lecture 8: optimization and deeper architectures deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2019 – Jan. 2020

outline

optimizers initialization normalization deeper architectures

optimizers

gradient descent

update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

where

$$\mathbf{g}^{(\tau)} := \nabla f(\mathbf{x}^{(\tau)})$$

• in a (continuous-time) physical analogy, if $\mathbf{x}^{(\tau)}$ represents the position of a particle at time τ , then $-\mathbf{g}^{(\tau)}$ represents its velocity

$$\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

(where
$$\frac{d\mathbf{x}}{d\tau} \approx \frac{\mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}}{\epsilon}$$
)

• in the following, we examine a batch and a stochastic version: in the latter, each update is split into 10 smaller steps, with stochastic noise added to each step (assuming a batch update consists of 10 terms)

gradient descent

update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

where

$$\mathbf{g}^{(\tau)} := \nabla f(\mathbf{x}^{(\tau)})$$

• in a (continuous-time) physical analogy, if $\mathbf{x}^{(\tau)}$ represents the position of a particle at time τ , then $-\mathbf{g}^{(\tau)}$ represents its velocity

$$\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

(where
$$\frac{d\mathbf{x}}{d\tau} pprox \frac{\mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}}{\epsilon}$$
)

• in the following, we examine a batch and a stochastic version: in the latter, each update is split into 10 smaller steps, with stochastic noise added to each step (assuming a batch update consists of 10 terms)

gradient descent

update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

where

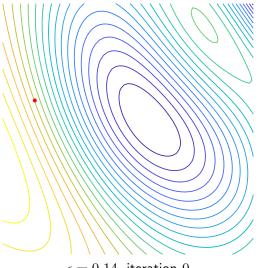
$$\mathbf{g}^{(\tau)} := \nabla f(\mathbf{x}^{(\tau)})$$

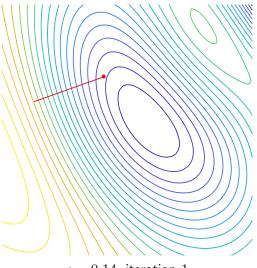
• in a (continuous-time) physical analogy, if $\mathbf{x}^{(\tau)}$ represents the position of a particle at time τ , then $-\mathbf{g}^{(\tau)}$ represents its velocity

$$\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

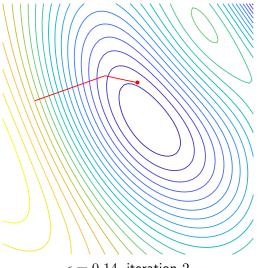
(where
$$\frac{d\mathbf{x}}{d\tau} \approx \frac{\mathbf{x}^{(\tau+1)} - \mathbf{x}^{(\tau)}}{\epsilon}$$
)

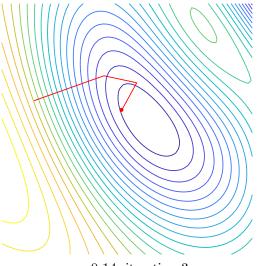
• in the following, we examine a batch and a stochastic version: in the latter, each update is split into 10 smaller steps, with stochastic noise added to each step (assuming a batch update consists of 10 terms)



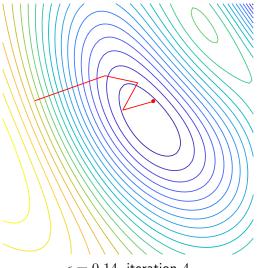


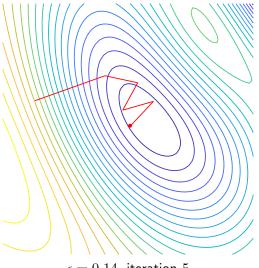
 $\epsilon = 0.14$, iteration 1

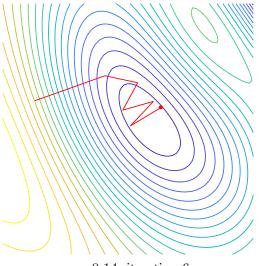


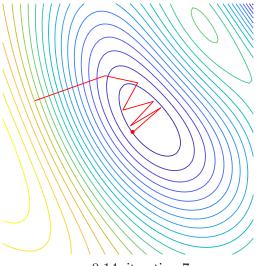


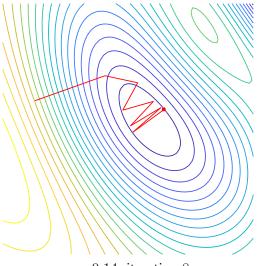
 $\epsilon = 0.14$, iteration 3



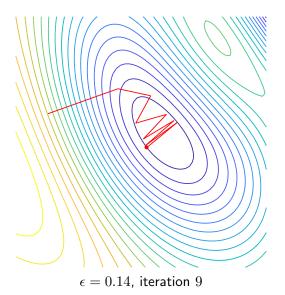


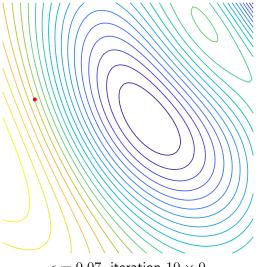


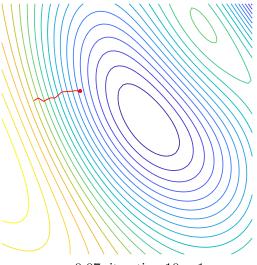




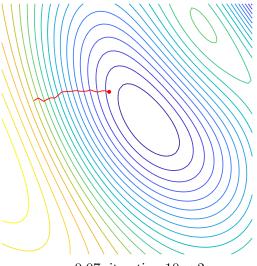
 $\epsilon=0.14$, iteration 8



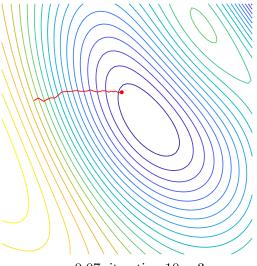




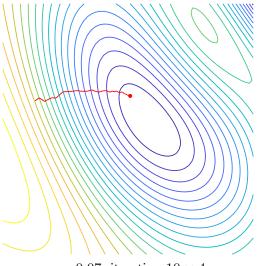
 $\epsilon = 0.07$, iteration 10×1



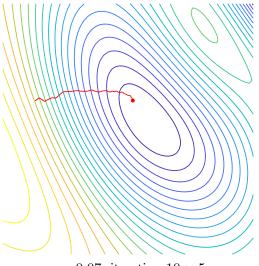
 $\epsilon = 0.07$, iteration 10×2



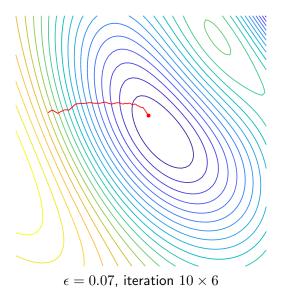
 $\epsilon = 0.07$, iteration 10×3

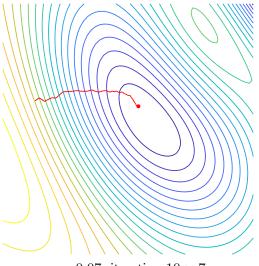


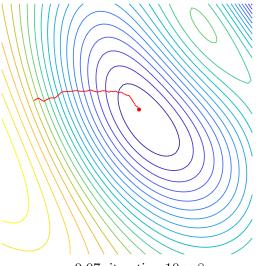
 $\epsilon = 0.07$, iteration 10×4



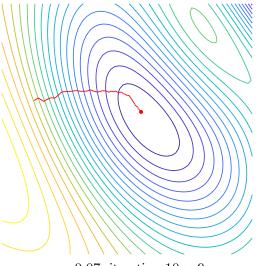
 $\epsilon = 0.07$, iteration 10×5



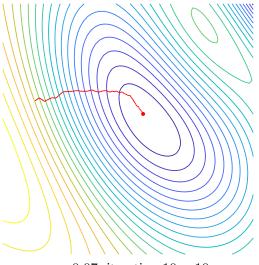




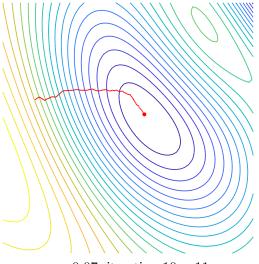
 $\epsilon = 0.07$, iteration 10×8



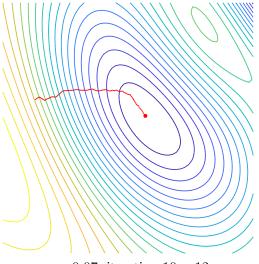
 $\epsilon = 0.07$, iteration 10×9



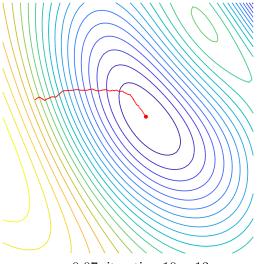
 $\epsilon = 0.07$, iteration 10×10



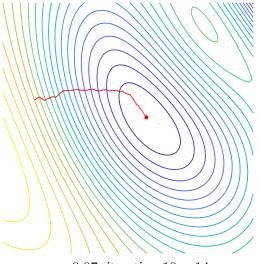
 $\epsilon = 0.07$, iteration 10×11



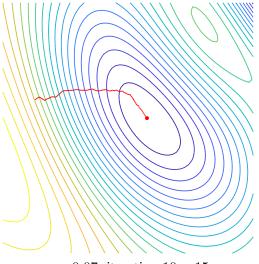
 $\epsilon = 0.07$, iteration 10×12



 $\epsilon = 0.07$, iteration 10×13



 $\epsilon = 0.07$, iteration 10×14

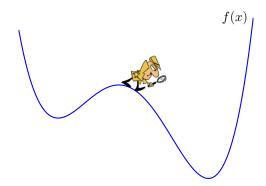


 $\epsilon = 0.07$, iteration 10×15

problems

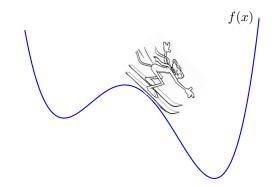
- high condition number: oscillations, divergence
- plateaus, saddle points: no progress
- sensitive to stochastic noise

gradient descent with momentum



- inspector needs to walk down the hill
- it is better to go skiing!

gradient descent with momentum



- inspector needs to walk down the hill
- it is better to go skiing!

gradient descent with momentum

[Rumelhart et al. 1986]

• in the same analogy, if the particle is of mass m and moving in a medium with viscosity μ , now $-\mathbf{g}$ represents a (gravitational) force and f the potential energy, proportional to altitude

$$m\frac{d^2\mathbf{x}}{d\tau^2} + \mu \frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

this formulation yields the update rule

$$\mathbf{v}^{(\tau+1)} = \alpha \mathbf{v}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} + \mathbf{v}^{(\tau+1)}$$

where $\mathbf{v}:=\frac{d\mathbf{x}}{d\tau}\approx\mathbf{x}^{(\tau+1)}-\mathbf{x}^{(\tau)}$ represents the velocity, initialized to zero, $\frac{d^2\mathbf{x}}{d\tau^2}\approx\frac{\mathbf{v}^{(\tau+1)}-\mathbf{v}^{(\tau)}}{\delta}$, $\alpha:=\frac{m-\mu\delta}{m}$, and $\epsilon:=\frac{\delta}{m}$

[Rumelhart et al. 1986]

• in the same analogy, if the particle is of mass m and moving in a medium with viscosity μ , now $-\mathbf{g}$ represents a (gravitational) force and f the potential energy, proportional to altitude

$$m\frac{d^2\mathbf{x}}{d\tau^2} + \mu\frac{d\mathbf{x}}{d\tau} = -\mathbf{g} = -\nabla f(\mathbf{x})$$

this formulation yields the update rule

$$\mathbf{v}^{(\tau+1)} = \alpha \mathbf{v}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} + \mathbf{v}^{(\tau+1)}$$

where $\mathbf{v}:=\frac{d\mathbf{x}}{d\tau}\approx\mathbf{x}^{(\tau+1)}-\mathbf{x}^{(\tau)}$ represents the velocity, initialized to zero, $\frac{d^2\mathbf{x}}{d\tau^2}\approx\frac{\mathbf{v}^{(\tau+1)}-\mathbf{v}^{(\tau)}}{\delta}$, $\alpha:=\frac{m-\mu\delta}{m}$, and $\epsilon:=\frac{\delta}{m}$

[Rumelhart et al. 1986]

• when g is constant, v reaches terminal velocity

$$\mathbf{v}^{(\infty)} = -\epsilon \mathbf{g} \sum_{\tau=0}^{\infty} \alpha^{\tau} = -\frac{\epsilon}{1-\alpha} \mathbf{g}$$

e.g. if $\alpha = 0.99$, this is 100 times faster than gradient descent

• $\alpha \in [0,1)$ is another hyperparameter with $1-\alpha$ representing viscosity usually $\alpha = 0.9$

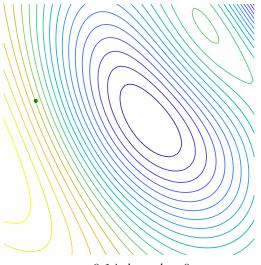
[Rumelhart et al. 1986]

when g is constant, v reaches terminal velocity

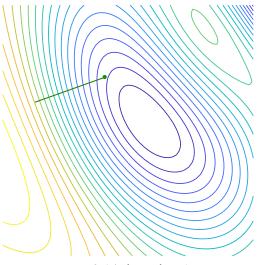
$$\mathbf{v}^{(\infty)} = -\epsilon \mathbf{g} \sum_{\tau=0}^{\infty} \alpha^{\tau} = -\frac{\epsilon}{1-\alpha} \mathbf{g}$$

e.g. if $\alpha = 0.99$, this is 100 times faster than gradient descent

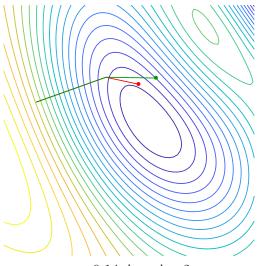
• $\alpha \in [0,1)$ is another hyperparameter with $1-\alpha$ representing viscosity; usually $\alpha = 0.9$



