lecture 2: visual representation deep learning for vision

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, Nov. 2019 - Jan. 2020

logistics

- planning: to be updated gradually
- material marked as xxxx* is optional

logistics

- planning: to be updated gradually
- material marked as xxxx* is optional

outline

introduction receptive fields visual descriptors feature hierarchy

introduction

image retrieval challenges

image retrieval challenges

- scale
- viewpoint
- occlusion
- background clutter
- lighting

image retrieval challenges

- scale
- viewpoint
- occlusion
- background clutter
- lighting

- discriminative power
- distractors

image classification challenges

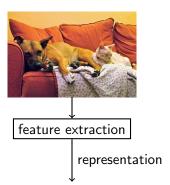
image classification challenges

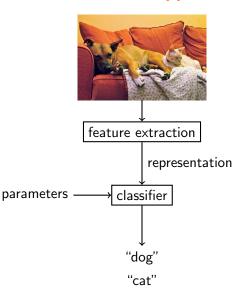
- scale
- viewpoint
- occlusion
- background clutter
- lighting

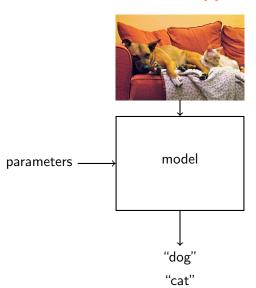
image classification challenges

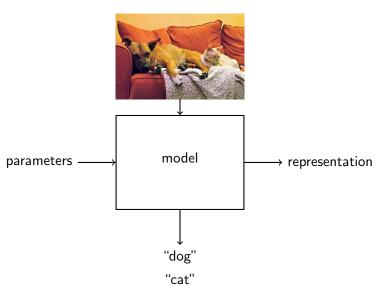
- scale
- viewpoint
- occlusion
- background clutter
- lighting

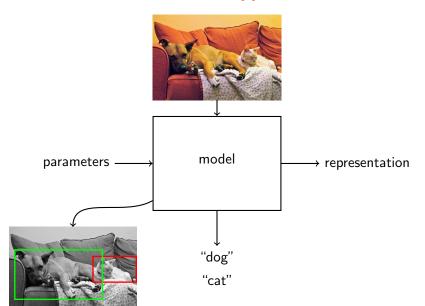
- number of instances
- texture/color
- pose
- deformability
- intra-class variability

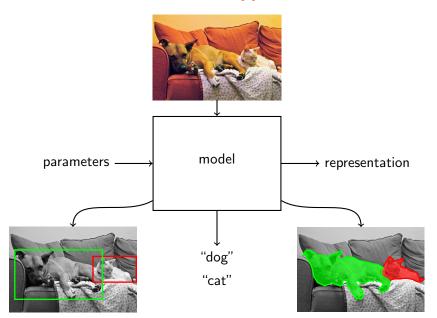






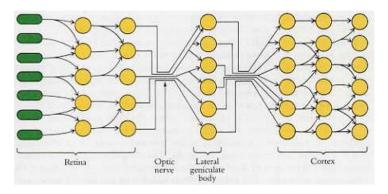






receptive fields

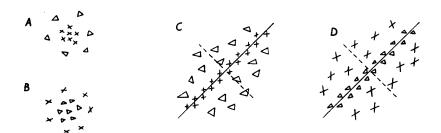
topographic mapping: translation equivariance



- as you move along the retina, the corresponding points in the cortex trace a continuous path
- each column represents a two-dimensional array of cells
- a translation in the input causes a translation in the representation

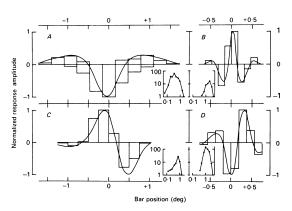
receptive fields

[Hubel and Wiesel 1962]



- A: 'on'-center LGN; B: 'off'-center LGN; C, D: simple cortical
- ★: excitatory ('on'), △: inhibitory ('off') responses
- localized responses, orientation selectivity

linearity



- simple cells perform linear spatial summation over their receptive fields
- spatial response (by oriented bars of varying position)
- frequency response (by oriented gratings of varying frequency)

linear time-invariant (LTI) systems

- discrete-time signal: x[n], $n \in \mathbb{Z}$
- translation (or shift, or delay): $s_k(x)[n] = x[n-k], k \in \mathbb{Z}$
- linear system (or filter): system commutes with linear combination

$$f\left(\sum_{i} a_{i} x_{i}\right) = \sum_{i} a_{i} f(x_{i})$$

 time-invariant (or translation equivariant): system commutes with translation

$$f(s_k(x)) = s_k(f(x))$$

linear time-invariant (LTI) systems

- discrete-time signal: x[n], $n \in \mathbb{Z}$
- translation (or shift, or delay): $s_k(x)[n] = x[n-k], k \in \mathbb{Z}$
- linear system (or filter): system commutes with linear combination

$$f\left(\sum_{i} a_{i} x_{i}\right) = \sum_{i} a_{i} f(x_{i})$$

 time-invariant (or translation equivariant): system commutes with translation

$$f(s_k(x)) = s_k(f(x))$$

linear time-invariant (LTI) systems

- discrete-time signal: x[n], $n \in \mathbb{Z}$
- translation (or shift, or delay): $s_k(x)[n] = x[n-k], k \in \mathbb{Z}$
- linear system (or filter): system commutes with linear combination

$$f\left(\sum_{i} a_{i} x_{i}\right) = \sum_{i} a_{i} f(x_{i})$$

 time-invariant (or translation equivariant): system commutes with translation

$$f(s_k(x)) = s_k(f(x))$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

• if f is LTI with impulse response $h=f(\delta)$, then f(x)=x*h:

$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] = (x+h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

• if f is LTI with impulse response $h = f(\delta)$, then f(x) = x * h:

$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x*h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

• if f is LTI with impulse response $h = f(\delta)$ for f(x) = x * h:

$$f(x)[n] = f\left(\sum_{k} x[k]s_{k}(\delta)\right)[n] = \sum_{k} x[k]s_{k}(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x+h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

• if f is LTI with impulse response $h = f(\delta)$, then f(x) = x * h:

$$f(x)[n] = f\left(\sum_{k} x[k]s_{k}(\delta)\right)[n] = \sum_{k} x[k]s_{k}(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x + h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

• if f is LTI with impulse response $h = f(\delta)$, then f(x) = x * h:

$$f(x)[n] = f\left(\sum_{k} x[k]s_{k}(\delta)\right)[n] = \sum_{k} x[k]s_{k}(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x+h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

• if f is LTI with impulse response $h = f(\delta)$, then f(x) = x * h:

$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] = (x*h)[n]$$

- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

• if f is LTI with impulse response $h = f(\delta)$, then f(x) = x * h:

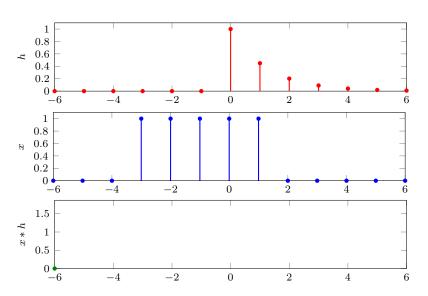
$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x*h)[n]$$

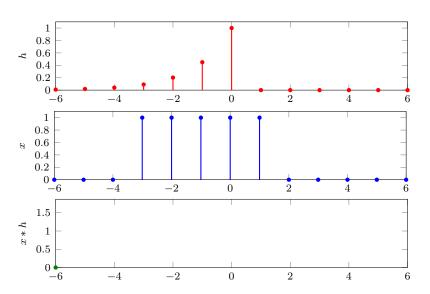
- unit impulse $\delta[n] = \mathbb{1}[n=0]$
- ullet every signal x expressed as

