tial expansion.

3.1. SIFT key stability
To characterize the image at each key location, the smoothed
image A at each level of the pyramid is processed to extract
image gradients and orientations. At each pixel,Aij , the im-
age gradient magnitude,Mij , and orientation,R ij, are com-
puted using pixel differences:

Mij =
q

(Aij � Ai+1;j)2 + (Aij � Ai;j+1)2

R ij = atan2 (Aij � Ai+1;j; Ai;j+1 �Aij)

The pixel differences are efficient to compute and provide
sufficient accuracy due to the substantial level of previous
smoothing. The effective half-pixel shift in position is com-
pensated for when determining key location.

Robustness to illuminationchange is enhanced by thresh-
olding the gradient magnitudes at a value of 0.1 times the

Figure 1: The second image was generated from the first by
rotation, scaling, stretching, change of brightness and con-
trast, and addition of pixel noise. In spite of these changes,
78% of the keys from the first image have a closely match-
ing key in the second image. These examples show only a
subset of the keys to reduce clutter.

maximum possible gradient value. This reduces the effect
of a change in illumination direction for a surface with 3D
relief, as an illuminationchange may result in large changes
to gradient magnitude but is likely to have less influence on
gradient orientation.

Each key location is assigned a canonical orientation so
that the image descriptors are invariant to rotation. In or-
der to make this as stable as possible against lighting or con-
trast changes, the orientation is determined by the peak in a
histogram of local image gradient orientations. The orien-
tation histogram is created using a Gaussian-weighted win-
dow with � of 3 times that of the current smoothing scale.
These weights are multiplied by the thresholded gradient
values and accumulated in the histogram at locations corre-
sponding to the orientation,R ij. The histogram has 36 bins
covering the 360 degree range of rotations, and is smoothed
prior to peak selection.

The stability of the resulting keys can be tested by sub-
jecting natural images to affine projection, contrast and
brightness changes, and addition of noise. The location of
each key detected in the first image can be predicted in the
transformed image from knowledge of the transform param-
eters. This framework was used to select the various sam-
pling and smoothing parameters given above, so that max-
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maximum possible gradient value. This reduces the effect
of a change in illumination direction for a surface with 3D
relief, as an illuminationchange may result in large changes
to gradient magnitude but is likely to have less influence on
gradient orientation.

Each key location is assigned a canonical orientation so
that the image descriptors are invariant to rotation. In or-
der to make this as stable as possible against lighting or con-
trast changes, the orientation is determined by the peak in a
histogram of local image gradient orientations. The orien-
tation histogram is created using a Gaussian-weighted win-
dow with � of 3 times that of the current smoothing scale.
These weights are multiplied by the thresholded gradient
values and accumulated in the histogram at locations corre-
sponding to the orientation,R ij. The histogram has 36 bins
covering the 360 degree range of rotations, and is smoothed
prior to peak selection.

The stability of the resulting keys can be tested by sub-
jecting natural images to affine projection, contrast and
brightness changes, and addition of noise. The location of
each key detected in the first image can be predicted in the
transformed image from knowledge of the transform param-
eters. This framework was used to select the various sam-
pling and smoothing parameters given above, so that max-

• detected patches equivariant to translation, scale and rotation

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



desired properties of local features

• repeatable: in a transformed image, the same feature is detected at a
transformed position

• distinctive: different image features can be discriminated by their
local appearance

• localized: relatively small regions, robust to occlusion

− elongated: edges, ridges

+ isotropic: blobs, extremal regions

+ points: corners and junctions
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the Hessian matrix

• defined as

ĤF (x, σ) := σ2
(
Fxx Fxy
Fyx Fyy

)
(x, σ)

• the Laplacian is just its trace

∇̂2F (x, σ) = σ2(Fxx + Fyy)(x, σ) = tr ĤF (x, σ)

• where gradient magnitude is zero, f is locally maximized (concave),
minimized (convex), flat, or has a saddle point depending on
eigenvalues λ1, λ2 of the Hessian

• good for blobs: maximum for λ1, λ2 < 0, minimum for λ1, λ2 > 0

• however, still fires on edges
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the (windowed) second moment matrix
[Förstner 1986]

• defined as

µ̂F (x, σ) := w ∗ σ2(∇F )(∇F )>(x, σ)

= w ∗ σ2
(

F 2
x FxFy

FxFy F 2
y

)
(x, σ)

where w is another Gaussian at some higher integration scale; σ is
called the derivation scale

• the (windowed) gradient is just its trace

w ∗ ‖∇̂F (x, σ)‖2 = w ∗ σ2(F 2
x + F 2

y )(x, σ) = tr µ̂F (x, σ)

• good for edges, corners and junctions; again, depending on the
eigenvalues λ1 ≥ λ2

Förstner 1986. A Feature Based Correspondence Algorithm for Image Processing.
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Harris corners
[Harris and Stevens 1988]

• if trace λ1 + λ2 is too low → flat

• if condition number λ1/λ2 is too high → edge

• response function r(µ) = detµ− k tr2 µ
Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.