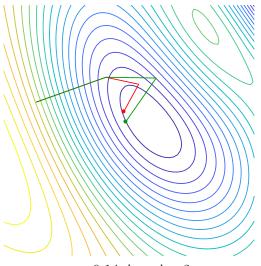
 $\epsilon = 0.14$, iteration 0



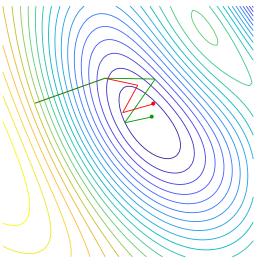
 $\epsilon=0.14$, iteration 1



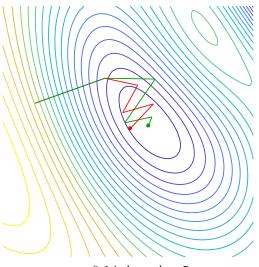
 $\epsilon=0.14 \text{, iteration } 2$



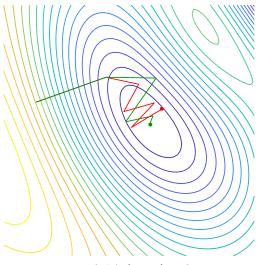
 $\epsilon=0.14$, iteration 3



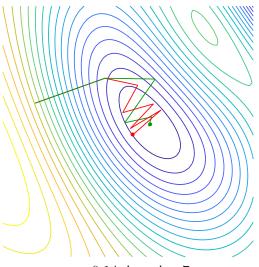
 $\epsilon=0.14$, iteration 4



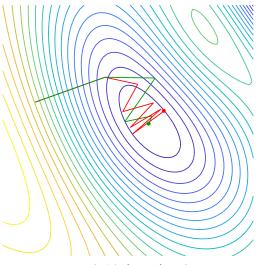
 $\epsilon=0.14$, iteration 5



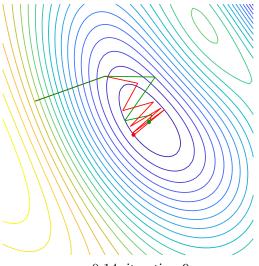
 $\epsilon=0.14$, iteration 6



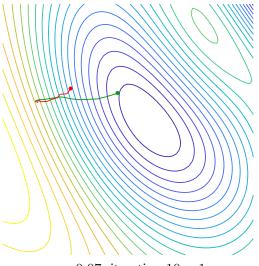
 $\epsilon=0.14 \text{, iteration } 7$

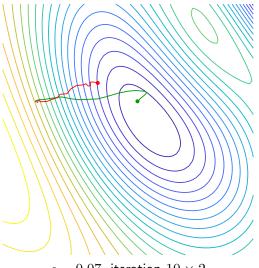


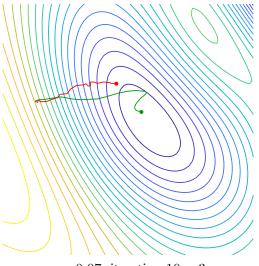
 $\epsilon=0.14 \text{, iteration } 8$

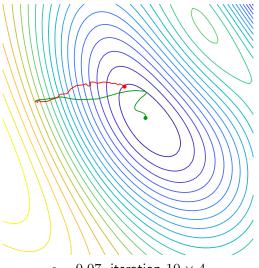


 $\epsilon=0.14 \text{, iteration } 9$

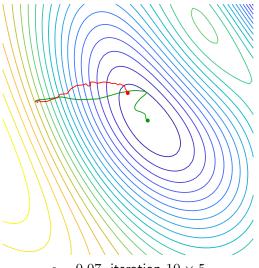


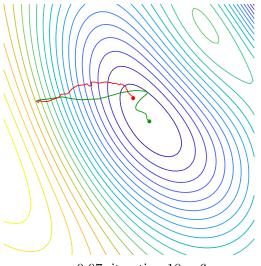


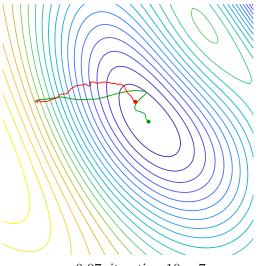


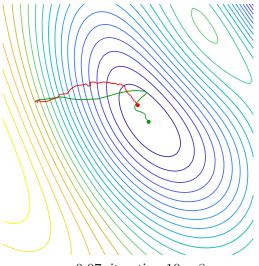


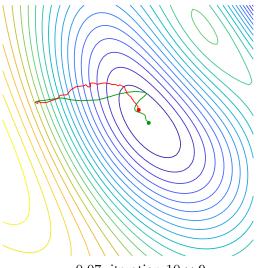
 $\epsilon = 0.07$, iteration 10×4



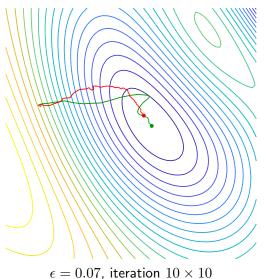


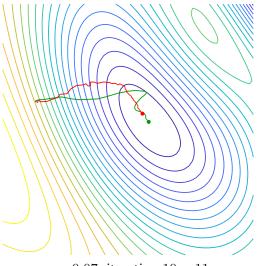


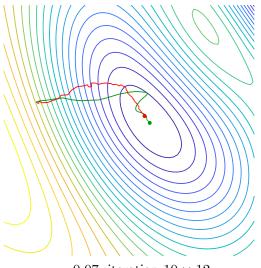




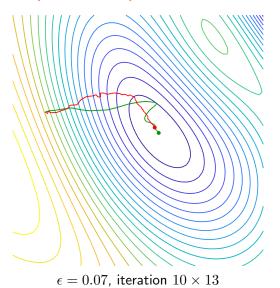
 $\epsilon=0.07$, iteration 10×9

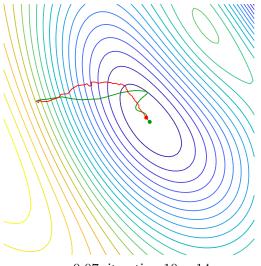




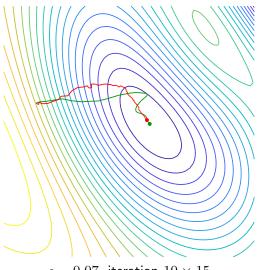


 $\epsilon = 0.07$, iteration 10×12





 $\epsilon = 0.07$, iteration 10×14



- good for high condition number: damps oscillations by its viscosity
- good for plateaus/saddle points: accelerates in directions with consistent gradient signs
- insensitive to stochastic noise, due to averaging

Rumelhart, Hinton and Williams. N 1986. Learning Representations By Back-Propagating Errors.

adaptive learning rates

- the partial derivative with respect to each parameter may be very different, especially *e.g.* for units with different fan-in or for different layers
- we need separate, adaptive learning rate per parameter
- for batch learning, we can
 - just use the the gradient sign
 - Rprop: also adjust the learning rate of each parameter depending on the agreement of gradient signs between iterations

adaptive learning rates

- the partial derivative with respect to each parameter may be very different, especially *e.g.* for units with different fan-in or for different layers
- we need separate, adaptive learning rate per parameter
- for batch learning, we can
 - just use the the gradient sign
 - Rprop: also adjust the learning rate of each parameter depending on the agreement of gradient signs between iterations

RMSprop

[Tieleman and Hinton 2012]

- for mini-batch or online methods, we need to average over iterations
- $\operatorname{sgn} \mathbf{g}$ can be written as $\mathbf{g}/|\mathbf{g}|$ (element-wise) and we can replace $|\mathbf{g}|$ by an average
- maintain a moving average b of the squared gradient ${\bf g}^2$, then divide ${\bf g}$ by $\sqrt{{\bf b}}$

$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1 - \beta) \left(\mathbf{g}^{(\tau)} \right)^{2}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{g}^{(\tau)}$$

where all operations are taken element-wise

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.

• e.g. $\beta = 0.9, \delta = 10^{-8}$

RMSprop

[Tieleman and Hinton 2012]

- for mini-batch or online methods, we need to average over iterations
- $\operatorname{sgn} \mathbf{g}$ can be written as $\mathbf{g}/|\mathbf{g}|$ (element-wise) and we can replace $|\mathbf{g}|$ by an average
- maintain a moving average ${\bf b}$ of the squared gradient ${\bf g}^2$, then divide ${\bf g}$ by $\sqrt{{\bf b}}$

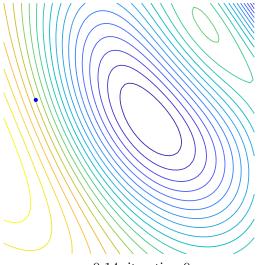
$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1 - \beta) \left(\mathbf{g}^{(\tau)} \right)^{2}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{g}^{(\tau)}$$

where all operations are taken element-wise

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.

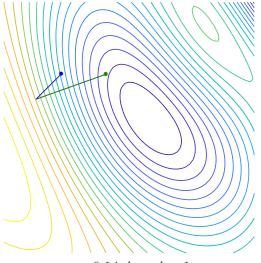
• e.g. $\beta = 0.9$, $\delta = 10^{-8}$

(batch) RMSprop

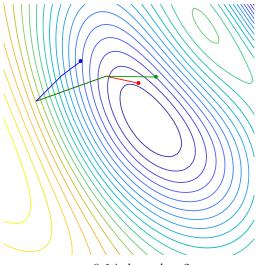


 $\epsilon=0.14$, iteration 0

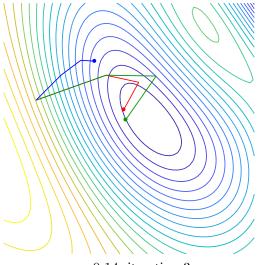
(batch) RMSprop



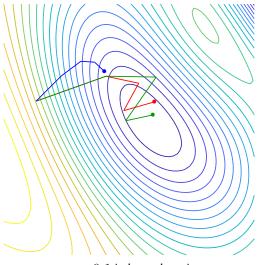
 $\epsilon=0.14$, iteration 1



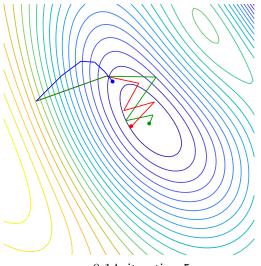
 $\epsilon=0.14$, iteration 2



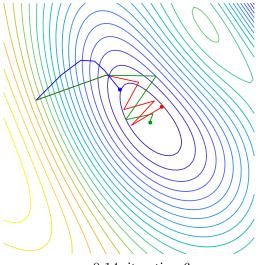
 $\epsilon=0.14$, iteration 3



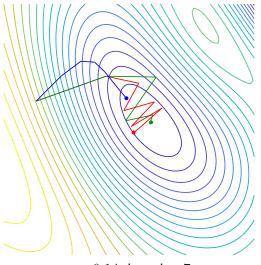
 $\epsilon=0.14$, iteration 4



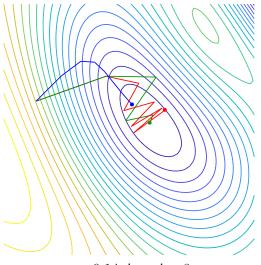
 $\epsilon=0.14$, iteration 5



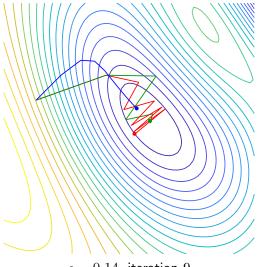
 $\epsilon=0.14$, iteration 6



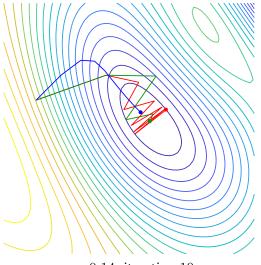
 $\epsilon=0.14$, iteration 7



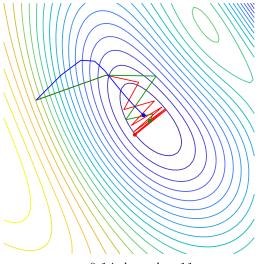
 $\epsilon=0.14$, iteration 8



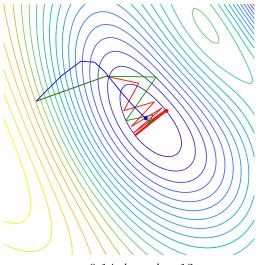
 $\epsilon=0.14$, iteration 9



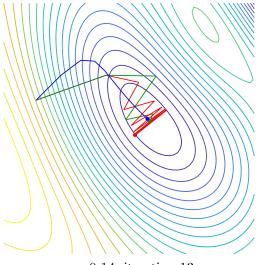
 $\epsilon=0.14$, iteration 10



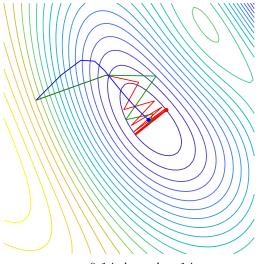
 $\epsilon=0.14$, iteration 11



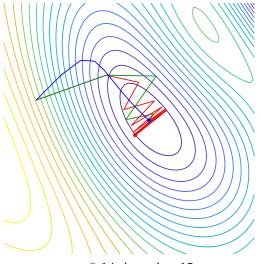
 $\epsilon=0.14$, iteration 12



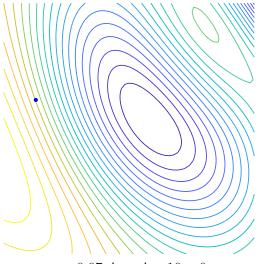
 $\epsilon=0.14$, iteration 13



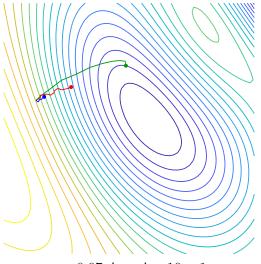
 $\epsilon=0.14$, iteration 14



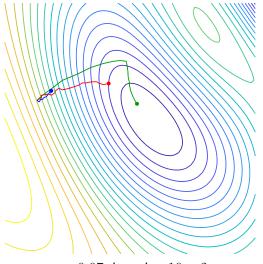
 $\epsilon=0.14$, iteration 15



 $\epsilon = 0.07$, iteration 10×0

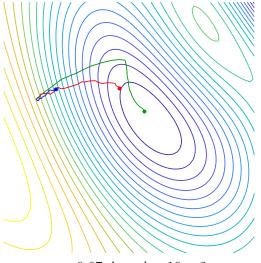


 $\epsilon=0.07$, iteration 10×1

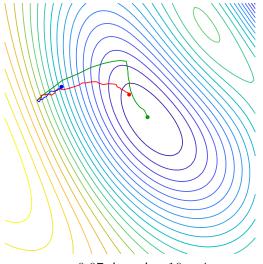


 $\epsilon=0.07$, iteration 10×2

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.

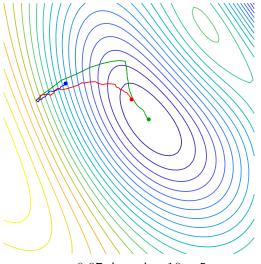


 $\epsilon = 0.07$, iteration 10×3

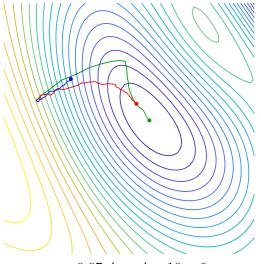


 $\epsilon=0.07$, iteration 10×4

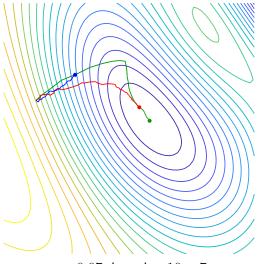
Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.



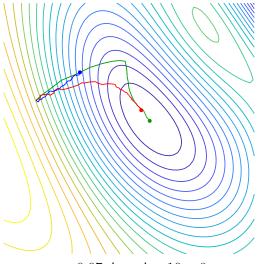
 $\epsilon=0.07$, iteration 10×5



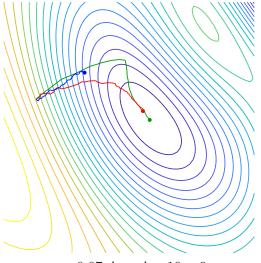
 $\epsilon=0.07$, iteration 10×6



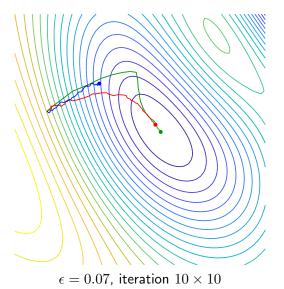
 $\epsilon = 0.07$, iteration 10×7

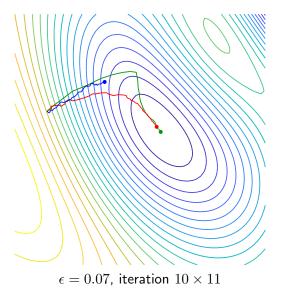


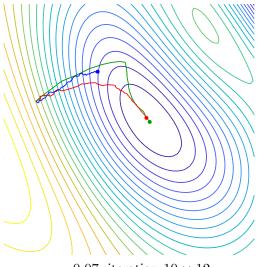
 $\epsilon=0.07$, iteration 10×8



 $\epsilon = 0.07$, iteration 10×9

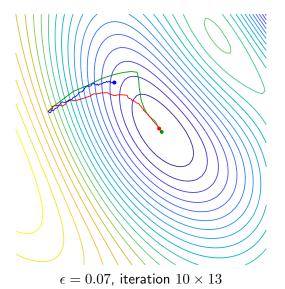


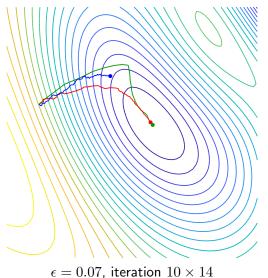




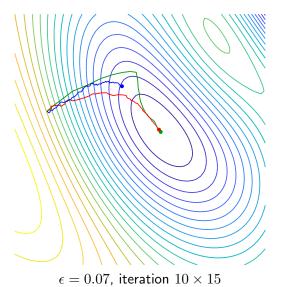
 $\epsilon=0.07$, iteration 10×12

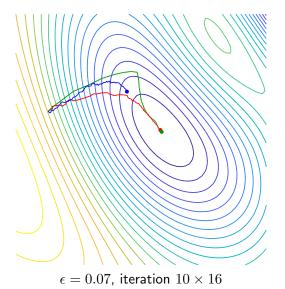
Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.

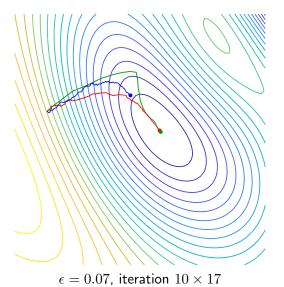


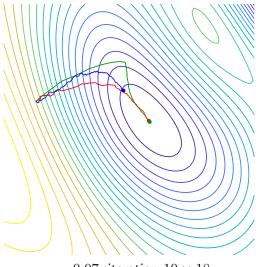


Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.