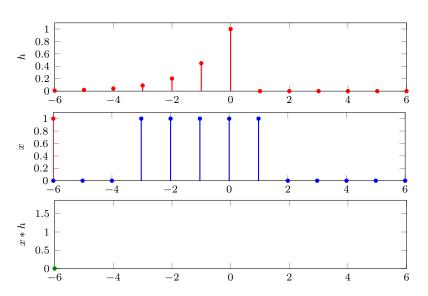
$$x[n] = \sum_{k} x[k]\delta[n-k] = \sum_{k} x[k]s_k(\delta)[n]$$

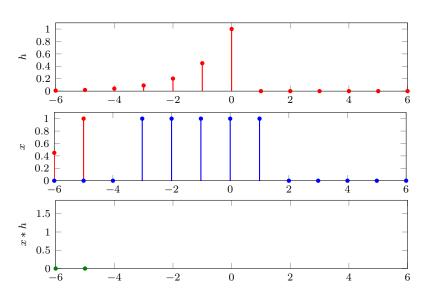
• if f is LTI with impulse response $h = f(\delta)$, then f(x) = x * h:

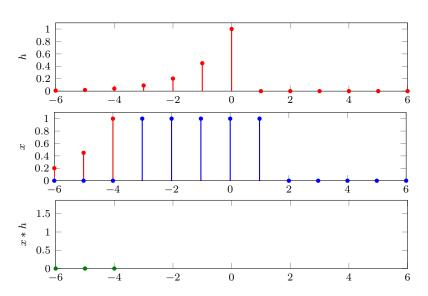
$$f(x)[n] = f\left(\sum_{k} x[k]s_k(\delta)\right)[n] = \sum_{k} x[k]s_k(f(\delta))[n]$$
$$= \sum_{k} x[k]h[n-k] := (x*h)[n]$$

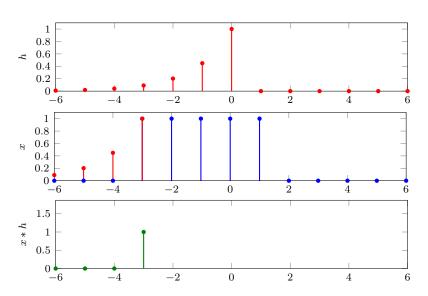


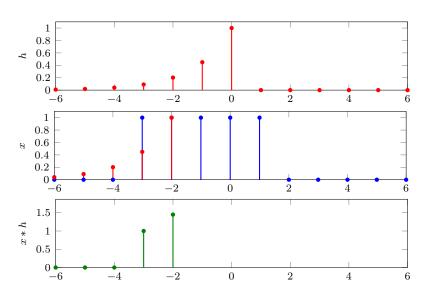


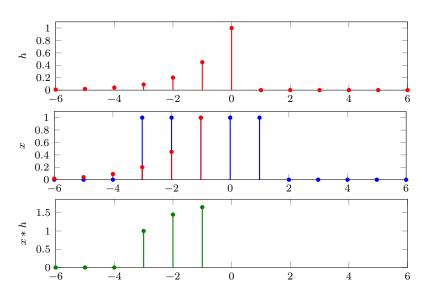


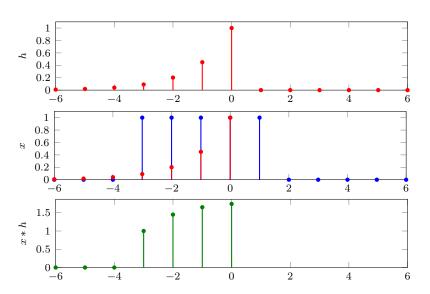


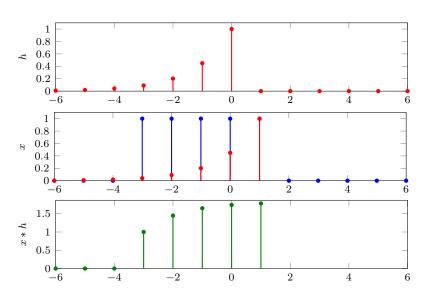


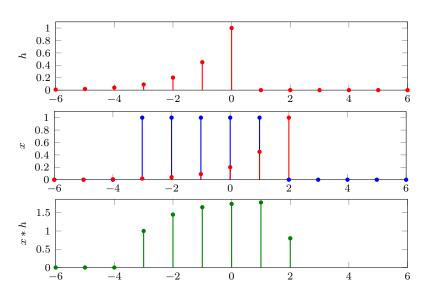


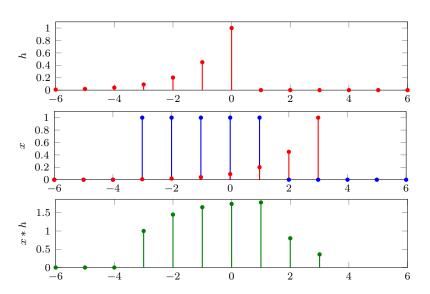


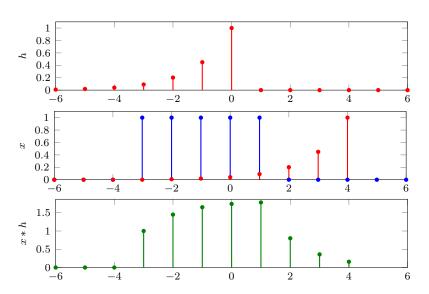


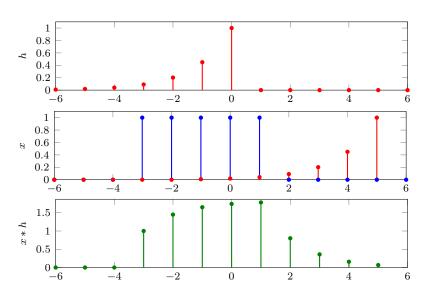


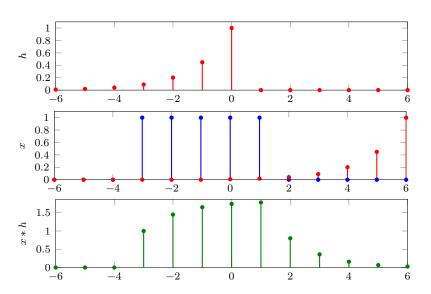


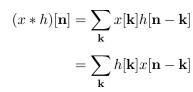


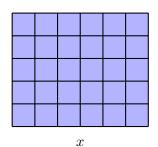


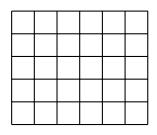


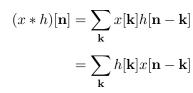


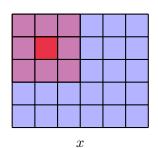


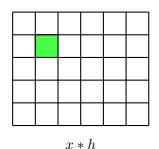




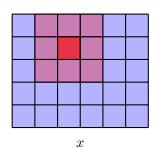


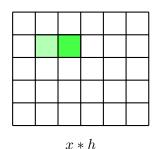


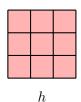




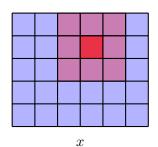
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$

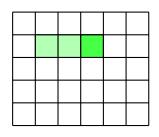


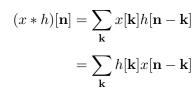


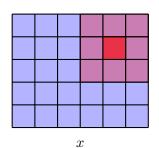


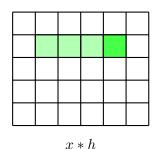
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