Harris corners (and junctions)

corners response

• response: positive on corners, negative on edges, zero otherwise

• detection: non-maxima suppression and thresholding

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.



motivation: local autocorrelation

• assume f is differentiable and ignore scale space

• assume an image patch at the origin defined by window w; how much
does it change when we shift by t?

E(t) =
∑
x

w(x)(f(x+ t)− f(x))2

≈
∑
x

w(x)(t>∇f(x))2 (Taylor)

=
∑
x

w(x)t>(∇f(x))(∇f(x))>t

= t>(w ∗ (∇f)(∇f)>(0))t

• quadratic form defined by µ = w ∗ (∇f)(∇f)>

Harris and Stephens AVC 1988. A Combined Corner and Edge Detector.
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quadratic form

x

y

λ−11λ−12

u1
u2

• locus of (x y)>A(x y) = 1, where A has eigenvectors u1,u2 and
eigenvalues λ1, λ2



Harris pipeline

h

w

1

→
conv

h

w

2

→
enc

h

w

4

→
pool

h

w

4

→
resp

h

w

1

• 3-channel RGB input → 1-channel gray-scale

• compute gradient ∇F = (Fx, Fy) at derivation scale

• encode into tensor product ∇F ⊗∇F = (F 2
x , FxFy, FxFy, F

2
y )

• average pooling by window w at integration scale

• compute point-wise nonlinear response function r
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Harris affine & Hessian affine∗
[Mikolajczyk and Schmid 2004]

• multi-scale Harris or Hessian detection, Laplacian scale selection

• iterative affine shape adaptation, based on Lindeberg

• Hessian-affine de facto standard on image retrieval for several years

Mikolajczyk and Schmid IJCV 2004. Scale & Affine Invariant Interest Point Detectors.



..

spatial matching



dense registration∗
[Lucas and Kanade 1981]

• for each location in an image, find a displacement with respect to
another reference image

• appropriate for small displacements, e.g. stereopsis or optical flow

Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.
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one dimension∗

f(x)

g(x)

x

• assuming g(x) = f(x+ t) and t is small,

df

dx
(x) ≈ f(x+ t)− f(x)

t
=
g(x)− f(x)

t

Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.
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two dimensions: least squares∗

• again, assume an image patch defined by window w; what is the error
between the patch shifted by t in reference image f and a patch at
the origin in shifted image g?

E(t) =
∑
x

w(x)(f(x+ t)− g(x))2

≈
∑
x

w(x)(f(x) + t>∇f(x)− g(x))2

• error minimized when gradient vanishes

0 =
∂E

∂t
=
∑
x

w(x)2∇f(x)(f(x) + t>∇f(x)− g(x))

• least-squares solution(
w ∗ (∇f)(∇f)>

)
t = w ∗ ((∇f)(g − f))

Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.
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dense optical flow∗

• camera follows background, two objects at opposite horizontal
directions

• motion noisy on uniform regions

Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.
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dense optical flow∗

• parallax: tree closer to viewer than background

• stable on textured regions

• window size visible on edges

Lucas and Kanade IJCAI 1981. An Iterative Image Registration Technique With an Application to Stereo Vision.
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the aperture problem∗



the aperture problem∗



feature point tracking∗
[Tomasi and Kanade 1991]

• linear system can be solved reliably if matrix µ is well-conditioned:
λ1/λ2 is not too large

• detect feature points at local maxima of response min(λ1, λ2)

Tomasi and Kanade 1991. Detection and Tracking of Point Features.



feature point tracking∗

• uniform regions are not tracked now

• nearly same response as Harris corners

• Q: why do we need the window? what should the size be?