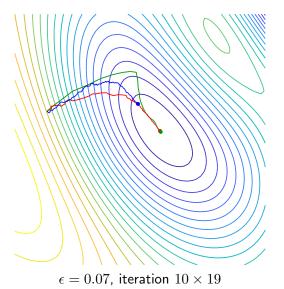


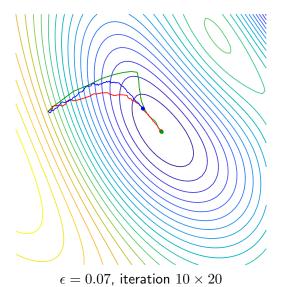




 $\epsilon=0.07$, iteration 10×18

Tieleman and Hinton 2012. Divide the gradient by a running average of its recent magnitude.





RMSprop

- good for high condition number plateaus/saddle points: gradient is amplified (attenuated) in directions of low (high) curvature
- still, sensitive to stochastic noise

RMSprop

- good for high condition number plateaus/saddle points: gradient is amplified (attenuated) in directions of low (high) curvature
- still, sensitive to stochastic noise

Adam

[Kingma and Ba 2015]

- momentum is averaging the gradient: 1st order moment
- RMSprop is averaging the squared gradient: 2nd order moment
- combine both: maintain moving average a (b) of gradient g (squared gradient g^2), then update by a/\sqrt{b}

$$\mathbf{a}^{(\tau+1)} = \alpha \mathbf{a}^{(\tau)} + (1 - \alpha) \mathbf{g}^{(\tau)}$$
$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1 - \beta) \left(\mathbf{g}^{(\tau)} \right)^{2}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{g}^{(\tau)}$$

where all operations are taken element-wise

- e.g. $\alpha = 0.9$, $\beta = 0.999$, $\delta = 10^{-8}$
- bias correction for small au not shown here

Adam

[Kingma and Ba 2015]

- momentum is averaging the gradient: 1st order moment
- RMSprop is averaging the squared gradient: 2nd order moment
- combine both: maintain moving average a (b) of gradient g (squared gradient g^2), then update by a/\sqrt{b}

$$\mathbf{a}^{(\tau+1)} = \alpha \mathbf{a}^{(\tau)} + (1 - \alpha) \mathbf{g}^{(\tau)}$$

$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1 - \beta) \left(\mathbf{g}^{(\tau)} \right)^{2}$$

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{a}^{(\tau+1)}$$

where all operations are taken element-wise

- e.g. $\alpha = 0.9$, $\beta = 0.999$, $\delta = 10^{-8}$
- bias correction for small au not shown here

Adam

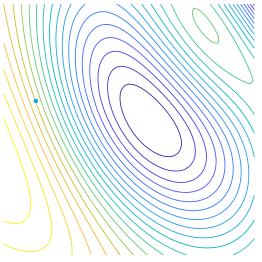
[Kingma and Ba 2015]

- momentum is averaging the gradient: 1st order moment
- RMSprop is averaging the squared gradient: 2nd order moment
- combine both: maintain moving average ${\bf a}$ (${\bf b}$) of gradient ${\bf g}$ (squared gradient ${\bf g}^2$), then update by ${\bf a}/\sqrt{\bf b}$

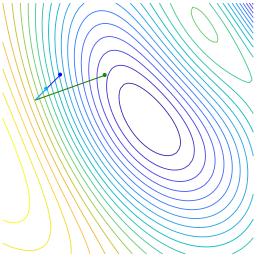
$$\mathbf{a}^{(\tau+1)} = \alpha \mathbf{a}^{(\tau)} + (1 - \alpha) \mathbf{g}^{(\tau)}$$
$$\mathbf{b}^{(\tau+1)} = \beta \mathbf{b}^{(\tau)} + (1 - \beta) \left(\mathbf{g}^{(\tau)} \right)^{2}$$
$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \frac{\epsilon}{\delta + \sqrt{\mathbf{b}^{(\tau+1)}}} \mathbf{a}^{(\tau+1)}$$

where all operations are taken element-wise

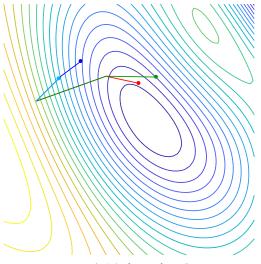
- e.g. $\alpha = 0.9$, $\beta = 0.999$, $\delta = 10^{-8}$
- bias correction for small τ not shown here



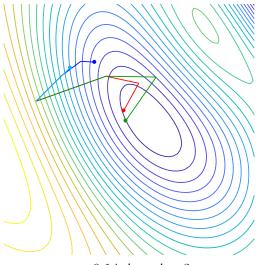
 $\epsilon=0.14$, iteration 0



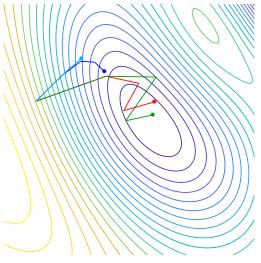
 $\epsilon=0.14$, iteration 1



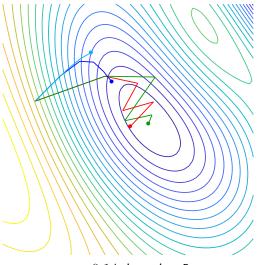
 $\epsilon=0.14$, iteration 2



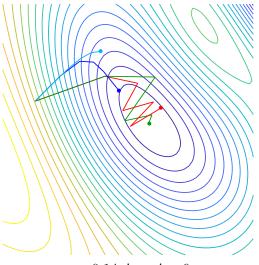
 $\epsilon=0.14$, iteration 3



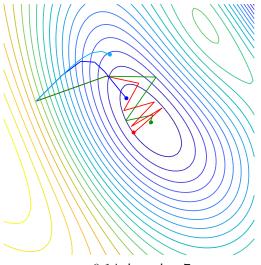
 $\epsilon=0.14$, iteration 4



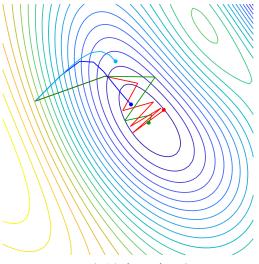
 $\epsilon=0.14$, iteration 5



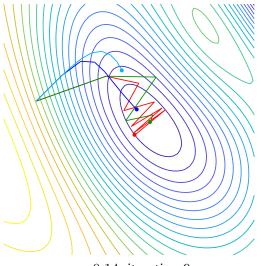
 $\epsilon=0.14$, iteration 6



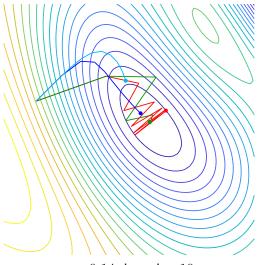
 $\epsilon=0.14$, iteration 7



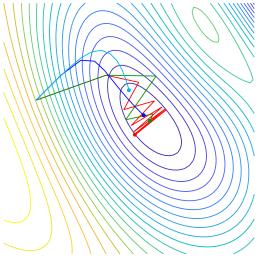
 $\epsilon=0.14$, iteration 8



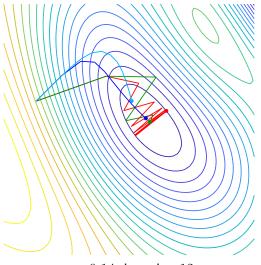
 $\epsilon=0.14 \text{, iteration } 9$



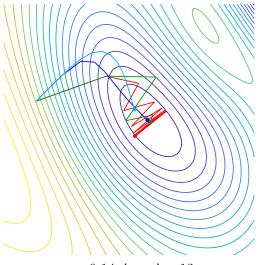
 $\epsilon = 0.14$, iteration 10



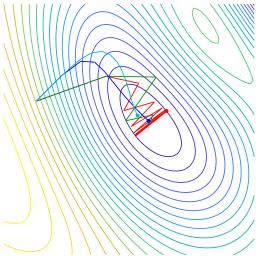
 $\epsilon = 0.14$, iteration 11



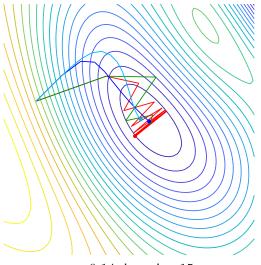
 $\epsilon=0.14$, iteration 12



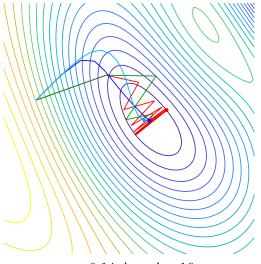
 $\epsilon = 0.14$, iteration 13



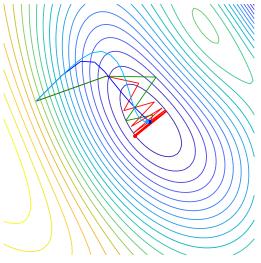
 $\epsilon = 0.14$, iteration 14



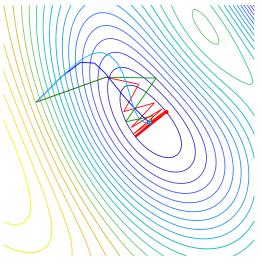
 $\epsilon=0.14$, iteration 15



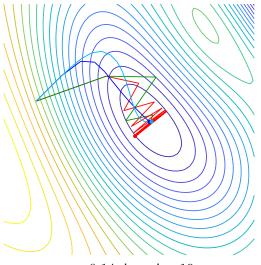
 $\epsilon = 0.14$, iteration 16



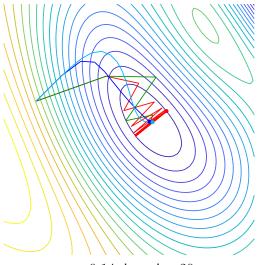
 $\epsilon=0.14$, iteration 17



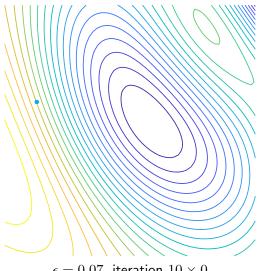
 $\epsilon=0.14$, iteration 18

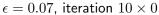


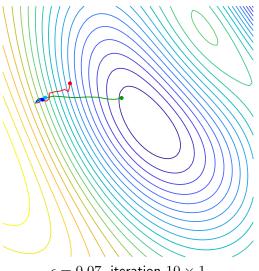
 $\epsilon = 0.14$, iteration 19

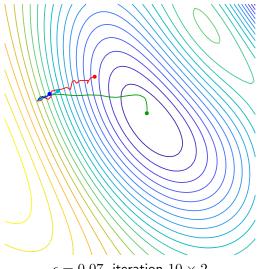


 $\epsilon = 0.14$, iteration 20

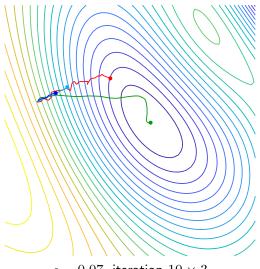




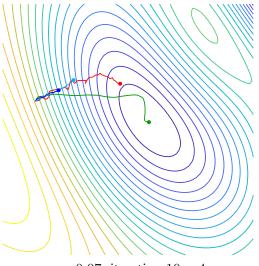


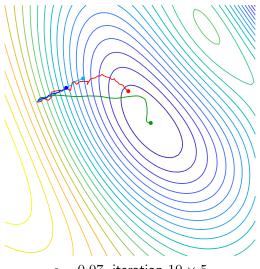


 $\epsilon=0.07$, iteration 10×2

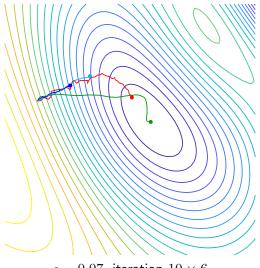


 $\epsilon=0.07$, iteration 10×3

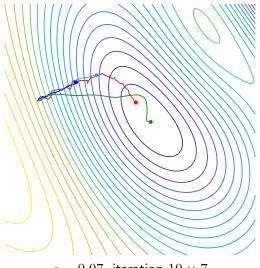




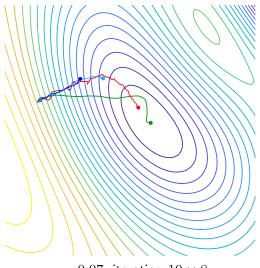
 $\epsilon=0.07$, iteration 10×5



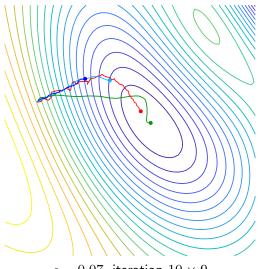
 $\epsilon = 0.07$, iteration 10×6



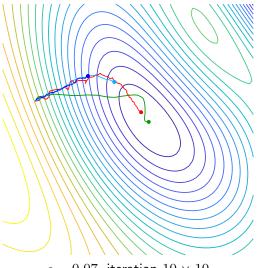
 $\epsilon = 0.07$, iteration 10×7



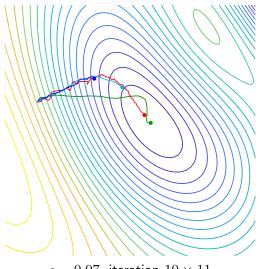
 $\epsilon = 0.07$, iteration 10×8



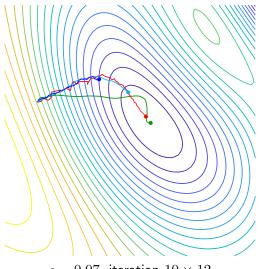
 $\epsilon = 0.07$, iteration 10×9



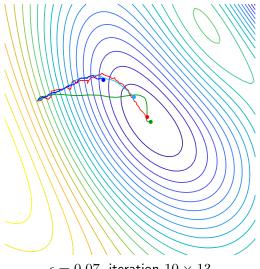
 $\epsilon = 0.07$, iteration 10×10



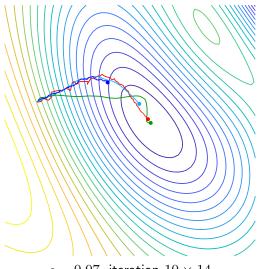
 $\epsilon = 0.07$, iteration 10×11



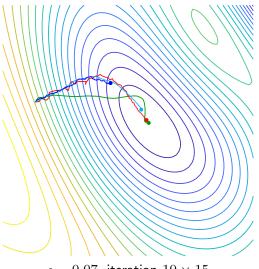
 $\epsilon = 0.07$, iteration 10×12

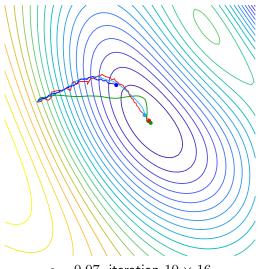


 $\epsilon=0.07$, iteration 10×13

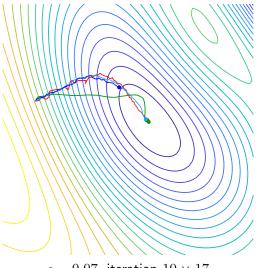


 $\epsilon = 0.07$, iteration 10×14

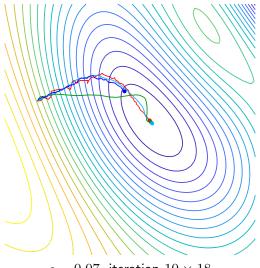




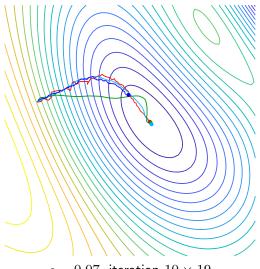
 $\epsilon = 0.07$, iteration 10×16



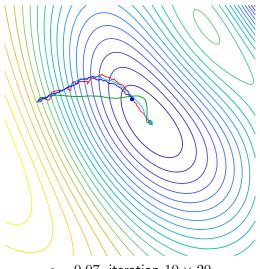
 $\epsilon = 0.07$, iteration 10×17



 $\epsilon = 0.07$, iteration 10×18



 $\epsilon = 0.07$, iteration 10×19



 $\epsilon = 0.07$, iteration 10×20

learning rate

- remember
 - all these methods need to determine the learning rate
 - to converge, the learning rate needs to be reduced during learning
- set a fixed learning rate schedule, e.g.