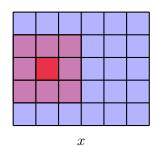


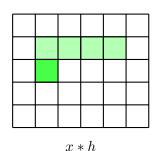




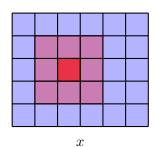


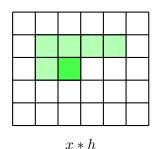
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$

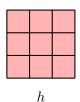


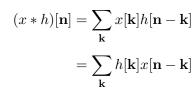


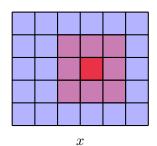
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$

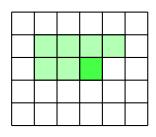




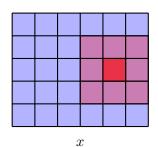


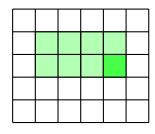




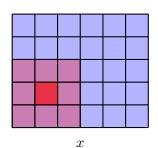


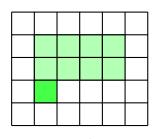
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



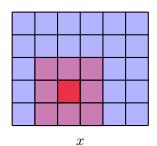


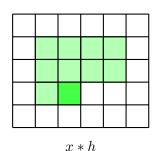
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



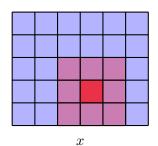


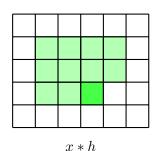
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$



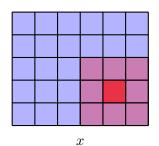


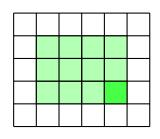
$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$





$$(x*h)[\mathbf{n}] = \sum_{\mathbf{k}} x[\mathbf{k}]h[\mathbf{n} - \mathbf{k}]$$
$$= \sum_{\mathbf{k}} h[\mathbf{k}]x[\mathbf{n} - \mathbf{k}]$$





continuous time

- continuous-time signal: x(t), $t \in \mathbb{R}$
- translation (or shift, or delay): $s_{\tau}(x)(t) = x(t-\tau)$, $\tau \in \mathbb{R}$
- LTI system definition: same
- Dirac delta "function" δ : every signal x expressed as

$$x(t) = \int x(\tau)\delta(t - \tau)d\tau$$

• convolution: f LTI, impulse response $h = f(\delta)$ implies

$$f(x)(t) = (x * h)(t) := \int x(\tau)h(t - \tau)d\tau$$

continuous time

- continuous-time signal: x(t), $t \in \mathbb{R}$
- translation (or shift, or delay): $s_{\tau}(x)(t) = x(t-\tau)$, $\tau \in \mathbb{R}$
- LTI system definition: same
- Dirac delta "function" δ : every signal x expressed as

$$x(t) = \int x(\tau)\delta(t-\tau)d\tau$$

• convolution: f LTI, impulse response $h=f(\delta)$ implies

$$f(x)(t) = (x * h)(t) := \int x(\tau)h(t - \tau)d\tau$$

continuous time

- continuous-time signal: x(t), $t \in \mathbb{R}$
- translation (or shift, or delay): $s_{\tau}(x)(t) = x(t-\tau)$, $\tau \in \mathbb{R}$
- LTI system definition: same
- Dirac delta "function" δ : every signal x expressed as

$$x(t) = \int x(\tau)\delta(t-\tau)d\tau$$

• convolution: f LTI, impulse response $h = f(\delta)$ implies

$$f(x)(t) = (x * h)(t) := \int x(\tau)h(t - \tau)d\tau$$

ullet time (or space) o frequency

$$X(f) = \int x(t)e^{-j2\pi ft} dt$$

• frequency \rightarrow time (or space)

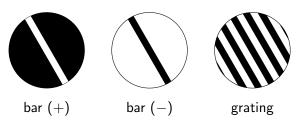
$$x(t) = \int X(f)e^{j2\pi ft} df$$

time (or space) → frequency

$$X(f) = \int x(t)e^{-j2\pi ft} dt$$

frequency → time (or space)

$$x(t) = \int X(f)e^{j2\pi ft} df$$

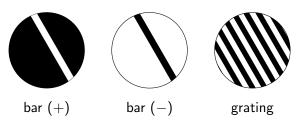


time (or space) → frequency

$$X(f) = \int x(t)e^{-j2\pi ft} dt$$

frequency → time (or space)

$$x(t) = \int X(f)e^{j2\pi ft} df$$

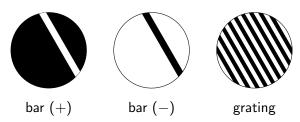


time (or space) → frequency

$$X(f) = \int x(t)e^{-j2\pi ft} dt$$

frequency → time (or space)

$$x(t) = \int X(f)e^{j2\pi ft} df$$

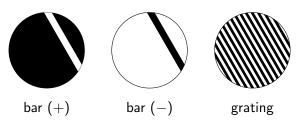


time (or space) → frequency

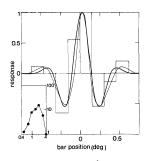
$$X(f) = \int x(t)e^{-j2\pi ft} dt$$

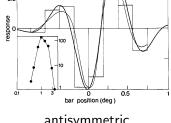
frequency → time (or space)

$$x(t) = \int X(f)e^{j2\pi ft} df$$



mathematical model



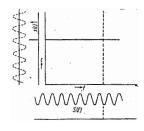


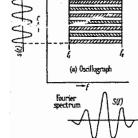
symmetric symmetric antisymmetric $e^{-a^2(x-x_0)^2}\cos(2\pi f_0(x-x_0)) \quad e^{-a^2(x-x_0)^2}\sin(2\pi f_0(x-x_0))$

antisymmetric
$$e^{-a^2(x-x_0)^2}\sin(2\pi f_0(x-x_0))$$

- (thin) experimental: inverse Fourier of grating stimuli responses
- (thick) least-squares fit of Gabor elementary signal

Gabor elementary signals





"effective duration"

$$\Delta t = [2\pi \overline{(t-\overline{t})^2}]^{1/2}$$

"effective bandwidth"

$$\Delta f = [2\pi \overline{(f - \overline{f})^2}]^{1/2}$$

uncertainty principle

$$\Delta t \Delta f \ge \frac{1}{2}$$

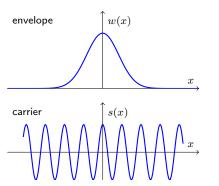
minimal solution

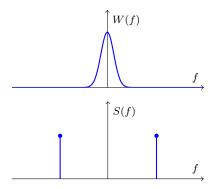
$$\psi(t) = e^{-a^2(t-t_0)^2} e^{j2\pi f_0(t-t_0)}$$

convolution theorem & modulation

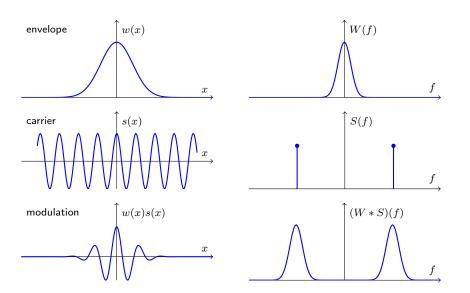


convolution theorem & modulation

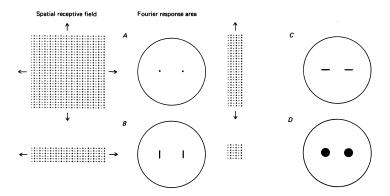




convolution theorem & modulation

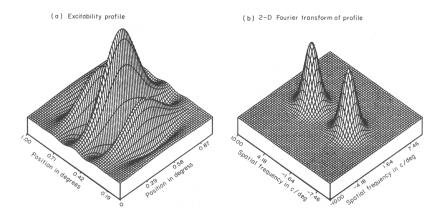


2d space/frequency considerations



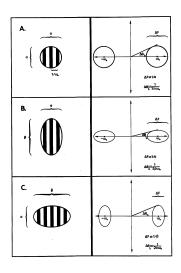
- responses to gratings at different frequencies and orientations
- localized in space and frequency, in both dimensions