Tomasi and Kanade 1991. Detection and Tracking of Point Features.
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wide-baseline matching

• in dense registration, we started from a local “template matching”
process and found an efficient solution based on a Taylor
approximation

• both make sense for small displacements

• in wide-baseline matching, every part of one image may appear
anywhere in the other

• we start by pairwise matching of local descriptors without any order
and then attempt to enforce some geometric consistency according to
a rigid motion model



wide-baseline matching

• in dense registration, we started from a local “template matching”
process and found an efficient solution based on a Taylor
approximation

• both make sense for small displacements

• in wide-baseline matching, every part of one image may appear
anywhere in the other

• we start by pairwise matching of local descriptors without any order
and then attempt to enforce some geometric consistency according to
a rigid motion model



wide-baseline matching

• a region in one image may appear anywhere in the other



wide-baseline matching

• features detected independently in each image



wide-baseline matching

• tentative correspondences by pairwise descriptor matching



wide-baseline matching

• subset of correspondences that are ‘inlier’ to a rigid transformation



descriptor extraction

for each detected feature in each image

• construct a local histogram of gradient orientations

• find one or more dominant orientations corresponding to peaks in the
histogram

• resample local patch at given location, scale, affine shape and
orientation

• extract one descriptor for each dominant orientation

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

• detect features - find dominant orientation, resample patches - extract
descriptors - match pairwise

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

• detect features

- find dominant orientation, resample patches - extract
descriptors - match pairwise

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

• detect features - find dominant orientation, resample patches

- extract
descriptors - match pairwise

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

• detect features - find dominant orientation, resample patches - extract
descriptors

- match pairwise

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

• detect features - find dominant orientation, resample patches - extract
descriptors - match pairwise

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



descriptor matching

• for each descriptor in one image, find its two nearest neighbors in the
other

• if ratio of distance of first to distance of second is small, make a
correspondence

• this yields a list of tentative correspondences

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.
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Figure 11: The probability that a match is correct can be determined by taking the ratio of distance
from the closest neighbor to the distance of the second closest. Using a database of 40,000 keypoints,
the solid line shows the PDF of this ratio for correct matches, while the dotted line is for matches that
were incorrect.

second-closest neighbor. If there are multiple training images of the same object, then we
define the second-closest neighbor as being the closest neighbor that is known to come from
a different object than the first, such as by only using images known to contain different ob-
jects. This measure performs well because correct matches need to have the closest neighbor
significantly closer than the closest incorrect match to achieve reliable matching. For false
matches, there will likely be a number of other false matches within similar distances due to
the high dimensionality of the feature space. We can think of the second-closest match as
providing an estimate of the density of false matches within this portion of the feature space
and at the same time identifying specific instances of feature ambiguity.

Figure 11 shows the value of this measure for real image data. The probability density
functions for correct and incorrect matches are shown in terms of the ratio of closest to
second-closest neighbors of each keypoint. Matches for which the nearest neighbor was
a correct match have a PDF that is centered at a much lower ratio than that for incorrect
matches. For our object recognition implementation, we reject all matches in which the
distance ratio is greater than 0.8, which eliminates 90% of the false matches while discarding
less than 5% of the correct matches. This figure was generated by matching images following
random scale and orientation change, a depth rotation of 30 degrees, and addition of 2%
image noise, against a database of 40,000 keypoints.

7.2 Efficient nearest neighbor indexing

No algorithms are known that can identify the exact nearest neighbors of points in high di-
mensional spaces that are any more efficient than exhaustive search. Our keypoint descriptor
has a 128-dimensional feature vector, and the best algorithms, such as the k-d tree (Friedman
et al., 1977) provide no speedup over exhaustive search for more than about 10 dimensional
spaces. Therefore, we have used an approximate algorithm, called the Best-Bin-First (BBF)
algorithm (Beis and Lowe, 1997). This is approximate in the sense that it returns the closest

20

• ratio of first to second nearest neighbor distance can determine the
probability of a true correspondence

Lowe. IJCV 2004. Distinctive Image Features From Scale-Invariant Keypoints.



spatial matching

why is it difficult?