$$\epsilon_{\tau} = \epsilon_0 e^{-\gamma \tau}$$

or, halve the learning rate every 10 epochs

- adjust to the current behavior, manually or automatically
 - ullet if the error is decreasing slowly and consistently, try increasing ϵ
 - if it is increasing, fluctuating, or stabilizing, try decreasing e

learning rate

- remember
 - all these methods need to determine the learning rate
 - to converge, the learning rate needs to be reduced during learning
- set a fixed learning rate schedule, e.g.

$$\epsilon_{\tau} = \epsilon_0 e^{-\gamma \tau}$$

or, halve the learning rate every 10 epochs

- adjust to the current behavior, manually or automatically
 - ullet if the error is decreasing slowly and consistently, try increasing ϵ
 - ullet if it is increasing, fluctuating, or stabilizing, try decreasing ϵ

learning rate

- remember
 - all these methods need to determine the learning rate
 - to converge, the learning rate needs to be reduced during learning
- set a fixed learning rate schedule, e.g.

$$\epsilon_{\tau} = \epsilon_0 e^{-\gamma \tau}$$

or, halve the learning rate every 10 epochs

- adjust to the current behavior, manually or automatically
 - ullet if the error is decreasing slowly and consistently, try increasing ϵ
 - ullet if it is increasing, fluctuating, or stabilizing, try decreasing ϵ

second order optimization*

• remember, the gradient descent update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

comes from assuming a second-order Taylor approximation of f around $\mathbf{x}^{(\tau)}$ with an fixed, isotropic Hessian $Hf(\mathbf{x})=\frac{1}{\epsilon}I$ everywhere, and making its gradient vanish

• if we knew the true Hessian matrix at $\mathbf{x}^{(\tau)}$, we would get the Newton update rule instead

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$

where

$$H^{(\tau)} := Hf(\mathbf{x}^{(\tau)})$$

• unfortunately, computing and inverting $H^{(au)}$ is not an option

second order optimization*

remember, the gradient descent update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

comes from assuming a second-order Taylor approximation of f around $\mathbf{x}^{(\tau)}$ with an fixed, isotropic Hessian $Hf(\mathbf{x})=\frac{1}{\epsilon}I$ everywhere, and making its gradient vanish

• if we knew the true Hessian matrix at $\mathbf{x}^{(\tau)}$, we would get the Newton update rule instead

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$

where

$$H^{(\tau)} := Hf(\mathbf{x}^{(\tau)})$$

ullet unfortunately, computing and inverting $H^{(au)}$ is not an option

second order optimization*

remember, the gradient descent update rule

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - \epsilon \mathbf{g}^{(\tau)}$$

comes from assuming a second-order Taylor approximation of f around $\mathbf{x}^{(\tau)}$ with an fixed, isotropic Hessian $Hf(\mathbf{x})=\frac{1}{\epsilon}I$ everywhere, and making its gradient vanish

• if we knew the true Hessian matrix at $\mathbf{x}^{(\tau)}$, we would get the Newton update rule instead

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$

where

$$H^{(\tau)} := Hf(\mathbf{x}^{(\tau)})$$

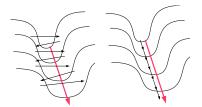
ullet unfortunately, computing and inverting $H^{(au)}$ is not an option

Hessian-free optimization*

[Martens ICML 2010]

• Newton's method can solve all curvature-related problems

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1}\mathbf{g}^{(\tau)}$$



• in practice, solve linear system

$$H^{(\tau)}\mathbf{d} = \mathbf{g}^{(\tau)}$$

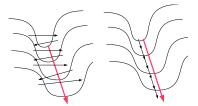
by conjugate gradient (CG) method, where matrix-vector products of the form $H^{(\tau)}\mathbf{v}$ are computed by back-propagation

Hessian-free optimization*

[Martens ICML 2010]

Newton's method can solve all curvature-related problems

$$\mathbf{x}^{(\tau+1)} = \mathbf{x}^{(\tau)} - [H^{(\tau)}]^{-1} \mathbf{g}^{(\tau)}$$



in practice, solve linear system

$$H^{(\tau)}\mathbf{d} = \mathbf{g}^{(\tau)}$$

by conjugate gradient (CG) method, where matrix-vector products of the form $H^{(\tau)}\mathbf{v}$ are computed by back-propagation

"well begun is half done"

initialization

remember CIFAR10 experiment?

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set *e.g.* into $n_{\rm train} = 45000$ training samples and $n_{\rm val} = 5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- ullet initialize network weights as Gaussian with standard deviation 10^{-4}

learn

- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch m=200
- evaluate accuracy on the test set

remember CIFAR10 experiment?

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set *e.g.* into $n_{\rm train}=45000$ training samples and $n_{\rm val}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- ullet initialize network weights as Gaussian with standard deviation 10^{-4}

learn

- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch m=200
- evaluate accuracy on the test set

result

- linear classifier: test accuracy 38%
- two-layer classifier, 200 hidden units, relu: test accuracy 51%
- ullet eight-layer classifier, 100 hidden units per layer, $\mathrm{relu}\colon$ nothing works

result

- linear classifier: test accuracy 38%
- two-layer classifier, 200 hidden units, relu: test accuracy 51%
- eight-layer classifier, 100 hidden units per layer, relu: nothing works

CIFAR10 experiment, again

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set *e.g.* into $n_{\rm train}=45000$ training samples and $n_{\rm val}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- initialize network weights as Gaussian with standard deviation 10^{-4}

learn

- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch m=200
- evaluate accuracy on the test set

CIFAR10 experiment, again

prepare

- vectorize $32 \times 32 \times 3$ images into 3072×1
- split training set *e.g.* into $n_{\rm train}=45000$ training samples and $n_{\rm val}=5000$ samples to be used for validation
- center vectors by subtracting mean over the training samples
- ullet initialize network weights as Gaussian with standard deviation 10^{-4}

learn

- train for a few iterations and evaluate accuracy on the validation set for a number of learning rates ϵ and regularization strengths λ
- train for 10 epochs on the full training set for the chosen hyperparameters; mini-batch m=200
- evaluate accuracy on the test set

affine layer initialization

• $k \times k'$ weight matrix W, $k' \times 1$ bias vector \mathbf{b}

$$\mathbf{a} = W^{\top} \mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top} \mathbf{x} + \mathbf{b})$$

weights

- ullet each element w of W can be drawn at random, e.g.
 - Gaussian $w \sim \mathcal{N}(0, \sigma^2)$, with $Var(w) = \sigma^2$
 - uniform $w \sim U(-a, a)$, with $Var(w) = \sigma^2 = \frac{a^2}{3}$
- in any case, it is important to determine the standard deviation σ , which we call weight scale

biases

- can be again Gaussian or uniform
- more commonly, constant e.g. zero
- the constant depends on the activation function h and should be chosen such that h does not saturate or 'die'

affine layer initialization

• $k \times k'$ weight matrix W, $k' \times 1$ bias vector \mathbf{b}

$$\mathbf{a} = W^{\mathsf{T}} \mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\mathsf{T}} \mathbf{x} + \mathbf{b})$$

weights

- ullet each element w of W can be drawn at random, $\emph{e.g.}$
 - Gaussian $w \sim \mathcal{N}(0, \sigma^2)$, with $Var(w) = \sigma^2$
 - uniform $w \sim U(-a,a)$, with $Var(w) = \sigma^2 = \frac{a^2}{3}$
- in any case, it is important to determine the standard deviation σ , which we call weight scale

biases

- can be again Gaussian or uniform
- more commonly, constant e.g. zero
- the constant depends on the activation function h and should be chosen such that h does not saturate or 'die'

affine layer initialization

• $k \times k'$ weight matrix W, $k' \times 1$ bias vector \mathbf{b}

$$\mathbf{a} = W^{\top} \mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top} \mathbf{x} + \mathbf{b})$$

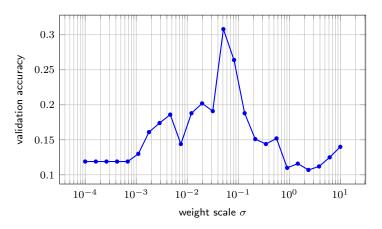
weights

- ullet each element w of W can be drawn at random, e.g.
 - Gaussian $w \sim \mathcal{N}(0, \sigma^2)$, with $Var(w) = \sigma^2$
 - uniform $w \sim U(-a,a)$, with $Var(w) = \sigma^2 = \frac{a^2}{3}$
- in any case, it is important to determine the standard deviation σ , which we call weight scale

biases

- can be again Gaussian or uniform
- more commonly, constant e.g. zero
- the constant depends on the activation function h and should be chosen such that h does not saturate or 'die'

weight scale sensitivity



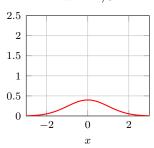
• using $\mathcal{N}(0, \sigma^2)$, training on a small subset of the training set and cross-validating σ reveals a narrow peak in validation accuracy

weight scale sensitivity

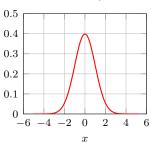
- to understand why, we measure the distribution of features ${\bf x}$ in all layers, starting with Gaussian input $\sim \mathcal{N}(0,1)$
- we repeat with and without relu nonlinearity
- in each case, we try three different values of quantity $k\sigma$

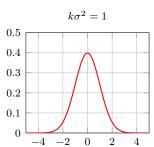
linear units, input

$$k\sigma^2 = 2/3$$



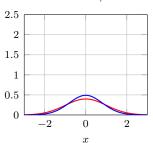
$$k\sigma^2 = 3/2$$



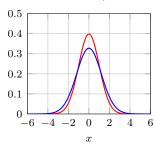


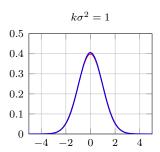
x

$$k\sigma^2 = 2/3$$



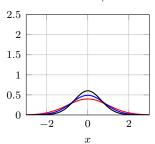
$$k\sigma^2 = 3/2$$





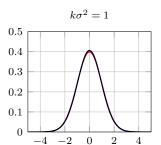
 \boldsymbol{x}

$$k\sigma^2 = 2/3$$



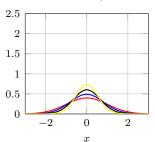
$$k\sigma^2 = 3/2$$



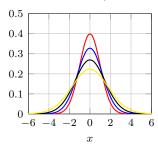


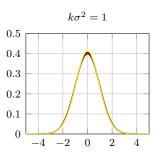
 \boldsymbol{x}

$$k\sigma^2 = 2/3$$



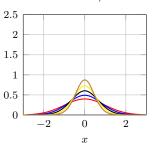
$$k\sigma^2 = 3/2$$



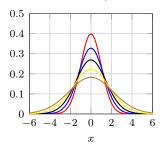


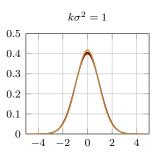
x

$$k\sigma^2 = 2/3$$



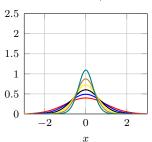
$$k\sigma^2 = 3/2$$



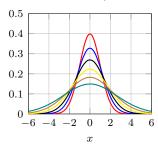


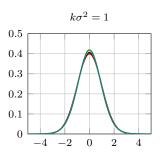
x

$$k\sigma^2 = 2/3$$



$$k\sigma^2 = 3/2$$

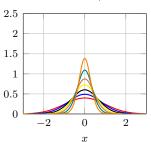




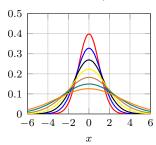
 \boldsymbol{x}

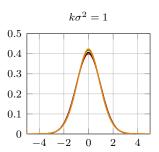
linear units, input-layer 6

$$k\sigma^2 = 2/3$$



$$k\sigma^2 = 3/2$$

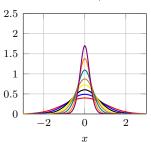




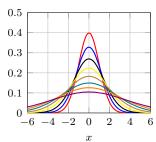
 \boldsymbol{x}

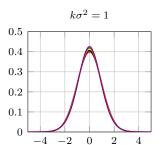
linear units, input-layer 7

$$k\sigma^2 = 2/3$$



$$k\sigma^2 = 3/2$$

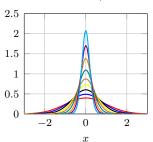




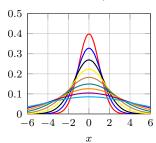
 \boldsymbol{x}

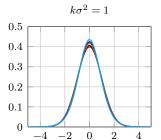
linear units, input-layer 8

$$k\sigma^2 = 2/3$$



$$k\sigma^2 = 3/2$$





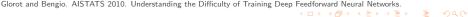
 assuming we are in a linear regime of the activation function, forward-backward relations are, recalling W is $k \times k'$

$$\mathbf{x}' = W^{\mathsf{T}}\mathbf{x} + \mathbf{b}, \quad d\mathbf{x} = Wd\mathbf{x}', \quad dW = \mathbf{x}(d\mathbf{x}')^{\mathsf{T}}$$

$$\operatorname{Var}(x'_j) = \operatorname{Var}\left((W^{\top}\mathbf{x})_j\right) = k \operatorname{Var}(w) \operatorname{Var}(x) = k\sigma^2 \operatorname{Var}(x)$$

$$\operatorname{Var}(dx_i) = \operatorname{Var}\left((Wd\mathbf{x}')_i\right) = k'\operatorname{Var}(w)\operatorname{Var}(dx') = k'\sigma^2\operatorname{Var}(dx')$$

$$\operatorname{Var}(dw_{ij}) = \operatorname{Var}(x_i) \operatorname{Var}(dx'_i)$$



• assuming we are in a linear regime of the activation function, forward-backward relations are, recalling W is $k \times k'$

$$\mathbf{x}' = W^{\mathsf{T}}\mathbf{x} + \mathbf{b}, \quad d\mathbf{x} = Wd\mathbf{x}', \quad dW = \mathbf{x}(d\mathbf{x}')^{\mathsf{T}}$$

• forward: assuming w_{ij} are i.i.d, $\mathrm{Var}(x_i)$ are the same, w_{ij} and x_i are independent, and w_{ij} , x_i are centered, i.e. $\mathbb{E}(w_{ij}) = \mathbb{E}(x_i) = 0$,

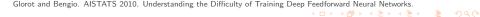
$$\operatorname{Var}(x'_j) = \operatorname{Var}\left((W^{\top}\mathbf{x})_j\right) = k \operatorname{Var}(w) \operatorname{Var}(x) = k\sigma^2 \operatorname{Var}(x)$$

• backward, activation: under the same assumptions,

$$\operatorname{Var}(dx_i) = \operatorname{Var}((Wd\mathbf{x}')_i) = k' \operatorname{Var}(w) \operatorname{Var}(dx') = k' \sigma^2 \operatorname{Var}(dx')$$

• backward, weights: also assuming that x_i , dx'_i are independent,

$$\operatorname{Var}(dw_{ij}) = \operatorname{Var}(x_i) \operatorname{Var}(dx_i')$$



• assuming we are in a linear regime of the activation function, forward-backward relations are, recalling W is $k \times k'$

$$\mathbf{x}' = W^{\mathsf{T}} \mathbf{x} + \mathbf{b}, \quad d\mathbf{x} = W d\mathbf{x}', \quad dW = \mathbf{x} (d\mathbf{x}')^{\mathsf{T}}$$

• forward: assuming w_{ij} are i.i.d, $\mathrm{Var}(x_i)$ are the same, w_{ij} and x_i are independent, and w_{ij} , x_i are centered, i.e. $\mathbb{E}(w_{ij}) = \mathbb{E}(x_i) = 0$,

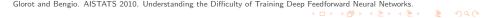
$$\operatorname{Var}(x'_j) = \operatorname{Var}\left((W^{\top}\mathbf{x})_j\right) = k \operatorname{Var}(w) \operatorname{Var}(x) = k\sigma^2 \operatorname{Var}(x)$$

• backward, activation: under the same assumptions,

$$\operatorname{Var}(dx_i) = \operatorname{Var}((Wd\mathbf{x}')_i) = k' \operatorname{Var}(w) \operatorname{Var}(dx') = k' \sigma^2 \operatorname{Var}(dx')$$

• backward, weights: also assuming that x_i , dx_j' are independent,

$$Var(dw_{ij}) = Var(x_i) Var(dx'_j)$$



- if $k\sigma^2 < 1$, activations vanish forward; if $k\sigma^2 > 1$ they explode, possibly driving nonlinearities to saturation
- if $k'\sigma^2 < 1$, activation gradients vanish backward; if $k'\sigma^2 > 1$ they explode, and everything is linear backwards
- interestingly, weight gradients are stable (why?), but only at initialization

"Xavier" initialization

[Glorot and Bengio 2010]

- forward requirement is $\sigma^2 = 1/k$
- backward requirement is $\sigma^2 = 1/k'$
- as a compromise, initialize according to

$$\sigma^2 = \frac{2}{k + k'}$$

a simpler alternative

[LeCun et al. 1998]

• however, any of these alternatives would do

$$\sigma^2 = \frac{1}{k}$$
, or $\sigma^2 = \frac{1}{k'}$

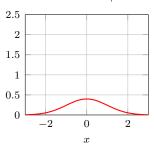
in the sense that if the forward signal is properly initialized, then so is the backward signal, and vice versa (why?)