2d space/frequency considerations



- spatial frequency and orientation are separable
- by inverse Fourier, hypothesize a 2d spatial 'receptive field profile'

2d Gabor filters



2d uncertainty principle

$$\Delta \mathbf{x} \Delta \mathbf{u} \ge \frac{1}{4}$$

minimal solution

$$f(\mathbf{x}) = e^{-\pi w_{\mathbf{x}_0, A}(\mathbf{x})} e^{j2\pi c_{\mathbf{x}_0, \mathbf{u}_0}(\mathbf{x})}$$
$$F(\mathbf{u}) = e^{-\pi w_{\mathbf{u}_0, A^{-1}}(\mathbf{u})} e^{j2\pi c_{\mathbf{u}_0, \mathbf{x}_0}(\mathbf{u})}$$

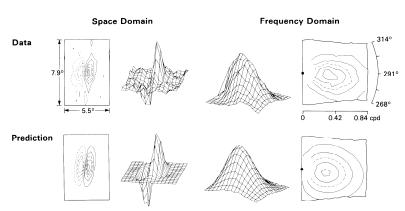
envelope & carrier signals

$$w_{\mathbf{x}_0,A}(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_0)^{\top} A^2 (\mathbf{x} - \mathbf{x}_0)$$
$$c_{\mathbf{x}_0,\mathbf{u}_0}(\mathbf{x}) = \mathbf{u}_0^{\top} (\mathbf{x} - \mathbf{x}_0)$$
$$A = \operatorname{diag}(a,b)$$

Daugman. JOSA 1985. Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized By Two-Dimensional Visual Cortical Filters.

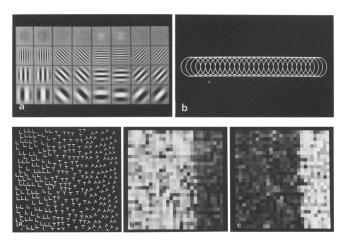


Gabor hypothesis verified



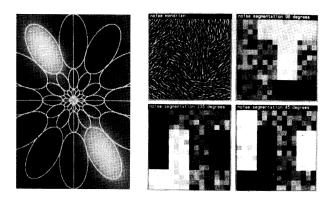
- compare spatial data to Gabor fitted to inverse Fourier of frequency data, and vice versa
- error unstructured and indistinguishable from random

texture segmentation



- sample image on spatial uniform cartesian grid
- filter each spatial cell at different frequencies and orientations

"textons"

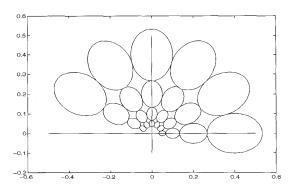


- see filter bank as frequency sampling on log-polar grid
- cluster filter (vector) responses into "textons"
- apply to iris recognition

visual descriptors

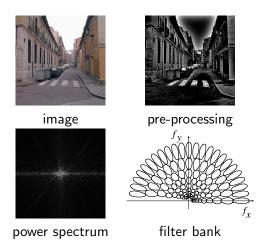
texture descriptors

[Manjunath and Ma 1996]



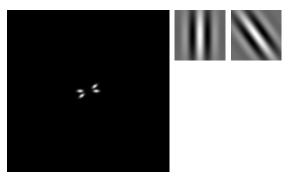
- same frequency sampling scheme
- filtering and global pooling in space domain
- popularized as part of MPEG-7 standard

global descriptors



- sampling scheme adapted to power spectrum statistics
- filtering and global pooling in frequency domain

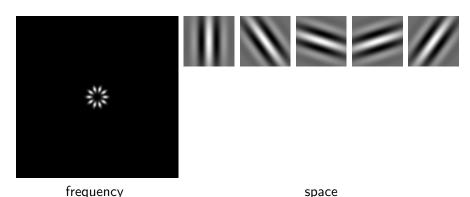
- ullet space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by heta
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation



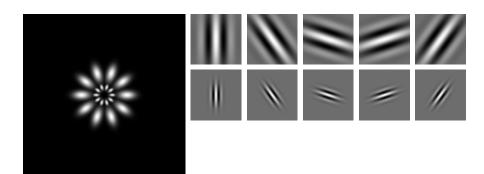
- ullet space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by heta
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation

- ullet space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by heta
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation

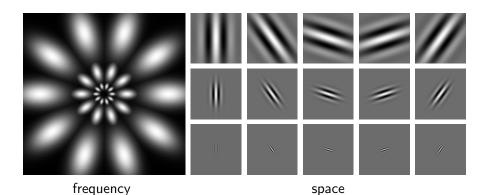
- ullet space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by heta
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation



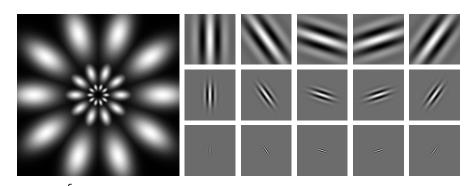
- trequency space
- ullet space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by heta
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation



- frequency space
- ullet space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by heta
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation



- space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by θ
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation



- frequency space
- ullet space (\mathbf{x}) and frequency (\mathbf{u}) rotate together by heta
- scaling envelope (A) and carrier (\mathbf{u}_0) together
- 4d representation: position, scale, orientation

from images to vectors

- suppose an image $f(\mathbf{x})$ is represented in frequency by $|F(\mathbf{u})|^2$
- suppose a template $h(\mathbf{x})$ (another image or an attribute) is also represented in frequency by

$$|H(\mathbf{u})|^2 = \sum_{n=1}^{N} h_n |G_n(\mathbf{u})|^2$$

where $\{G_n\}$ is a Gabor filter bank; let $\mathbf{h} = [h_1, \dots, h_N]$

• now define the vector $\mathbf{f} = [f_1, \dots, f_N]$ with

$$f_n = \int |F(\mathbf{u})|^2 |G_n(\mathbf{u})|^2 d\mathbf{u}$$

• and measure the similarity of f,h by the inner product

$$\int |F(\mathbf{u})|^2 |H(\mathbf{u})|^2 d\mathbf{u} = \sum_{n=1}^N f_n h_n = \langle \mathbf{f}, \mathbf{h} \rangle$$

from images to vectors

- suppose an image $f(\mathbf{x})$ is represented in frequency by $|F(\mathbf{u})|^2$
- suppose a template $h(\mathbf{x})$ (another image or an attribute) is also represented in frequency by

$$|H(\mathbf{u})|^2 = \sum_{n=1}^{N} h_n |G_n(\mathbf{u})|^2$$

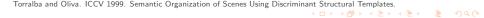
where $\{G_n\}$ is a Gabor filter bank; let $\mathbf{h} = [h_1, \dots, h_N]$

ullet now define the vector $\mathbf{f} = [f_1, \dots, f_N]$ with

$$f_n = \int |F(\mathbf{u})|^2 |G_n(\mathbf{u})|^2 d\mathbf{u}$$

• and measure the similarity of f, h by the inner product

$$\int |F(\mathbf{u})|^2 |H(\mathbf{u})|^2 d\mathbf{u} = \sum_{n=1}^N f_n h_n = \langle \mathbf{f}, \mathbf{h} \rangle$$



from images to vectors

- suppose an image $f(\mathbf{x})$ is represented in frequency by $|F(\mathbf{u})|^2$
- suppose a template $h(\mathbf{x})$ (another image or an attribute) is also represented in frequency by

$$|H(\mathbf{u})|^2 = \sum_{n=1}^{N} h_n |G_n(\mathbf{u})|^2$$

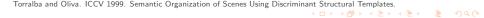
where $\{G_n\}$ is a Gabor filter bank; let $\mathbf{h} = [h_1, \dots, h_N]$