• should allow for a geometric transformation

• fitting the model to data (correspondences) is sensitive to outliers:
should find a subset of inliers first

• finding inliers to a transformation requires finding the transformation
in the first place

• correspondences have gross error

• inliers are typically less than 50%



geometric transformations

• two images f, f ′ are equal at points x,x′

f(x) = f ′(x′)

• x is mapped to x′

x′ = T (x)

• T is a bijection of R2 to itself:

T : R2 → R2



geometric transformations

x1

x2

x3

x′1

x′2

x′3

• translation: 2 degrees of freedom x′

y′

1

 =

 1 0 tx
0 1 ty
0 0 1

 x
y
1
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geometric transformations

x1

x2

x3

x′1

x′2 x′3

• rotation: 1 degree of freedom x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 x
y
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geometric transformations

x1

x2

x3

x′1

x′2
x′3

• scale: 2 degrees of freedom x′

y′

1
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geometric transformations

x1

x2

x3

x′1

x′2 x′3

• similarity: 4 degrees of freedom x′

y′

1

 =

 r cos θ −r sin θ tx
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geometric transformations

x1

x2
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geometric transformations

x1

x2

x3

x′1

x′2

x′3

• affine: 6 degrees of freedom x′

y′

1

 =

 a11 a12 a13
a21 a22 a23
0 0 1

 x
y
1
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however

• details don’t matter; in all cases, the problem is transformed to a
linear system (why?)

Ax = b

where A,b contain coordinates of known point correspondences from
images f, f ′ respectively, and x contains our model parameters

• we need n = dd/2e correspondences, where d are the degrees of
freedom of our model

• let’s take the simplest model as an example: fit a line to two points
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least squares and gross outliers

• clean data, no outliers : least squares fit ok



least squares and gross outliers

• clean data, no outliers : least squares fit ok



least squares and gross outliers

• one gross outlier : least squares fit fails



least squares and gross outliers

• one gross outlier : least squares fit fails



random sample consensus (RANSAC)

• data with outliers - pick two points at random - draw line through
them - set margin on either side - count inlier points

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.
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random sample consensus (RANSAC)

• repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.
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random sample consensus (RANSAC)

• repeat: pick two points at random, draw line through them, count
inlier points at fixed distance to line, keep best hypothesis so far
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random sample consensus (RANSAC)
[Fischler and Bolles 1981]

• X: data (tentative correspondences)

• n: minimum number of samples to fit a model

• s(x; θ): score of sample x given model parameters θ

• repeat

• hypothesis

• draw n samples H ⊂ X at random
• fit model to H, compute parameters θ

• verification

• are data consistent with hypothesis? compute score
S =

∑
x∈X s(x; θ)

• if S∗ > S, store solution θ∗ := θ, S∗ := S

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



RANSAC issues

• inlier ratio w unknown

• too expensive when minimum number of samples is large (e.g. n > 6)
and inlier ratio is small e.g. w < 10%): 106 iterations for 1%
probability of failure

Fischler and Bolles. CACM 1981. Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis
and Automated Cartography.



Hough transform
[Hough 1962]

• detect lines by a voting process in parameter space

• slope-intercept parametrization unbounded for vertical lines

Hough. US Patent 1962. Method and Means for Recognizing Complex patterns.



Hough transform
[Duda and Hart 1972]

• polar parametrization makes parameter space bounded

• discusses generalization to analytic curves; space exponential in
number of parameters

• equivalent to Radon transform, but makes sense for sparse input

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



Hough transform

idea

• n samples are needed to fit a model (e.g. 2 points for a line)

• but even one sample brings some information

• in the space of all possible models, vote for the ones that satisfy a
given sample

• collect votes from all samples, and seek for consensus

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.
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line detection

points accumulator

labels

local maxima
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line detection

points accumulator

labels local maxima

Duda and Hart. CACM 1972 Use of the Hough Transformation to Detect Lines and Curves in pictures.



Hough voting

• X: data

• n: number of model parameters

• A: n-dimensional accumulator array, initially zero

• hypotheses: for each sample x ∈ X
• for each set of model parameters θ consistent with x

• voting: increment A[θ]

• “verification”:

• threshold A, relative to maximum
• non-maxima suppression: detect local maxima

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.



generalized Hough transform
[Ballard 1981]

• generalize to arbitrary shapes

• similarity transformation, 4d parameter space: translation, scaling,
rotation

• use gradient orientation to reduce number of votes per sample

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.
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• model: record coordinates relative to reference point

• test: each point votes for all possible coordinates of reference point,
which are reversed

Ballard. PR 1981. Generalizing the Hough Transform to Detect Arbitrary shapes.
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Hough is (sparse) cross-correlation∗

• model points H, test points X as signals

h[n] =
∑
h∈H

δ[n− h]

x[n] =
∑
x∈X

δ[n− x]

• for each test point x ∈ X
• for each translation x− h consistent with x (for h ∈ H)

• voting: increment accumulator A at x− h

• in symbols

- try it!