• so, initialize according to

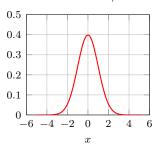
$$\sigma^2 = \frac{1}{k}$$

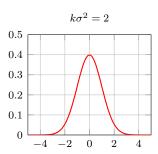
relu units, input

$$k\sigma^2 = 2 \times 2/3$$



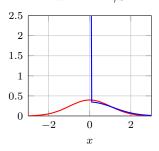
$$k\sigma^2 = 2 \times 3/2$$



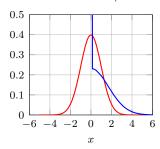


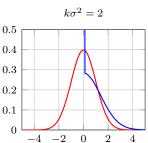
 \boldsymbol{x}

$$k\sigma^2 = 2 \times 2/3$$

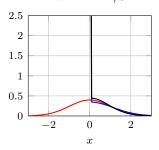


$$k\sigma^2 = 2 \times 3/2$$

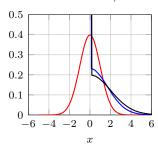


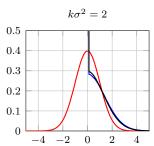


$$k\sigma^2 = 2 \times 2/3$$

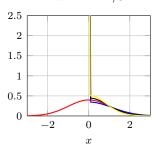


$$k\sigma^2 = 2 \times 3/2$$

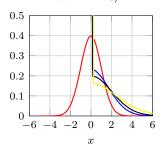


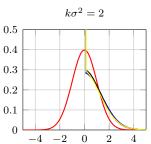


$$k\sigma^2 = 2 \times 2/3$$

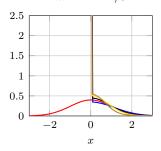


$$k\sigma^2 = 2 \times 3/2$$



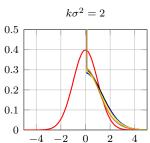


$$k\sigma^2 = 2 \times 2/3$$

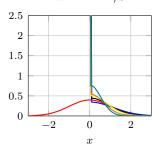


$$k\sigma^2 = 2 \times 3/2$$

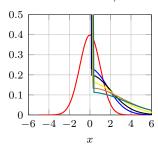


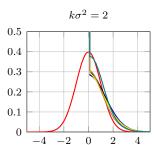


$$k\sigma^2 = 2 \times 2/3$$

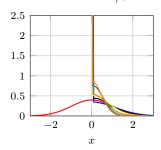


$$k\sigma^2 = 2 \times 3/2$$

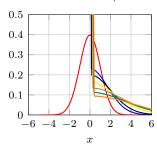


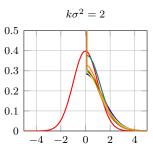


$$k\sigma^2 = 2 \times 2/3$$

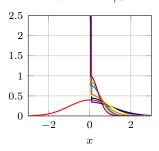


$$k\sigma^2 = 2 \times 3/2$$

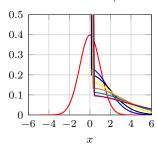


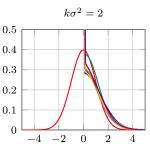


$$k\sigma^2 = 2 \times 2/3$$

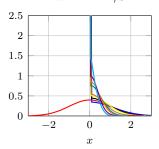


$$k\sigma^2 = 2 \times 3/2$$

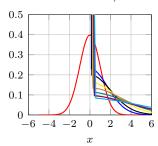


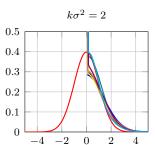


$$k\sigma^2 = 2 \times 2/3$$



$$k\sigma^2 = 2 \times 3/2$$





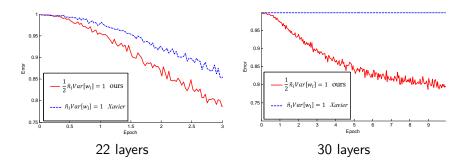
relu ("Kaiming/MSRA") initialization

[He et al. 2015]

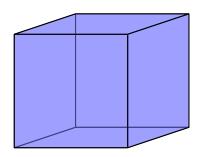
- because relu squeezes half of the volume, a corrective factor of 2 appears in the expectations of both forward and backward
- so any of the following will do

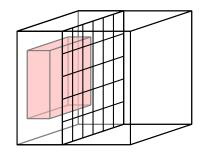
$$\sigma^2 = \frac{2}{k}$$
, or $\sigma^2 = \frac{2}{k'}$

relu ("Kaiming/MSRA") initialization

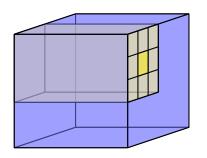


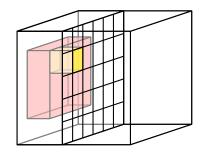
- Xavier converges more slowly or not at all
- 30-layer network trained from scratch for the first time, but has worse performance than a 14-layer network



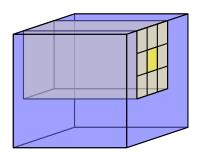


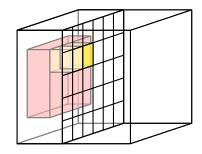
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



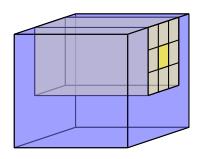


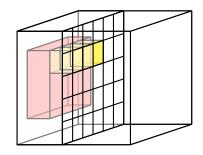
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



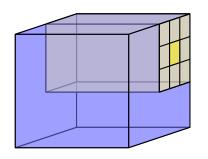


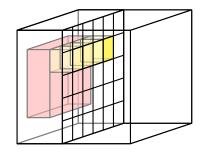
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



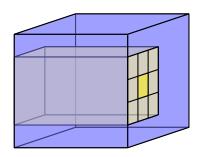


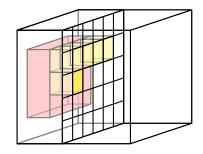
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



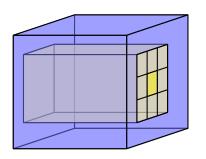


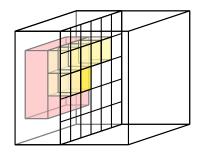
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



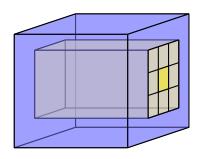


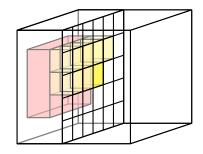
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k^\prime replaced by r^2k^\prime



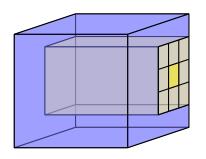


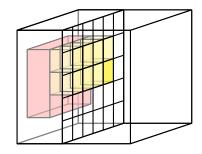
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



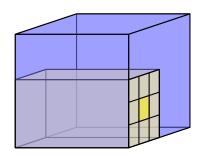


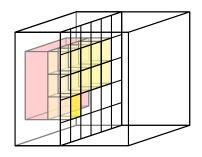
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



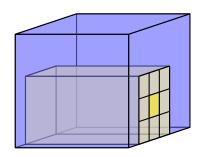


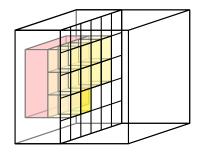
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



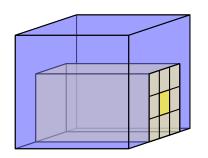


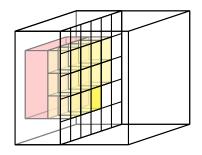
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'



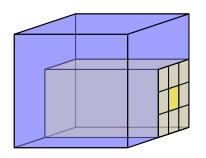


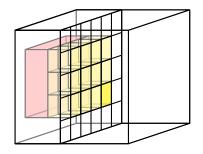
- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k^\prime replaced by r^2k^\prime





- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'





- a convolutional layer is just an affine layer with a special matrix structure
- it is actually represented by a 4d tensor ${\bf w}$ of size r^2kk' , where r is the kernel size and k,k' the input/output features
- initialization is the same, but with
 - fan-in k replaced by r^2k
 - fan-out k' replaced by r^2k'

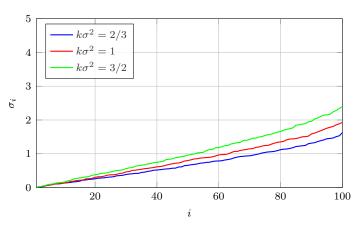
beyond Gaussian matrices*

- for linear and relu units, we can now keep the signal variance constant across layers, both forward and backward
- but this just holds on average
- how exactly are signals amplified or attenuated in each dimension?
- how does that affect the learning speed?
- we return to the linear case and examine the singular values of a product $W_8 \cdots W_1$ of Gaussian matrices

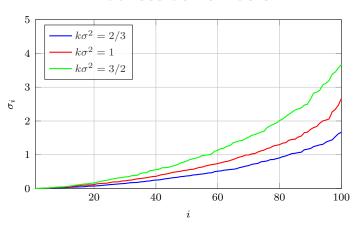
beyond Gaussian matrices*

- for linear and relu units, we can now keep the signal variance constant across layers, both forward and backward
- but this just holds on average
- how exactly are signals amplified or attenuated in each dimension?
- how does that affect the learning speed?
- we return to the linear case and examine the singular values of a product $W_8 \cdots W_1$ of Gaussian matrices

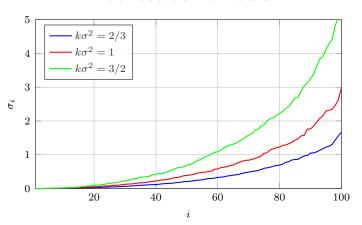
matrices as numbers*



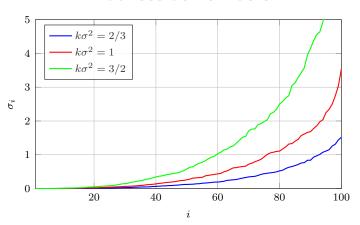
- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_1 \cdots W_1$ of $\ell = 1$ such matrices has the same behavior as raising a scalar w^{ℓ} : vanishing for w < 1, exploding for w > 1



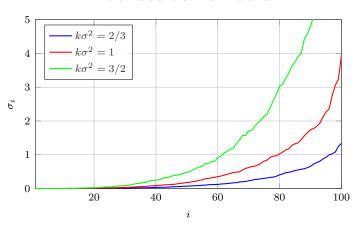
- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_2\cdots W_1$ of $\ell=2$ such matrices has the same behavior as raising a scalar w^ℓ : vanishing for w<1, exploding for w>1



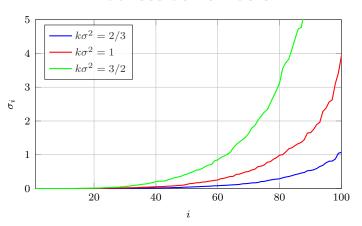
- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_3\cdots W_1$ of $\ell=3$ such matrices has the same behavior as raising a scalar w^ℓ : vanishing for w<1, exploding for w>1



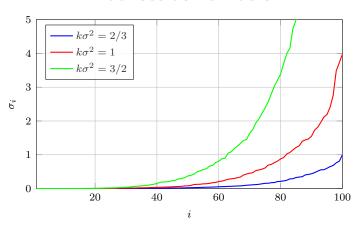
- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_4\cdots W_1$ of $\ell=4$ such matrices has the same behavior as raising a scalar w^ℓ : vanishing for w<1, exploding for w>1



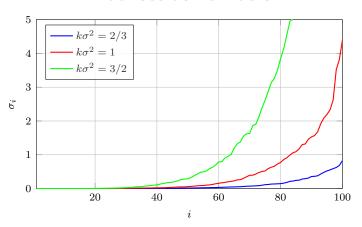
- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_5\cdots W_1$ of $\ell=5$ such matrices has the same behavior as raising a scalar w^ℓ : vanishing for w<1, exploding for w>1



- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_6\cdots W_1$ of $\ell=6$ such matrices has the same behavior as raising a scalar w^ℓ : vanishing for w<1, exploding for w>1



- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_7\cdots W_1$ of $\ell=7$ such matrices has the same behavior as raising a scalar w^ℓ : vanishing for w<1, exploding for w>1



- singular values of $k \times k$ Gaussian matrix W with elements $\sim \mathcal{N}(0, \sigma^2)$, for k = 100 and for different values of $k\sigma^2$
- a product $W_8\cdots W_1$ of $\ell=8$ such matrices has the same behavior as raising a scalar w^ℓ : vanishing for w<1, exploding for w>1

orthogonal initialization*

[Saxe et al. 2014]

- choose $k \times k'$ matrix W to be a random (semi-)orthogonal matrix, *i.e.* $W^{\top}W = I$ if $k \geq k'$ and $WW^{\top} = I$ if k < k'
- for instance, with a random Gaussian matrix followed by QR or SVD decomposition
- a scaled Gaussian matrix has singular values around 1 and preserves norm on average

$$\mathbb{E}_{w \sim \mathcal{N}(0, 1/k)}(\mathbf{x}^{\top} W^{\top} W \mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$$

 a random orthogonal matrix has singular values exactly 1 and preserves norm exactly

$$\mathbf{x}^{\top} W^{\top} W \mathbf{x} = \mathbf{x}^{\top} \mathbf{x}$$

 a product of orthogonal matrices remains orthogonal, while a product of scaled Gaussian matrices becomes strongly non-isotropic

orthogonal initialization*

[Saxe et al. 2014]

- choose $k \times k'$ matrix W to be a random (semi-)orthogonal matrix, *i.e.* $W^{\top}W = I$ if $k \geq k'$ and $WW^{\top} = I$ if k < k'
- for instance, with a random Gaussian matrix followed by QR or SVD decomposition
- a scaled Gaussian matrix has singular values around 1 and preserves norm on average

$$\mathbb{E}_{w \sim \mathcal{N}(0, 1/k)}(\mathbf{x}^{\top} W^{\top} W \mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$$

 a random orthogonal matrix has singular values exactly 1 and preserves norm exactly

$$\mathbf{x}^{\top} W^{\top} W \mathbf{x} = \mathbf{x}^{\top} \mathbf{x}$$

 a product of orthogonal matrices remains orthogonal, while a product of scaled Gaussian matrices becomes strongly non-isotropic

orthogonal initialization*

[Saxe et al. 2014]

- choose $k \times k'$ matrix W to be a random (semi-)orthogonal matrix, *i.e.* $W^{\top}W = I$ if $k \geq k'$ and $WW^{\top} = I$ if k < k'
- for instance, with a random Gaussian matrix followed by QR or SVD decomposition
- a scaled Gaussian matrix has singular values around 1 and preserves norm on average

$$\mathbb{E}_{w \sim \mathcal{N}(0, 1/k)}(\mathbf{x}^{\top} W^{\top} W \mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$$

 a random orthogonal matrix has singular values exactly 1 and preserves norm exactly

$$\mathbf{x}^{\top} W^{\top} W \mathbf{x} = \mathbf{x}^{\top} \mathbf{x}$$

 a product of orthogonal matrices remains orthogonal, while a product of scaled Gaussian matrices becomes strongly non-isotropic

data-dependent initialization

- orthogonal initialization only applies to linear layers
- relu requires analyzing input-output variances to find the corrective factor of 2
- it is not possible to do this theoretical derivation for any kind of nonlinearity, e.g. maxout, max-pooling, normalization etc.
- a practical solution is to use actual data at the input of the network and compute weights according to output statistics

layer-sequential unit-variance (LSUV) initialization*

[Mishkin and Matas 2016]