• now define the vector $\mathbf{f} = [f_1, \dots, f_N]$ with

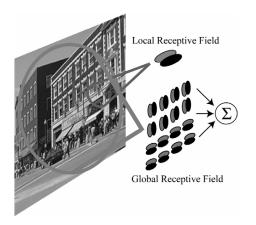
$$f_n = \int |F(\mathbf{u})|^2 |G_n(\mathbf{u})|^2 d\mathbf{u}$$

and measure the similarity of f, h by the inner product

$$\int |F(\mathbf{u})|^2 |H(\mathbf{u})|^2 d\mathbf{u} = \sum_{n=1}^N f_n h_n = \langle \mathbf{f}, \mathbf{h} \rangle$$

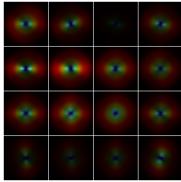


global vs. local receptive fields



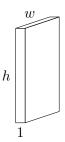
- pool filter responses only locally
- next level in hierarchy can apply different spatial weights

the gist descriptor



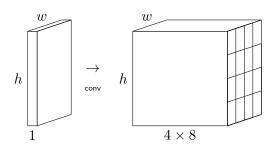
- apply filter bank to entire image in frequency domain
- partition image in 4×4 cells
- average pooling of filter responses per cell

gist pipeline



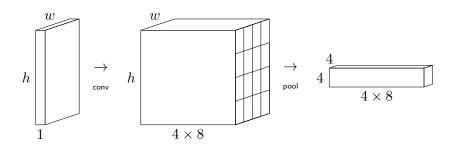
- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 4 scales × 8 orientations
- ullet average pooling on 4 imes 4 cells o descriptor of length 512

gist pipeline



- 3-channel RGB input \rightarrow 1-channel gray-scale
- \bullet apply filters at 4 scales \times 8 orientations
- ullet average pooling on 4 imes 4 cells o descriptor of length 512

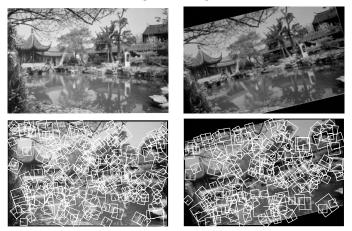
gist pipeline



- 3-channel RGB input \rightarrow 1-channel gray-scale
- ullet apply filters at 4 scales imes 8 orientations
- average pooling on 4×4 cells \rightarrow descriptor of length 512

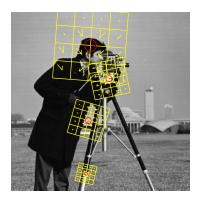
scale-invariant feature transform

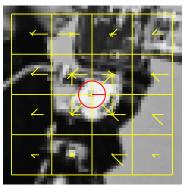
[Lowe 1999]



detect a sparse set of "stable" features (rectangular patches),
equivariant to translation, scale and rotation

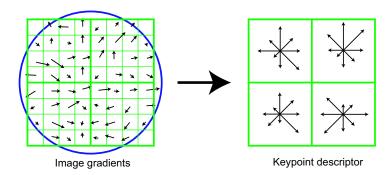
scale-invariant feature transform





- for each patch
 - normalize with respect to scale and orientation
 - construct a histogram of gradient orientations

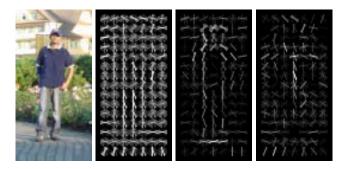
the SIFT descriptor



- votes in 8-bin orientation histograms weighted by magnitude and by Gaussian window on patch
- histograms pooled over 4×4 cells, trilinear interpolation
- 128-dimensional descriptor, normalized, clipped at 0.2, normalized

histogram of oriented gradients

[Dalal and Triggs 2005]



- applied to person detection by sliding window and SVM
- classifier learns positive and negative weights on positions and orientations
- shifts focus back to dense features for classification

the HOG descriptor

- \bullet applied densely to adjacent cells of 8×8 pixels
- no scale or orientation normalization; just single-scale
- normalized by overlapping blocks of 3×3 cells—redundant

so what is a histogram?

• consider a histogram h over integers $C = \{0, 1, 2, 3, 4\}$, computed from the following samples:

- each sample is encoded (hard-assigned) into a vector in \mathbb{R}^5 ; all such vectors are pooled (averaged) into one vector $h \in \mathbb{R}^5$
- encoding is always nonlinear and pooling is orderless
- C is a codebook or vocabulary

so what is a histogram?

• consider a histogram h over integers $C = \{0, 1, 2, 3, 4\}$, computed from the following samples:

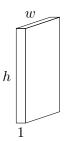
- each sample is encoded (hard-assigned) into a vector in \mathbb{R}^5 ; all such vectors are pooled (averaged) into one vector $h \in \mathbb{R}^5$
- encoding is always nonlinear and pooling is orderless
- C is a codebook or vocabulary

so what is a histogram?

• consider a histogram h over integers $C = \{0, 1, 2, 3, 4\}$, computed from the following samples:

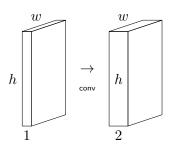
- each sample is encoded (hard-assigned) into a vector in \mathbb{R}^5 ; all such vectors are pooled (averaged) into one vector $h \in \mathbb{R}^5$
- encoding is always nonlinear and pooling is orderless
- C is a codebook or vocabulary

SIFT (HOG) pipeline



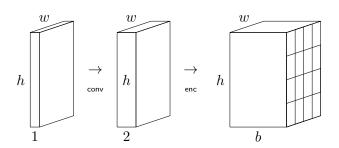
- 3-channel patch (image) RGB input \rightarrow 1-channel gray-scale
- compute gradient magnitude & orientation
- encode into b = 8 (9) orientation bins
- average pooling on $c = 4 \times 4 (|w/8| \times |h/8|)$ cells
- descriptor of length $c \times b = 128$ (block-normalize $\rightarrow c \times (3 \times 3) \times b$)

SIFT (HOG) pipeline



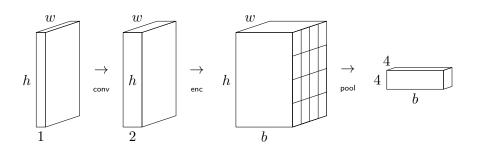
- 3-channel patch (image) RGB input o 1-channel gray-scale
- compute gradient magnitude & orientation
- encode into b = 8 (9) orientation bins
- average pooling on $c = 4 \times 4 (\lfloor w/8 \rfloor \times \lfloor h/8 \rfloor)$ cells
- descriptor of length $c \times b = 128$ (block-normalize $\rightarrow c \times (3 \times 3) \times b$)

SIFT (HOG) pipeline



- 3-channel patch (image) RGB input o 1-channel gray-scale
- compute gradient magnitude & orientation
- encode into b = 8 (9) orientation bins
- average pooling on $c = 4 \times 4 (|w/8| \times |h/8|)$ cells
- descriptor of length $c \times b = 128$ (block-normalize $\rightarrow c \times (3 \times 3) \times b$)