A =
∑
x∈X

∑
h∈H

δ[n− (x− h)]

=
∑
k

x[k]h[k− n]
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local shape∗
[Lowe 2004]

• a SIFT feature is determined by location, scale and orientation; a
single feature correspondence can yield a 4-dof similarity
transformation

• hypotheses: sparse Hough voting in 4-dimensional space; each
correspondence casts a single vote in a hash table

• verification: on each bin with at least 3 votes, find inliers, form linear
system Ax = b and fit a 6-dof affine transformation by least-squares

x = (A>A)−1A>b

Lowe. ICCV 1999. Object recognition from local scale-invariant features.
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object recognition∗

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objects with model outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

x = [AT
A]�1AT

b

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].

Outliers can now be removed by checking for agreement
between each image feature and the model, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation,

p
2 change in scale, and 0.2 times maximum model

size in terms of location. If fewer than 3 points remain after
discarding outliers, then the match is rejected. If any outliers
are discarded, the least-squares solution is re-solved with the
remaining points.

Figure 5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of the model images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed for many images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.

Although the model images and affine parameters do not
account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objects with model outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

x = [AT
A]�1AT

b

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].

Outliers can now be removed by checking for agreement
between each image feature and the model, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation,

p
2 change in scale, and 0.2 times maximum model

size in terms of location. If fewer than 3 points remain after
discarding outliers, then the match is rejected. If any outliers
are discarded, the least-squares solution is re-solved with the
remaining points.

Figure 5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of the model images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed for many images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.

Although the model images and affine parameters do not
account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objects with model outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

x = [AT
A]�1AT

b

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].

Outliers can now be removed by checking for agreement
between each image feature and the model, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation,

p
2 change in scale, and 0.2 times maximum model

size in terms of location. If fewer than 3 points remain after
discarding outliers, then the match is rejected. If any outliers
are discarded, the least-squares solution is re-solved with the
remaining points.

Figure 5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of the model images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed for many images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.

Although the model images and affine parameters do not
account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



fast spatial matching∗
[Philbin et al. 2007]

Vocab Bag of
Size words Spatial
50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
750K 0.609 0.630
1M 0.618 0.645

1.25M 0.602 0.625
0 2 4 6 8 10 12

x 10
5

0.45

0.5

0.55

0.6

0.65

Vocabulary Size

m
A

P

Bag of words
Spatial

Table 5. Examining the effect of vocabulary size on performance
for the 5K dataset. Each vocabulary is trained using AKM on
all 16.7M descriptors. There is a performance peak at 1 mil-
lion words. The spatial verification consistently improves perfor-
mance.

Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.

Transformation dof Matrix
translation +
isotropic scale 3

»

a 0 tx
0 a ty

–

translation +
anisotropic scale 4

»

a 0 tx
0 b ty

–

translation +
vertical shear

5
»

a 0 tx
b c ty

–

(a)

H1

I

H2

H

C1 C2

(b)
Table 6. (a) The three affine sub-groups compared in the spatial
re-ranking. (b) Computing H as H−1

2 H1, preserving “upness” for
the 5 dof case.

Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from
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not there is any significant performance difference between
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LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
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puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

• same idea, a single feature correspondence can yield a transformation
that can be 3,4,5-dof

• but now use RANSAC where there is only one hypothesis per
correspondence; all hypotheses can be enumerated and verified

• again, 6-dof fitting on inliers in the end

• so Hough can be seen as filtering of hypotheses by agreement

Philbin, Chum, Isard, Sivic and Zisserman. CVPR 2007. Object Retrieval With Large Vocabularies and Fast Spatial Matching.
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(a)

(b)

(c)

(d)

Figure 4. Examples of searching the 5K dataset for: (a) All Soul’s College. (b) Bridge of sighs, Hertford College. (c) Ashmolean Museum.
(d) Bodleian window. The query is shown on the left, with selected top ranked retrieved images shown to the right. All results displayed
are returned before the first false positive for each query.
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• image retrieval based on a bag-of-words representation

• fast spatial verification performed on top-ranking images
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summary

• derivatives as convolution

• edges: gradient magnitude and Laplacian

• scale-space and scale selection

• blobs: normalized Laplacian

• corners/junctions: windowed second moment matrix

• dense registration∗ / sparse feature tracking∗

• wide-baseline matching by local features

• robust fitting: RANSAC, Hough transform

• Hough as cross-correlation∗

• local shape for global transformation hypotheses∗


	derivatives
	feature detection
	spatial matching