- begin by random orthogonal initialization
- then, for each affine layer (W, \mathbf{b}) , measure output variance over a mini-batch (not per feature) and iteratively normalize it to one

```
\begin{aligned} & \mathbf{def} \ \mathrm{lsuv}(\mathrm{batch}, (W, \mathbf{b}), \tau = 0.1) \mathrm{:} \\ & \sigma = 0 \\ & \mathbf{while} \ |\sigma - 1| \geq \tau \mathrm{:} \\ & X = \mathrm{batch}() \\ & Y = \mathrm{dot}(X, W) + \mathbf{b} \\ & \sigma = \mathrm{std}(Y) \\ & W = W/\sigma \\ & \mathbf{return} \ (W, \mathbf{b}) \end{aligned}
```

- as given by batch(), we use a new mini-batch per iteration and feed it forward through the network until we reach the input X of that layer
- X is $m \times k$, W is $k \times k'$, Y is $m \times k'$, where m is the mini-batch size

within-layer initialization*

[Krähenbühl et al. 2016]

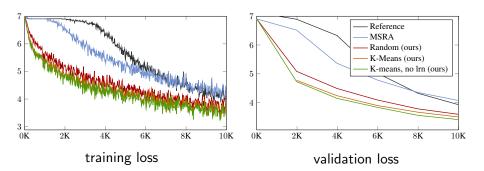
- computed on a single mini-batch, non-iterative
- measure both mean and variance, initialize both bias and weights
- measurements are per feature

```
\begin{aligned} & \mathbf{def} \ \operatorname{within}(X,(W,\mathbf{b})) \colon \\ & Y = \operatorname{dot}(X,W) + \mathbf{b} \\ & \boldsymbol{\mu}, \boldsymbol{\sigma} = \operatorname{mean}_0(Y), \operatorname{std}_0(Y) \\ & W, \mathbf{b} = W/\boldsymbol{\sigma}, -\boldsymbol{\mu}/\boldsymbol{\sigma} \\ & \mathbf{return} \ (W,\mathbf{b}) \end{aligned}
```

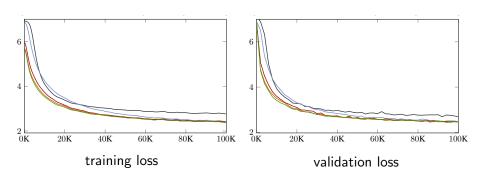
- vector operations are element-wise
- matrix-vector operations are broadcasted

data-dependent initialization*

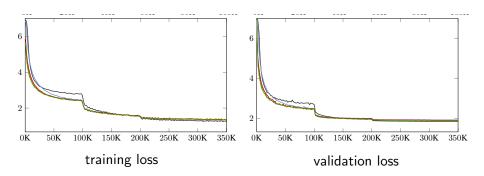
- weights initialized by PCA or (spherical) k-means on mini-batch samples
- within-layer initialization normalizes affine layer outputs to zero mean, unit variance
- between-layer initialization iteratively normalizes weights and biases of different layers
- as a result, all parameters are learned at the same "rate"



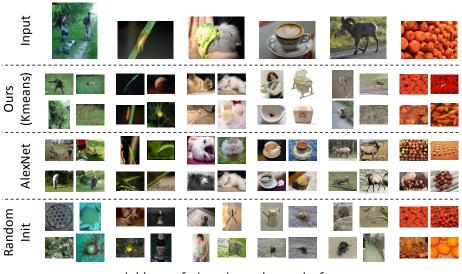
- data-dependent initialization is better at first 100k iterations
- but random initialization catches up after the second learning rate drop



- data-dependent initialization is better at first 100k iterations
- but random initialization catches up after the second learning rate drop



- data-dependent initialization is better at first 100k iterations
- but random initialization catches up after the second learning rate drop



nearest neighbors of given input image in feature space

data-dependent initialization

- PCA is orthogonal but data-dependent rather than random
- k-means is non-orthogonal, but centroids are still only weakly correlated
- we cannot fail to notice that
 - codebooks are now the initial weights, computed layer-wise
 - bag-of-words representations are now the initial features
 - compared to the conventional approach, now the entire pipeline is optimized end-to-end

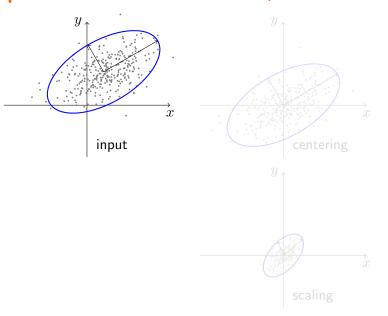
data-dependent initialization

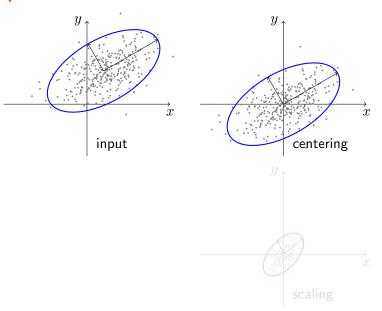
- PCA is orthogonal but data-dependent rather than random
- k-means is non-orthogonal, but centroids are still only weakly correlated
- we cannot fail to notice that
 - codebooks are now the initial weights, computed layer-wise
 - bag-of-words representations are now the initial features
 - compared to the conventional approach, now the entire pipeline is optimized end-to-end

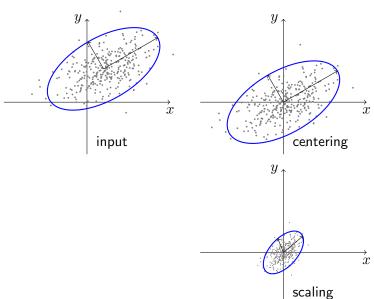
normalization

- input X is an $n \times d$ matrix, where n is the number of samples and d is the dimension of a vectorized image
- measure empirical mean and variance and normalize per dimension

def
$$\operatorname{norm}(X)$$
:
 $\mu, \sigma = \operatorname{mean}_0(X), \operatorname{std}_0(X)$
return $(X - \mu)/\sigma$

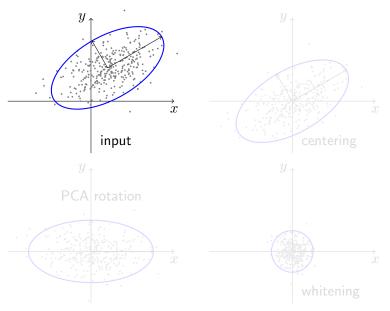


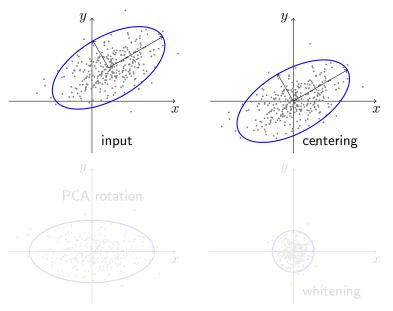


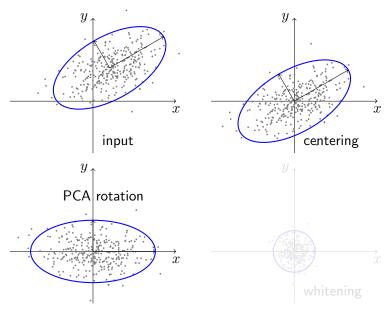


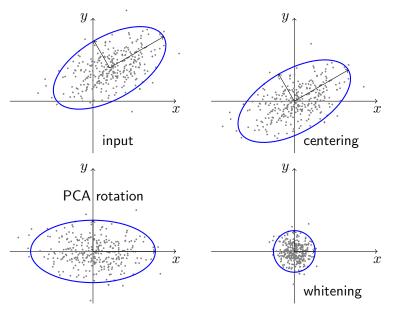
- center data to zero mean as before
- using SVD, measure the eigenvalues σ and eigenvectors V of the covariance matrix $\frac{1}{n}X^{\top}X$
- ullet PCA-rotate by $V^{-1} = V^{ op}$ to decorrelate the data
- whiten by $1/\sigma$ to unit variance

```
\begin{aligned} & \mathbf{def} \  \, \text{whiten}(X) \text{:} \\ & n = X. \text{shape}[0] \\ & X -= \text{mean}_0(X) \\ & U, \boldsymbol{\sigma}, V = \text{svd}(X/\text{sqrt}(n)) \\ & \mathbf{return} \  \, \text{dot}(X, V^\top)/\boldsymbol{\sigma} \end{aligned}
```









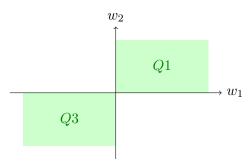
in practice: only centering

- ullet the network is expected to discover nonlinear manifold structure, so in principle it should have no difficulty discovering the linear PCA + whitening structure
 - in practice, only centering is enough:
 - subtract the mean value per pixel (mean image)
 - subtract the mean value per color channel (mean color or intensity, just one or three scalars)

in practice: only centering

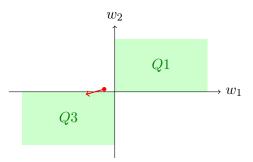
- ullet the network is expected to discover nonlinear manifold structure, so in principle it should have no difficulty discovering the linear PCA + whitening structure
- in practice, only centering is enough:
 - subtract the mean value per pixel (mean image)
 - subtract the mean value per color channel (mean color or intensity, just one or three scalars)

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



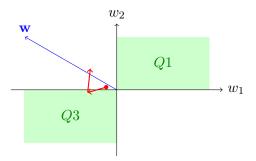
- weights can only all increase or all decrease together for a given sample
- to follow the direction of w, we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



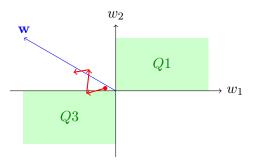
- weights can only all increase or all decrease together for a given sample
 - to follow the direction of w, we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



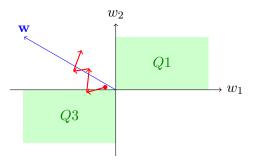
- weights can only all increase or all decrease together for a given sample
- to follow the direction of w, we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



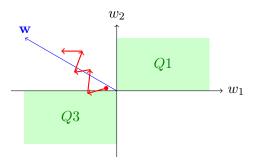
- weights can only all increase or all decrease together for a given sample
- to follow the direction of w, we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



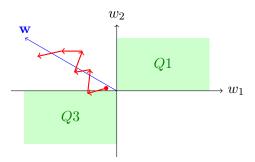
- weights can only all increase or all decrease together for a given sample
- to follow the direction of w, we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



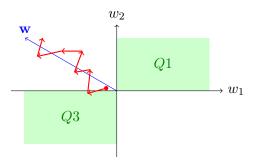
- weights can only all increase or all decrease together for a given sample
- to follow the direction of w, we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)



- weights can only all increase or all decrease together for a given sample
- to follow the direction of w, we can only do so by zig-zagging

- each weight derivative dw_i of layer 1 is $(da)x_i$ where da is the derivative of the activation and x_i is the corresponding input
- if all inputs are positive, then updates on weights w_i are either all positive (if da < 0, quadrant 1) or all negative (if da < 0, quadrant 3)

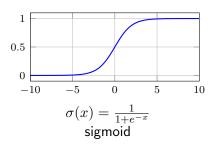


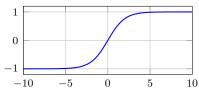
- weights can only all increase or all decrease together for a given sample
- to follow the direction of w, we can only do so by zig-zagging

activation normalization

- if normalization is important at the input, why not at every layer activation?
- this is even more important in the presence of saturating nonlinearities: given a wrong offset or scale, activation functions can 'die'
- and even more important in the presence of stochastic updates, where statistics change at every mini-batch and at every update (internal covariate shift)

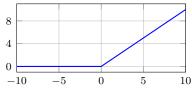
activation functions



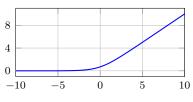


$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(x) - 1$$

hyperbolic tangent

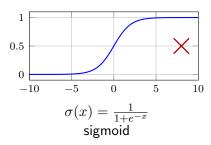


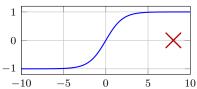
$${\rm relu}(x) = [x]_+ = \max(0,x)$$
 rectified linear unit (ReLU)



$$\zeta(x) = \log(1 + e^x)$$
 softplus

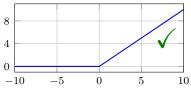
activation functions: non-localized



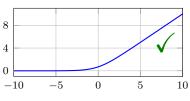


$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(x) - 1$$

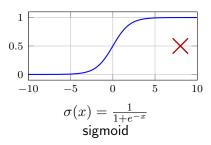
hyperbolic tangent

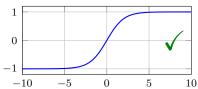


$${\rm relu}(x) = [x]_+ = \max(0,x)$$
 rectified linear unit (ReLU)



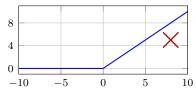
$$\zeta(x) = \log(1 + e^x)$$
softplus



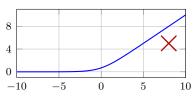


$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = 2\sigma(x) - 1$$

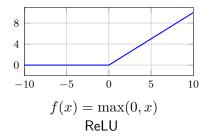
hyperbolic tangent

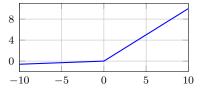


$${\rm relu}(x) = [x]_+ = \max(0,x)$$
 rectified linear unit (ReLU)



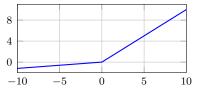
$$\zeta(x) = \log(1 + e^x)$$
 softplus





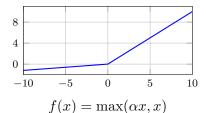
$$f(x) = \max(\alpha x, x)$$

leaky ReLU: $\alpha = 0.01$

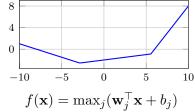


$$f(x) = \max(\alpha x, x)$$

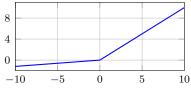
parametric ReLU: α is learned



parametric ReLU:
$$\alpha$$
 is learned

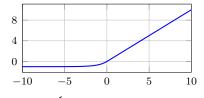


$$f(\mathbf{x}) = \max_{j} (\mathbf{w}_{j}^{\top} \mathbf{x} + b_{j})$$
maxout



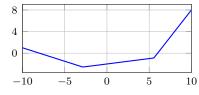
$$f(x) = \max(\alpha x, x)$$

parametric ReLU: α is learned



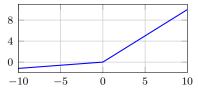
$$f(x) = \begin{cases} x, & \text{if } x > 0\\ \alpha(e^x - 1), & \text{if } x \le 0 \end{cases}$$

exponential linear unit (ELU)



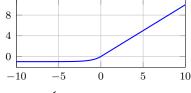
$$f(\mathbf{x}) = \max_{j} (\mathbf{w}_{j}^{\top} \mathbf{x} + b_{j})$$
maxout

activation functions: self-normalizing!