SIFT (HOG) pipeline



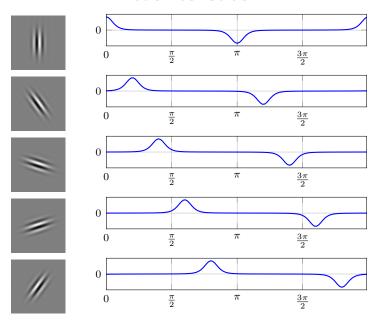
- ullet 3-channel patch (image) RGB input o 1-channel gray-scale
- compute gradient magnitude & orientation
- encode into b = 8 (9) orientation bins
- average pooling on $c = 4 \times 4 (|w/8| \times |h/8|)$ cells
- descriptor of length $c \times b = 128$ (block-normalize $\rightarrow c \times (3 \times 3) \times b$)

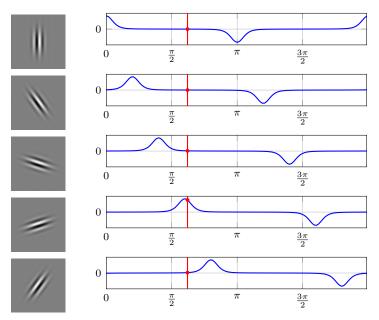
let us use the following edge pattern

- rotate it by all $\theta \in [0, 2\pi]$
- for each θ , filter (take dot product) with a bank of antisymmetric Gabor filters at 5 orientations, single scale
- turns out, the filter bank provides an encoding of θ in \mathbb{R}^5 : soft assignment
- then, spatial pooling gives nothing but an orientation histogram

• let us use the following edge pattern

- rotate it by all $\theta \in [0,2\pi]$
- for each θ , filter (take dot product) with a bank of antisymmetric Gabor filters at 5 orientations, single scale
- turns out, the filter bank provides an encoding of θ in \mathbb{R}^5 : soft assignment
- then, spatial pooling gives nothing but an orientation histogram





nonlinear mappings

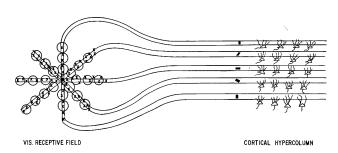
- Q: we said convolution is linear; now, once we have a gradient orientation measurement, why do we need a nonlinear function?
- convolution is linear in the image; but if the image is rotated by θ , itself is a nonlinear function of θ
- what we are doing is, mapping to another space where scaling and rotation of the image behave like translation

nonlinear mappings

- Q: we said convolution is linear; now, once we have a gradient orientation measurement, why do we need a nonlinear function?
- convolution is linear in the image; but if the image is rotated by θ , itself is a nonlinear function of θ
- what we are doing is, mapping to another space where scaling and rotation of the image behave like translation

nonlinear mappings

- Q: we said convolution is linear; now, once we have a gradient orientation measurement, why do we need a nonlinear function?
- convolution is linear in the image; but if the image is rotated by θ , itself is a nonlinear function of θ
- what we are doing is, mapping to another space where scaling and rotation of the image behave like translation



on manifolds

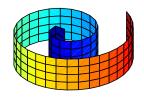
- an image of resolution 320×200 is a vector in $\mathcal{I} = \mathbb{R}^{64,000}$; are all such vectors equally likely?
- an object seen at different scales and orientations only spans a 2-dimensional smooth manifold in $\mathcal I$

and we would like to express scale and orientation as two natural coordinates

 how would we go about expressing perspective transformation? attributes of handwritten characters? poses of a human body? occluded surfaces? species of dogs?

on manifolds

- an image of resolution 320×200 is a vector in $\mathcal{I} = \mathbb{R}^{64,000}$; are all such vectors equally likely?
- an object seen at different scales and orientations only spans a 2-dimensional smooth manifold in ${\mathcal I}$

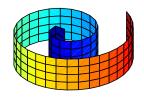


and we would like to express scale and orientation as two natural coordinates

 how would we go about expressing perspective transformation? attributes of handwritten characters? poses of a human body? occluded surfaces? species of dogs?

on manifolds

- an image of resolution 320×200 is a vector in $\mathcal{I} = \mathbb{R}^{64,000}$; are all such vectors equally likely?
- an object seen at different scales and orientations only spans a 2-dimensional smooth manifold in ${\mathcal I}$



and we would like to express scale and orientation as two natural coordinates

 how would we go about expressing perspective transformation? attributes of handwritten characters? poses of a human body? occluded surfaces? species of dogs?

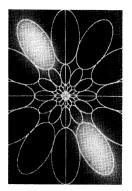
- at each level, nonlinearly encode each local (e.g. pixel) representation according to a codebook, followed by pooling
- scale and orientation are just two dimensions; a codebook is just a dense grid
- a 3-scale, 6-orientation filter response is 18-dimensional; a dense grid is not an option
- learn the codebook from data!

- at each level, nonlinearly encode each local (e.g. pixel) representation according to a codebook, followed by pooling
- scale and orientation are just two dimensions; a codebook is just a dense grid
- a 3-scale, 6-orientation filter response is 18-dimensional; a dense grid is not an option
- learn the codebook from data!

- at each level, nonlinearly encode each local (e.g. pixel) representation according to a codebook, followed by pooling
- scale and orientation are just two dimensions; a codebook is just a dense grid
- a 3-scale, 6-orientation filter response is 18-dimensional; a dense grid is not an option
- learn the codebook from data!

back to textons

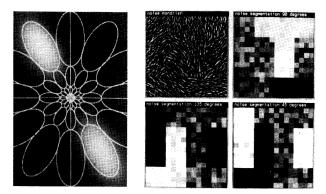
[Daugman 1988]



- see filter bank as frequency sampling on log-polar grid
- cluster 3 × 6 filter (vector) responses into "textons"
- apply to iris recognition

back to textons

[Daugman 1988]



- see filter bank as frequency sampling on log-polar grid
- cluster 3 × 6 filter (vector) responses into "textons"
- apply to iris recognition

textons

[Malik et al. 1999]

oriented filter bank

image

texture segmentation

- textons (re-)defined as clusters of filter responses
- regions described by texton histograms

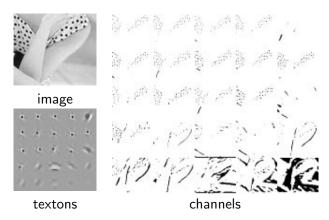
textons

image

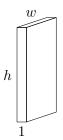
textons

- each pixel mapped to a filter response vector of length 3×12
- vectors clustered by k-means into k = 25 "texton" centroids

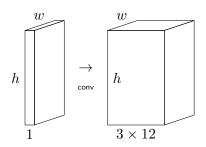
textons



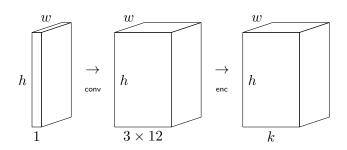
- each pixel mapped to a filter response vector of length 3×12
- vectors clustered by k-means into k=25 "texton" centroids
- each pixel assigned to a texton
- each texton has a "channel" of pixel assignments



- 3-channel RGB input \rightarrow 1-channel gray-scale



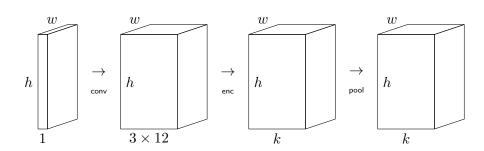
- 3-channel RGB input \rightarrow 1-channel gray-scale
- apply filters at 3 scales \times 12 orientations



- 3-channel RGB input o 1-channel gray-scale
- ullet apply filters at 3 scales imes 12 orientations
- point-wise encoding (hard assignment) on k=25 textons

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.

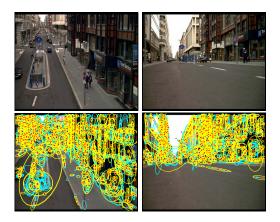
stride-1 average pooling on overlapping neighborhoods



- ullet 3-channel RGB input o 1-channel gray-scale
- apply filters at 3 scales \times 12 orientations
- point-wise encoding (hard assignment) on k=25 textons
- stride-1 average pooling on overlapping neighborhoods

bag of words (BoW)

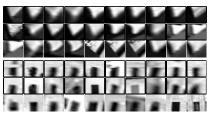
[Sivic and Zisserman 2003]



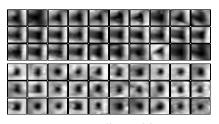
- two types of sparse features detected
- SIFT descriptors extracted from a dataset of video frames

bag of words: retrieval

[Sivic and Zisserman 2003]



Harris affine 6k words



maximally stable 10k words

- "visual words" defined as clusters of SIFT descriptors learned from the dataset
- images described by visual word histograms
- ullet matching is reduced to sparse dot product o fast retrieval

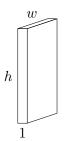
bag of words: classification

[Csurka et al. 2004]

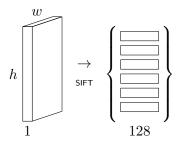
features

visual words

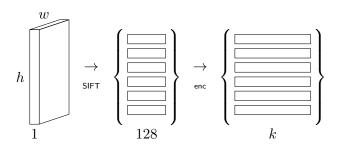
- ullet same representation, k=1000 words, naive Bayes or SVM classifier
- features soon to be replaced dense multiscale HOG or SIFT



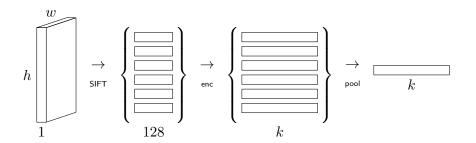
- 3-channel RGB input \rightarrow 1-channel gray-scale
- ullet set of ~ 1000 features imes 128-dim SIFT descriptors
- ullet element-wise encoding (hard assignment) on $k\sim 10^4$ visual words
- global sum pooling, ℓ^2 normalization



- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times~128\text{-dim}$ SIFT descriptors
- ullet element-wise encoding (hard assignment) on $k\sim 10^4$ visual words
- global sum pooling, ℓ^2 normalization



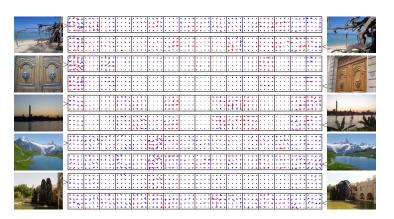
- 3-channel RGB input \rightarrow 1-channel gray-scale
- ullet set of ~ 1000 features imes 128-dim SIFT descriptors
- ullet element-wise encoding (hard assignment) on $k\sim 10^4$ visual words
- ullet global sum pooling, ℓ^2 normalization



- 3-channel RGB input \rightarrow 1-channel gray-scale
- ullet set of ~ 1000 features imes 128-dim SIFT descriptors
- element-wise encoding (hard assignment) on $k\sim 10^4$ visual words
- global sum pooling, ℓ^2 normalization

vector of locally aggregated descriptors (VLAD)*

[Jégou et al. 2010]



- encoding yields a vector per visual word, rather than a scalar frequency
- this vector is 128-dimensional like SIFT descriptors

VLAD definition*

- input vectors: $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$
- vector quantizer: $q: \mathbb{R}^d \to C \subset \mathbb{R}^d$, $C = \{c_1, \dots, c_k\}$

$$q(x) = \arg\min_{c \in C} ||x - c||^2$$

residual vector

$$r(x) = x - q(x)$$

residual pooling per cell

$$V_c(X) = \sum_{\substack{x \in X \\ q(x) = c}} r(x) = \sum_{\substack{x \in X \\ q(x) = c}} x - q(x)$$

VLAD vector (up to normalization)

$$\mathcal{V}(X) = (V_{c_1}(X), \dots, V_{c_k}(X))$$

VLAD definition*

- input vectors: $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$
- vector quantizer: $q: \mathbb{R}^d \to C \subset \mathbb{R}^d$, $C = \{c_1, \dots, c_k\}$

$$q(x) = \arg\min_{c \in C} ||x - c||^2$$

residual vector

$$r(x) = x - q(x)$$

residual pooling per cell

$$V_c(X) = \sum_{\substack{x \in X \\ q(x) = c}} r(x) = \sum_{\substack{x \in X \\ q(x) = c}} x - q(x)$$

VLAD vector (up to normalization)

$$\mathcal{V}(X) = (V_{c_1}(X), \dots, V_{c_k}(X))$$

VI AD definition*

- input vectors: $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$
- vector quantizer: $q: \mathbb{R}^d \to C \subset \mathbb{R}^d$, $C = \{c_1, \ldots, c_k\}$

$$q(x) = \arg\min_{c \in C} ||x - c||^2$$

residual vector

$$r(x) = x - q(x)$$

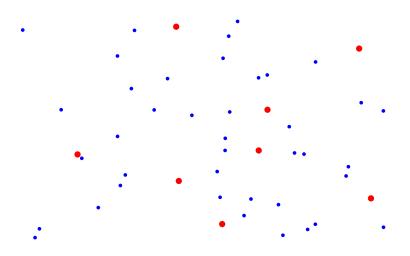
residual pooling per cell

$$V_c(X) = \sum_{\substack{x \in X \\ q(x) = c}} r(x) = \sum_{\substack{x \in X \\ q(x) = c}} x - q(x)$$

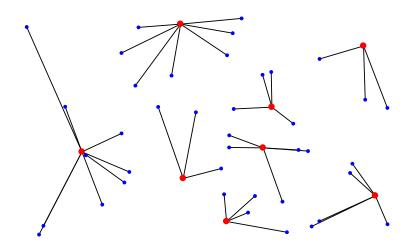
VLAD vector (up to normalization)

$$\mathcal{V}(X) = (V_{c_1}(X), \dots, V_{c_h}(X))$$

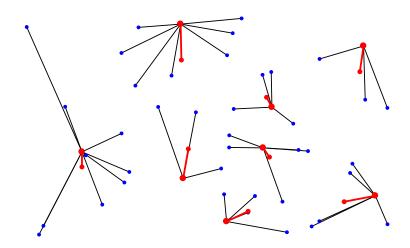
• input vectors - codebook - residuals - pooling



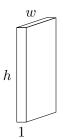
• input vectors – codebook – residuals – pooling



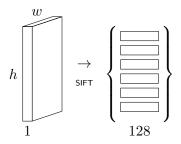
• input vectors - codebook - residuals - pooling



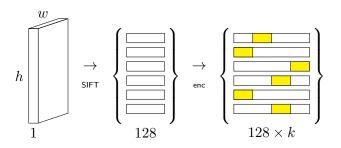
• input vectors - codebook - residuals - pooling



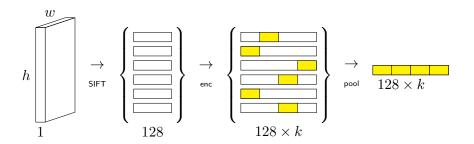
- ullet 3-channel RGB input o 1-channel gray-scale
- ullet set of ~ 1000 features imes 128-dim SIFT descriptors
- ullet element-wise encoding (hard assignment) on $k\sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote
- global sum pooling, ℓ^2 normalization