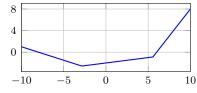


$$f(x) = \max(\alpha x, x)$$

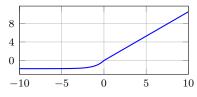
parametric ReLU: α is learned



$$f(x) = \begin{cases} x, & \text{if } x > 0\\ \alpha(e^x - 1), & \text{if } x \le 0 \end{cases}$$
exponential linear unit (ELU)



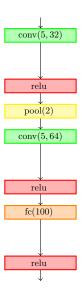
$$f(\mathbf{x}) = \max_{j} (\mathbf{w}_{j}^{\top} \mathbf{x} + b_{j})$$
maxout



$$f(x) = \lambda \left\{ \begin{array}{ll} x, & \text{if } x > 0 \\ \alpha(e^x - 1), & \text{if } x \leq 0 \end{array} \right.$$
 scaled ELU $(\lambda > 1)$

batch normalization (BN)

[loffe and Szegedy 2015]



• if $\mathbf{x} = (x_1, \dots, x_k)$ is the activation or feature at any layer, normalize it element-wise

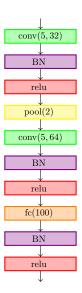
$$\hat{x}_j = \frac{x_j - \mathbb{E}(x_j)}{\sqrt{\operatorname{Var}(x_j)}}$$

to have zero-mean, unit-variance, where $\mathbb E$ and Var are empirical over the training set

 insert this layer after convolutional or fully-connected layers and before nonlinear activation functions (although this is not clear

batch normalization (BN)

[loffe and Szegedy 2015]



• if $\mathbf{x} = (x_1, \dots, x_k)$ is the activation or feature at any layer, normalize it element-wise

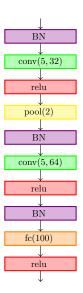
$$\hat{x}_j = \frac{x_j - \mathbb{E}(x_j)}{\sqrt{\operatorname{Var}(x_j)}}$$

to have zero-mean, unit-variance, where $\ensuremath{\mathbb{E}}$ and Var are empirical over the training set

 insert this layer after convolutional or fully-connected layers and before nonlinear activation functions (although this is not clear)

batch normalization (BN)

[loffe and Szegedy 2015]



• if $\mathbf{x} = (x_1, \dots, x_k)$ is the activation or feature at any layer, normalize it element-wise

$$\hat{x}_j = \frac{x_j - \mathbb{E}(x_j)}{\sqrt{\operatorname{Var}(x_j)}}$$

to have zero-mean, unit-variance, where $\ensuremath{\mathbb{E}}$ and Var are empirical over the training set

 insert this layer after convolutional or fully-connected layers and before nonlinear activation functions (although this is not clear)

batch normalization: parameters

- normalized features may remain in the linear regime of the following nonlinearity, limiting the representational power of the network
- introduce parameters $\beta = (\beta_1, \dots, \beta_k)$, $\gamma = (\gamma_1, \dots, \gamma_k)$ and let the output of the BN layer be $\mathbf{y} = (y_1, \dots, y_k)$ with

$$y_j = \gamma_j \hat{x}_j + \beta_j$$

or, element-wise,

$$y = \gamma \hat{x} + \beta$$

then, with

$$\beta_j = \mathbb{E}(x_j), \quad \gamma_j = \sqrt{\operatorname{Var}(x_j)}$$

we can recover the identity mapping if needed

batch normalization: parameters

- normalized features may remain in the linear regime of the following nonlinearity, limiting the representational power of the network
- introduce parameters $\beta = (\beta_1, \dots, \beta_k), \gamma = (\gamma_1, \dots, \gamma_k)$ and let the output of the BN layer be $\mathbf{y} = (y_1, \dots, y_k)$ with

$$y_j = \gamma_j \hat{x}_j + \beta_j$$

or, element-wise,

$$\mathbf{y} = \gamma \hat{\mathbf{x}} + \boldsymbol{\beta}$$

$$\beta_j = \mathbb{E}(x_j), \quad \gamma_j = \sqrt{\operatorname{Var}(x_j)}$$

batch normalization: parameters

- normalized features may remain in the linear regime of the following nonlinearity, limiting the representational power of the network
- introduce parameters $\beta = (\beta_1, \dots, \beta_k)$, $\gamma = (\gamma_1, \dots, \gamma_k)$ and let the output of the BN layer be $\mathbf{y} = (y_1, \dots, y_k)$ with

$$y_j = \gamma_j \hat{x}_j + \beta_j$$

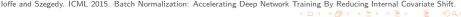
or, element-wise,

$$\mathbf{y} = \gamma \hat{\mathbf{x}} + \boldsymbol{\beta}$$

then, with

$$\beta_j = \mathbb{E}(x_j), \quad \gamma_j = \sqrt{\operatorname{Var}(x_j)}$$

we can recover the identity mapping if needed



batch normalization: training

- as the name suggests, BN learns using the mini-batch statistics
- given an index set I of mini-batch samples with |I|=m, the BN layer with parameters β , γ yields, for each sample feature \mathbf{x}_i with $i\in I$,

$$\mathbf{y}_i = \mathrm{BN}_{oldsymbol{eta}, oldsymbol{\gamma}}(\mathbf{x}_i) := oldsymbol{\gamma} rac{\mathbf{x}_i - oldsymbol{\mu}_I}{\sqrt{\mathbf{v}_I + \delta}} + oldsymbol{eta}$$

(element-wise), where μ_I , \mathbf{v}_I are the mini-batch mean and variance

$$\mu_I := \frac{1}{m} \sum_{i \in I} \mathbf{x}_i$$

$$\mathbf{v}_I := \frac{1}{m} \sum_{i \in I} (\mathbf{x}_i - \boldsymbol{\mu}_I)^2$$

batch normalization: inference

- at inference, BN operates with global statistics
- given a test sample feature ${\bf x}$, the BN layer with parameters ${m eta}, {m \gamma}$ yields (element-wise)

$$\mathbf{y} = \mathrm{BN}^{\mathrm{inf}}_{oldsymbol{eta}, oldsymbol{\gamma}}(\mathbf{x}) := oldsymbol{\gamma} rac{\mathbf{x} - oldsymbol{\mu}}{\sqrt{\mathbf{v} + \delta}} + oldsymbol{eta}$$

where μ , \mathbf{v} are moving averages of the training set mean and variance, updated at every mini-batch I during training as

$$\boldsymbol{\mu}^{(\tau+1)} := \alpha \boldsymbol{\mu}^{(\tau)} + (1 - \alpha) \boldsymbol{\mu}_I$$
$$\mathbf{v}^{(\tau+1)} := \alpha \mathbf{v}^{(\tau)} + (1 - \alpha) \mathbf{v}_I$$

so they track the accuracy of the model as it trains

batch normalization: derivatives*

- input mini-batch $m \times k$ matrix X, output $m \times k$ matrix Y
- forward

$$Y = \mathrm{BN}(X, (\boldsymbol{\beta}, \boldsymbol{\gamma}))$$

backward: exercise

$$dX = \dots dY \dots$$
$$d\beta = \dots dY \dots$$
$$d\gamma = \dots dY \dots$$

batch normalization: derivatives*

- input mini-batch $m \times k$ matrix X, output $m \times k$ matrix Y
- forward

$$Y = \mathrm{BN}(X, (\boldsymbol{\beta}, \boldsymbol{\gamma}))$$

backward: exercise

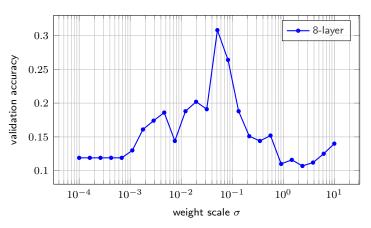
$$dX = \dots dY \dots$$
$$d\beta = \dots dY \dots$$
$$d\gamma = \dots dY \dots$$

batch normalization: convolution

- same as fully-connected, only now mean and variance are computed per feature map rather than per feature
- i.e. we average over mini-batch samples and spatial positions
- if feature map volumes are $w \times h \times k$, the effective mini-batch size at training becomes m' = mwh, and

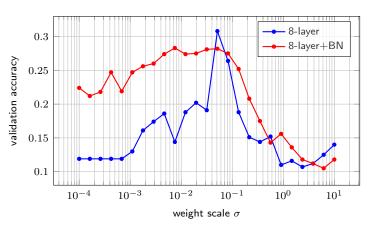
$$egin{aligned} oldsymbol{\mu}_I &:= rac{1}{m'} \sum_{i \in I} \sum_{\mathbf{n}} \mathbf{x}_i[\mathbf{n}] \ \mathbf{v}_I &:= rac{1}{m'} \sum_{i \in I} \sum_{\mathbf{n}} (\mathbf{x}_i[\mathbf{n}] - oldsymbol{\mu}_I)^2 \end{aligned}$$

remember weight scale sensitivity?



- using $\mathcal{N}(0, \sigma^2)$, training on a small subset of the training set and cross-validating σ reveals a narrow peak in validation accuracy
- BN allows convergence over a much wider range of weight scales

remember weight scale sensitivity?



- using $\mathcal{N}(0, \sigma^2)$, training on a small subset of the training set and cross-validating σ reveals a narrow peak in validation accuracy
- BN allows convergence over a much wider range of weight scales

batch normalization: weight scale*

if BN is connected at the output activation of an affine layer

$$\mathbf{a} = W^{\top} \mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top} \mathbf{x} + \mathbf{b})$$

the bias ${f b}$ is absorbed into ${m eta}$ and the layer is replaced by

$$\mathbf{x}' = h(\mathrm{BN}(W^{\top}\mathbf{x}))$$

the layer and its Jacobian are then unaffected by weight scale

$$\frac{\mathrm{BN}(aW^{\top}\mathbf{x}) = \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}}$$

moreover, larger weights yield smaller gradients, stabilizing growth

$$\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial (aW)} = \frac{1}{a} \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial W}$$

batch normalization: weight scale*

if BN is connected at the output activation of an affine layer

$$\mathbf{a} = W^{\top} \mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top} \mathbf{x} + \mathbf{b})$$

the bias ${f b}$ is absorbed into ${m eta}$ and the layer is replaced by

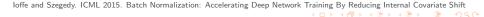
$$\mathbf{x}' = h(\mathrm{BN}(W^{\top}\mathbf{x}))$$

the layer and its Jacobian are then unaffected by weight scale

$$\frac{\mathrm{BN}(aW^{\top}\mathbf{x}) = \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}}$$

moreover, larger weights yield smaller gradients, stabilizing growth

$$\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial (aW)} = \frac{1}{a} \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial W}$$



batch normalization: weight scale*

if BN is connected at the output activation of an affine layer

$$\mathbf{a} = W^{\top} \mathbf{x} + \mathbf{b}, \quad \mathbf{x}' = h(\mathbf{a}) = h(W^{\top} \mathbf{x} + \mathbf{b})$$

the bias ${f b}$ is absorbed into ${m eta}$ and the layer is replaced by

$$\mathbf{x}' = h(\mathrm{BN}(W^{\top}\mathbf{x}))$$

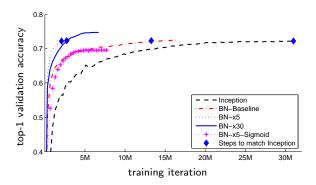
the layer and its Jacobian are then unaffected by weight scale

$$\frac{\mathrm{BN}(aW^{\top}\mathbf{x}) = \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial \mathbf{x}}$$

moreover, larger weights yield smaller gradients, stabilizing growth

$$\frac{\partial \mathrm{BN}(aW^{\top}\mathbf{x})}{\partial (aW)} = \frac{1}{a} \frac{\partial \mathrm{BN}(W^{\top}\mathbf{x})}{\partial W}$$

batch normalization: modified GoogLeNet



allows to

- increase learning rate, accelerate learning rate decay
- reduce weight decay, reduce or remove dropout
- remove data augmentation such as photometric distortions
- remove local response normalization

layer normalization*

[Ba et al. 2016]

• the LN layer with parameters β , γ yields, for each sample feature $\mathbf{x} = (x_1, \dots, x_k)$,

$$\mathbf{y} = LN_{\boldsymbol{\beta}, \boldsymbol{\gamma}}(\mathbf{x}) := \boldsymbol{\gamma} \frac{\mathbf{x} - \mu}{\sqrt{v + \delta}} + \boldsymbol{\beta}$$

(element-wise), where μ , v are the sample mean and variance

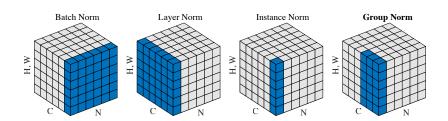
$$\mu := \frac{1}{k} \sum_{j=1}^{k} x_j$$

$$v := \frac{1}{k} \sum_{j=1}^{k} (x_j - \mu)^2$$

• training and inference are now identical and independent of mini-batch

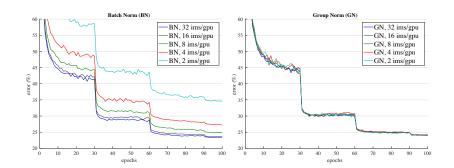
group normalization*

[Wu and He 2018]



- training and inference are identical and independent of mini-batch like layer normalization.
- statistics are measured over groups of channels

group normalization*



- ResNet50 validation error on ImageNet
- batch norm is sensitive to mini-batch size, group norm is not

weight normalization*

[Salimans and Kingma 2016]

• considering a single affine unit $\mathbf{y} = h(\mathbf{w}^{\top}\mathbf{x} + b)$, weights \mathbf{w} are re-parametrized

$$\mathbf{w} = g \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

its derivatives are given by

$$dg = d\mathbf{w}^{\top} \frac{\mathbf{v}}{\|\mathbf{v}\|}, \quad d\mathbf{v}^{\top} = \frac{g}{\|\mathbf{v}\|} d\mathbf{w}^{\top} \left(I - \frac{\mathbf{v}\mathbf{v}^{\top}}{\|\mathbf{v}\|^{2}}\right)$$

- $d\mathbf{w}$ is scaled by $\frac{g}{\|\mathbf{v}\|}$ and projected in a direction normal to \mathbf{v} (and \mathbf{w})
- during learning, $\|\mathbf{v}\|$ increases monotonically: $\|\mathbf{v}^{(\tau+1)}\| \geq \|\mathbf{v}^{(\tau)}\|$
- if $\|d\mathbf{v}\|$ is large, the scaling factor $\frac{g}{\|\mathbf{v}\|}$ decreases; and if it is small, $\|\mathbf{v}\|$ stops increasing: the effect is similar to RMSprop

summary (so far)

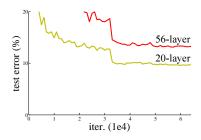
- the deeper the network, the more we need to learn all parameters at the same rate
- in the absence of second order derivatives, optimizers attempt to do so by moving averages and normalization over the training iterations
- initialization should be designed such that activations, their derivatives and parameter derivatives are initially well balanced
- it is more effective to modify the objective function itself such that these properties are maintained during optimization

summary (so far)

- the deeper the network, the more we need to learn all parameters at the same rate
- in the absence of second order derivatives, optimizers attempt to do so by moving averages and normalization over the training iterations
- initialization should be designed such that activations, their derivatives and parameter derivatives are initially well balanced
- it is more effective to modify the objective function itself such that these properties are maintained during optimization

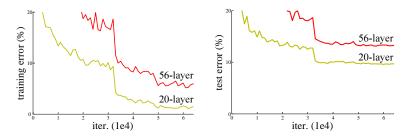
deeper architectures

going even deeper

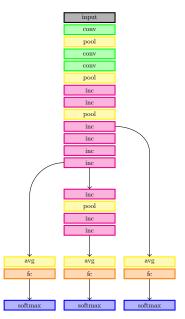


- \bullet when initialization, normalization and optimization are appropriately addressed, we can train networks with 50 layers "from scratch"
- a degradation of test error is now exposed with increasing depth, which looks like overfitting (CIFAR10 shown here)
- however, the same degradation appears also at training error

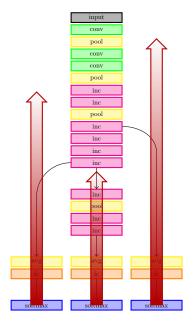
going even deeper



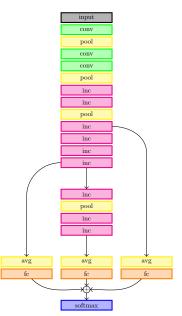
- when initialization, normalization and optimization are appropriately addressed, we can train networks with 50 layers "from scratch"
- a degradation of test error is now exposed with increasing depth, which looks like overfitting (CIFAR10 shown here)
- however, the same degradation appears also at training error



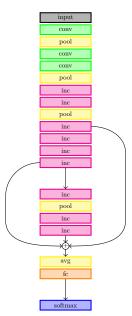
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern
- the result is two skip connections that can be maintained at inference



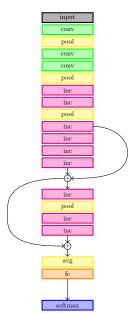
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern
- the result is two skip connections that can be maintained at inference



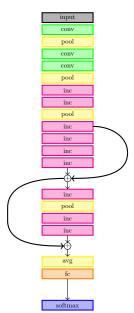
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern
- the result is two skip connections that can be maintained at inference



- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern
- the result is two skip connections that can be maintained at inference



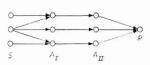
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern
- the result is two skip connections that can be maintained at inference



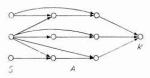
- GoogLeNet has two auxiliary classifiers that are discarded at inference
- these classifiers inject gradient signal deeper backwards
- we now transform the network in ways that are not necessarily equivalent, but maintain this backward flow pattern
- the result is two skip connections that can be maintained at inference

skip connections are not new

the network diagram:

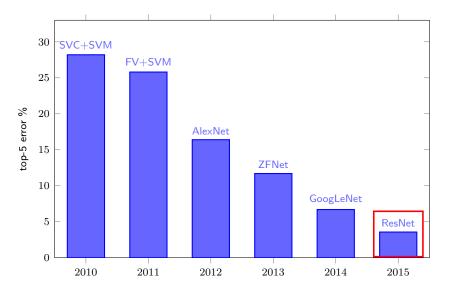


represents a four-layer series-coupled system, whereas the diagram



represents a three-layer cross coupled system, since all A-units are at least the same logical distance from the sensory units (see Definition 18,

ImageNet classification performance

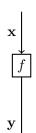


residual networks

[He et al. 2016]



- 3.57% top-5 error on ILSVRC'15
- won first place on several ILSVRC and COCO 2015 tasks
- depth increased to 152 layers, kernel size mostly 3×3
- residual unit repeated up to 50 times
- 1×1 kernels used as "bottleneck" layers
- up to 10× more operations but same parameters as AlexNet

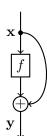


ullet "plain" unit: f is the mapping

$$\mathbf{y} = f(\mathbf{x})$$

$$y = x + f(x)$$

- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear lavers"

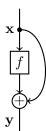


• "plain" unit: f is the mapping

$$\mathbf{y} = f(\mathbf{x})$$

$$\mathbf{y} = \mathbf{x} + f(\mathbf{x})$$

- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear layers"

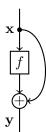


"plain" unit: f is the mapping

$$\mathbf{y} = f(\mathbf{x})$$

$$\mathbf{y} = \mathbf{x} + f(\mathbf{x})$$

- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear layers"

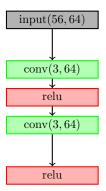


"plain" unit: f is the mapping

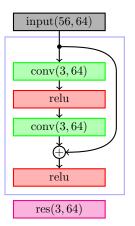
$$\mathbf{y} = f(\mathbf{x})$$

$$\mathbf{y} = \mathbf{x} + f(\mathbf{x})$$

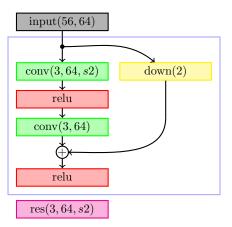
- by copying the features of a shallow model and setting the new mapping to the identity, a deeper model performs at least as well as the shallow one
- "if an identity mapping were optimal, it would be easier to push a residual to zero than to fit an identity mapping by a stack of nonlinear layers"



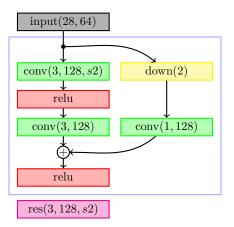
 "plain" unit, with nonlinearities shown separately, and batch normalization included in each convolutional layer



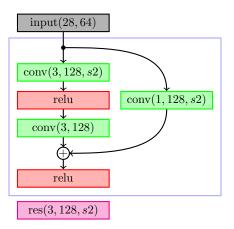
• residual unit, with a skip connection over the two convolutional layers and the relu between them



 \bullet stride 2 in the first convolutional layer, along with downsampling on the skip connection

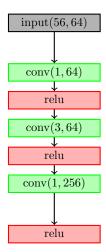


• increasing the number of features, along with a 1×1 convolution on the skip connection to project to the new feature space



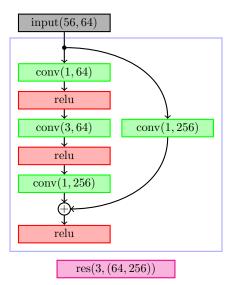
• which is the same as a single 1×1 convolution with stride 2, both downsampling and projecting

residual bottleneck unit



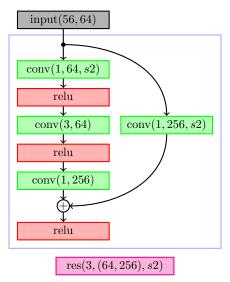
• "plain" bottleneck unit, with 1×1 convolutions

residual bottleneck unit



residual bottleneck unit with a skip connection, always projecting

residual bottleneck unit



stride 2 in the first convolutional and the skip layer

ResNet-34

		parameters	operations	volume
	input(224,3)	0	0	$224\times224\times3$
	$\overline{\operatorname{conv}(7,64,p3,s2)}$	9,472	118,816,768	$112\times112\times64$
	$\operatorname{pool}(3, 2, p1)$	0	802,816	$56\times 56\times 64$
$3\times$	res(3, 64)	221, 568	694, 837, 248	$56\times 56\times 64$
Ī	res(3, 128, s2)	229,760	180, 182, 016	$28\times28\times128$
$3\times$	res(3, 128)	885, 504	694, 235, 136	$28\times28\times128$
Ī	$\operatorname{res}(3,256,s2)$	918, 272	180,006,400	$14\times14\times256$
$5\times$	res(3, 256)	5,900,800	1, 156, 556, 800	$14\times14\times256$
Ī	$\operatorname{res}(3,512,s2)$	3,671,552	179,918,592	$7\times7\times512$
$2\times$	res(3, 512)	9, 439, 232	462, 522, 368	$7\times7\times512$
	avg(7)	0	25,088	512
	fc(1000)	513,000	513,000	1000
	softmax	0	1,000	1000

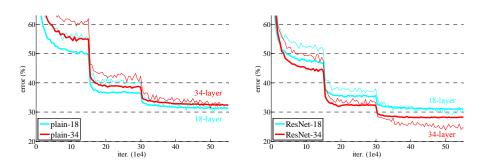
- $3\times$ more operations but $3\times$ less parameters comparing to AlexNet

ResNet-101

		parameters	operations	volume
	input(224,3)	0	0	$224\times224\times3$
	$\overline{\operatorname{conv}(7,64,p3,s2)}$	9,472	118,816,768	$112\times112\times64$
	$\operatorname{pool}(3, 2, p1)$	0	802,816	$56\times 56\times 64$
$3\times$	res(3, (64, 256))	214,400	672, 358, 400	$56\times56\times256$
	res(3, (128, 512), s2)	378, 112	296,640,512	$28\times28\times512$
$3\times$	res(3, (128, 512))	837, 888	656,904,192	$28\times28\times512$
	res(3, (256, 1024), s2)	1,509,888	296,038,400	$14\times14\times1024$
$22\times$	res(3, (256, 1024))	24,544,256	4,810,674,176	$14\times14\times1024$
	res(3, (512, 2048), s2)	6,034,432	295,737,344	$7\times7\times2048$
$2\times$	res(3, (512, 2048))	8,919,040	437,032,960	$7\times7\times2048$
	avg(7)	0	100, 352	2048
	fc(1000)	2,049,000	2,049,000	1000
	softmax	0	1,000	1000

- $7\times$ more operations but $1.5\times$ less parameters comparing to AlexNet

ResNet-34: ImageNet



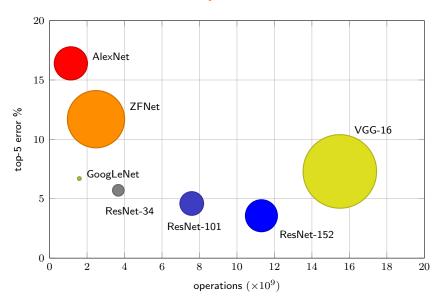
- a plain network exhibits degradation with increasing depth
- while a residual network gains from increasing depth

ResNet models

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$ \begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹		

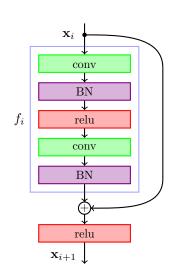
• downsampling by 2 at layers conv3_1, conv4_1, conv5_1

network performance



identity mappings*

[He et al. 2016]



 original residual unit, with relu and BN shown separately, where h is relu

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + f_i(\mathbf{x}_i))$$

 re-designed unit, with a more direct path through skip connections, and relu and BN acting as pre-activation

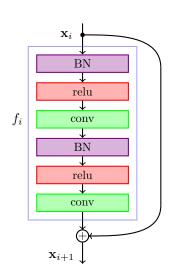
$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

recursively, there is a residual between any units ℓ_1 , ℓ_2

$$\mathbf{x}_{\ell_2} = \mathbf{x}_{\ell_1} + \sum_{i=\ell_1}^{\ell_2 - 1} f_i(\mathbf{x}_i)$$

identity mappings*

[He et al. 2016]



 original residual unit, with relu and BN shown separately, where h is relu

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + f_i(\mathbf{x}_i))$$

• re-designed unit, with a more direct path through skip connections, and ${\rm relu}$ and ${\rm BN}$ acting as pre-activation

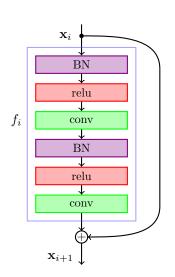
$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

• recursively, there is a residual between any units $\ell_1,\,\ell_2$

$$\mathbf{x}_{\ell_2} = \mathbf{x}_{\ell_1} + \sum_{i=\ell_1}^{\ell_2 - 1} f_i(\mathbf{x}_i)$$

identity mappings*

[He et al. 2016]



 original residual unit, with relu and BN shown separately, where h is relu

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + f_i(\mathbf{x}_i))$$

ullet re-designed unit, with a more direct path through skip connections, and relu and BN acting as pre-activation

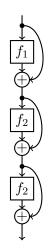
$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

• recursively, there is a residual between any units ℓ_1 , ℓ_2

$$\mathbf{x}_{\ell_2} = \mathbf{x}_{\ell_1} + \sum_{i=\ell_1}^{\ell_2-1} f_i(\mathbf{x}_i)$$

residual networks as ensembles*

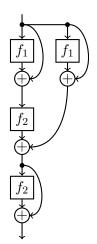
[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layers, most gradient comes from paths that are 10-34 layers deep

residual networks as ensembles*

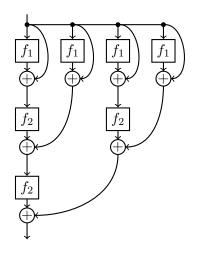
[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layers, most gradient comes from paths that are 10-34 layers deep

residual networks as ensembles*

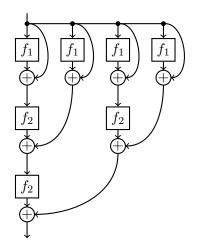
[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layers, most gradient comes from paths that are 10-34 layers deep

residual networks as ensembles*

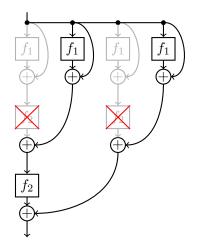
[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layers, most gradient comes from paths that are 10-34 layers deep

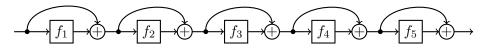
residual networks as ensembles*

[Veit et al. 2016]



- residual network with identity mappings
- "unraveled" view where residual units are duplicated
- ensemble of networks of different lengths, with cardinality exponential in network depth
- dropping a layer is just zeroing half of the paths
- in a network of 110 layers, most gradient comes from paths that are 10-34 layers deep

[Huang et al. 2016]



- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{b}_i f_i(\mathbf{x}_i))$$

where $b_i \in \{0,1\}$ a Bernoulli random variable

ullet at inference, use all layers weighted by survival probabilities $p_i=\mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

[Huang et al. 2016]

- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{b}_i f_i(\mathbf{x}_i))$$

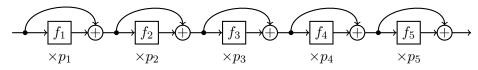
where $b_i \in \{0,1\}$ a Bernoulli random variable

ullet at inference, use all layers weighted by survival probabilities $p_i=\mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

[Huang et al. 2016]



- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{b}_i f_i(\mathbf{x}_i))$$

where $b_i \in \{0,1\}$ a Bernoulli random variable

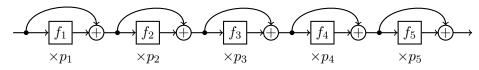
ullet at inference, use all layers weighted by survival probabilities $p_i=\mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

Huang, Sun, Liu, Sedra and Weinberger. ECCV 2016. Deep Networks with Stochastic Depth.

[Huang et al. 2016]



- (original) residual network
- at each training iteration, randomly drop a subset of layers

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{b}_i f_i(\mathbf{x}_i))$$

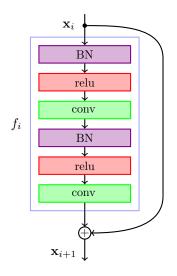
where $b_i \in \{0,1\}$ a Bernoulli random variable

ullet at inference, use all layers weighted by survival probabilities $p_i=\mathbb{E}(b_i)$

$$\mathbf{x}_{i+1} = h(\mathbf{x}_i + \mathbf{p}_i f_i(\mathbf{x}_i))$$

speeds up training, reduces test error

[Huang et al. 2017]



residual unit with identity mapping: add

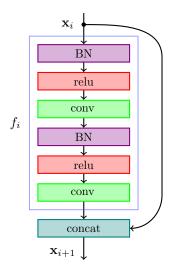
$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

densely connected unit: concatenate

$$\mathbf{x}_{i+1} = (\mathbf{x}_i, f_i(\mathbf{x}_i))$$

- feature map dimension increases by growth rate k at each unit
- a dense block is a chain of densely connected units
- a transition layer reduces feature map dimension by a factor $\theta = 2$

[Huang et al. 2017]



residual unit with identity mapping: add

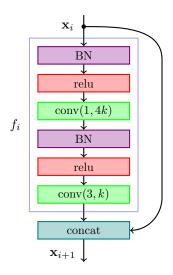
$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

densely connected unit: concatenate

$$\mathbf{x}_{i+1} = (\mathbf{x}_i, f_i(\mathbf{x}_i))$$

- feature map dimension increases by growth rate k at each unit
- a dense block is a chain of densely connected units
- a transition layer reduces feature map dimension by a factor $\theta = 2$

[Huang et al. 2017]



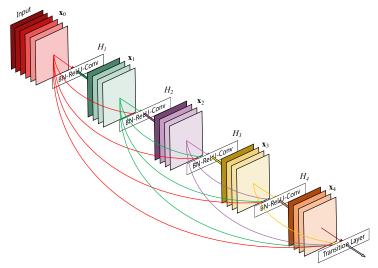
residual unit with identity mapping: add

$$\mathbf{x}_{i+1} = \mathbf{x}_i + f_i(\mathbf{x}_i)$$

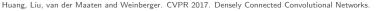
densely connected unit: concatenate

$$\mathbf{x}_{i+1} = (\mathbf{x}_i, f_i(\mathbf{x}_i))$$

- feature map dimension increases by growth rate k at each unit
- a dense block is a chain of densely connected units
- a transition layer reduces feature map dimension by a factor $\theta=2$



dense block followed by transition layer

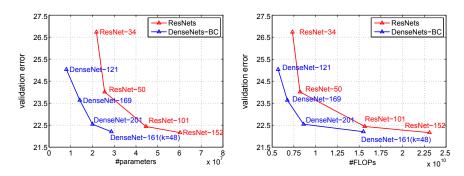


DenseNet models

Layers	Output Size	DenseNet-121($k = 32$)	DenseNet-169 $(k = 32)$	DenseNet-201($k = 32$)	DenseNet-161 $(k = 48)$
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3 × 3 max pool, stride 2			
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28 × 28	2 × 2 average pool, stride 2			
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix} \times 12 \begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix} \times 12$	
(2)		3 × 3 conv	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	3 × 3 conv	3 × 3 conv
Transition Layer	28 × 28	1 × 1 conv			
(2)	14 × 14	2 × 2 average pool, stride 2			
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32 \qquad \begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	[1 × 1 conv]	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 36 \end{bmatrix}$
(3)		3 × 3 conv		3 × 3 conv x 30	
Transition Layer	14 × 14	1 × 1 conv			
(3)	7 × 7	2 × 2 average pool, stride 2			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 16 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 32 \end{bmatrix}$	$1 \times 1 \text{ conv}$ $\times 24$
(4)		3 × 3 conv	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3/2}$	3 × 3 conv 3 × 24
Classification	1 × 1	7×7 global average pool			
Layer		1000D fully-connected, softmax			

• input is 224×224 ; first convolutional layer produces 2k features; transition layer reduces dimension and resolution by 2

DenseNet vs. ResNet: ImageNet



- top-1 single-crop ImageNet validation error
- encourages feature re-use and reduces the number of parameters

summary

- optimizers: gradient descent, momentum, RMSprop, Adam, Hessian-free*
- initialization: Gaussian matrices, unit variance, orthogonal*, data-dependent*
- normalization: input, batch, layer*, group*, weight*
- deeper architectures: residual networks, identity mappings*, networks with stochastic depth*, densely connected networks
- all parameters should be learned at the same rate, and all features computed by some layer should be re-used by the following layers
- initialization, normalization and architecture should be designed such that these properties hold initially and are maintained during training