- ullet 3-channel RGB input o 1-channel gray-scale
- set of ~ 1000 features $\times~128\text{-dim}$ SIFT descriptors
- ullet element-wise encoding (hard assignment) on $k\sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote
- global sum pooling, ℓ^2 normalization



- ullet 3-channel RGB input o 1-channel gray-scale
- set of ~ 1000 features $\times~128\text{-dim}$ SIFT descriptors
- element-wise encoding (hard assignment) on $k\sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote
- ullet global sum pooling, ℓ^2 normalization



- 3-channel RGB input \rightarrow 1-channel gray-scale
- set of ~ 1000 features $\times~128$ -dim SIFT descriptors
- ullet element-wise encoding (hard assignment) on $k\sim 16$ visual words
- encoding now yields a residual vector rather than a scalar vote
- ullet global sum pooling, ℓ^2 normalization

probabilistic interpretation*

 \bullet if p(X|C) is the likelihood of i.i.d observations X under a uniform isotropic Gaussian mixture model with component means C

$$p(X|C) \propto \prod_{x \in X} e^{-\frac{1}{2}||x-q(x)||^2}$$

• then the VLAD vector is proportional the gradient of $\ln p(X|C)$ with respect to the model parameters C

$$\mathcal{V}(X) \propto \nabla_C \ln p(X|C) = [\nabla_{c_1} \ln p(X|C), \dots, \nabla_{c_k} \ln p(X|C)]$$

• if we were to optimize C to fit the data X, then $\hat{\mathcal{V}}(X)$ would be the direction in which to modify C

probabilistic interpretation*

• if p(X|C) is the likelihood of i.i.d observations X under a uniform isotropic Gaussian mixture model with component means C

$$p(X|C) \propto \prod_{x \in X} e^{-\frac{1}{2}||x-q(x)||^2}$$

- then the VLAD vector is proportional the gradient of $\ln p(X|C)$ with respect to the model parameters C

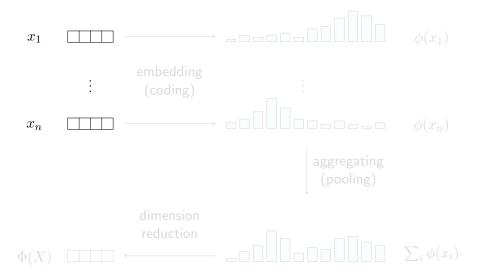
$$\mathcal{V}(X) \propto \nabla_C \ln p(X|C) = [\nabla_{c_1} \ln p(X|C), \dots, \nabla_{c_k} \ln p(X|C)]$$

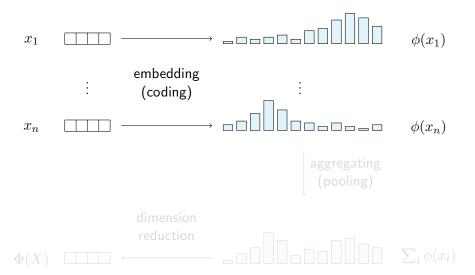
• if we were to optimize C to fit the data X, then $\hat{\mathcal{V}}(X)$ would be the direction in which to modify C

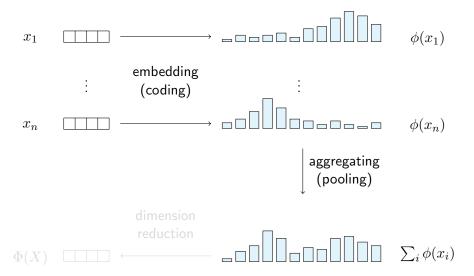
Fisher kernel*

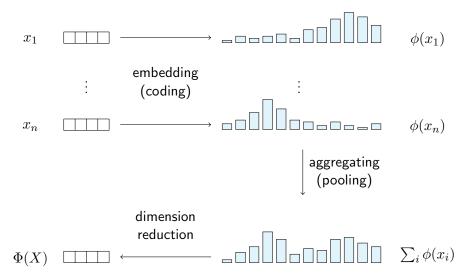
 the Fisher kernel generalizes to a non-uniform diagonal Gaussian mixture model

order statistics	parameter	model
0	mixing coefficient π	BoW
1	means μ	VLAD
2	standard deviations σ	Fisher



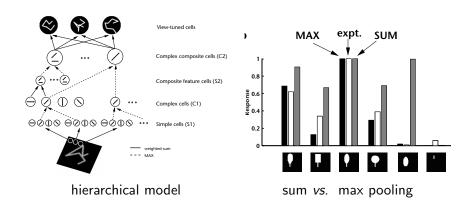




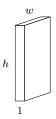


HMAX

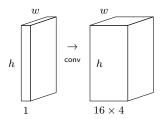
[Riesenhuber and Poggio 1999]



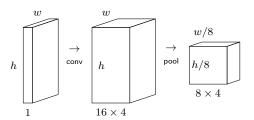
- computational model consistent with psychophysical data
- advocates non-linear max pooling



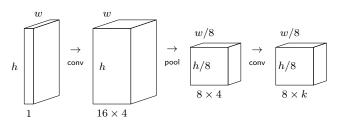
- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales × 4 orientations
- C1 max-pooling over 8 × 8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to k=4072 prototypes P_i ($n_i \times n_i$ patches at 4 orientations) extracted at random during learning: activations $Y_i = \exp(-\gamma ||X P_i||^2)$
- C2 global max pooling over positions and scales



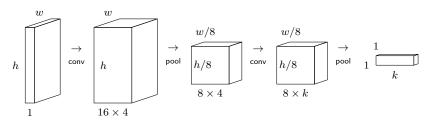
- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales \times 4 orientations
- C1 max-pooling over 8 × 8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to k=4072 prototypes P_i ($n_i \times n_i$ patches at 4 orientations) extracted at random during learning: activations $Y_i = \exp(-\gamma ||X P_i||^2)$
- C2 global max pooling over positions and scales



- ullet 3-channel RGB input o 1-channel gray-scale
- S1 apply filters at 16 scales \times 4 orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to k=4072 prototypes P_i ($n_i \times n_i$ patches at 4 orientations) extracted at random during learning: activations $Y_i = \exp(-\gamma ||X P_i||^2)$
- C2 global max pooling over positions and scales



- 3-channel RGB input \rightarrow 1-channel gray-scale
- S1 apply filters at 16 scales × 4 orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to k=4072 prototypes P_i ($n_i \times n_i$ patches at 4 orientations) extracted at random during learning: activations $Y_i = \exp(-\gamma \|X P_i\|^2)$
- C2 global max pooling over positions and scales



- 3-channel RGB input o 1-channel gray-scale
- S1 apply filters at 16 scales × 4 orientations
- C1 max-pooling over 8×8 spatial cells and over 2 scales
- S2 convolutional RBF matching of input patches X to k=4072 prototypes P_i ($n_i \times n_i$ patches at 4 orientations) extracted at random during learning: activations $Y_i = \exp(-\gamma \|X P_i\|^2)$
- C2 global max pooling over positions and scales

HMAX improvements*

[Mutch and Lowe 2006]

- · image pyramid
- S1 inhibition: non-maxima suppression over orientations
- strided C1 max pooling (50% overlap)
- C1 sparsification: dominant orientations kept

summary

- neuroscience background, convolution, Gabor filters
- texture analysis, frequency sampling, visual descriptors
- dense vs. sparse features
- gist, SIFT, HOG
- pooling Gabor filter responses as orientation histograms
- feature hierarchy, codebooks, encoding, pooling
- textons, BoW, VLAD*, Fisher kernel*, HMAX
- hard vs. soft encoding, max vs. sum pooling