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topographic mapping: translation equivariance

THE VISUAL PATHWAY 
 

      We can now adapt our earlier diagram on page 10 to fit the special case of the visual 
pathway. As shown in the illustration on this page, the receptors and the next two stages 
are contained in the retina. The receptors are the rods and cones; the optic nerve, carrying 
the retina's entire output, is a bundle of axons of the third-stage retinal cells, called retinal 
ganglion cells. Between the receptors and the ganglion cells are intermediate cells, the 
most important of which are the bipolar cells. The optic nerve proceeds to a way station 
deep in the brain, the lateral geniculate body. After only one set of synapses, the lateral 
geniculate sends its output to the striate cortex, which contains three or four stages. You 
can think of each of the columns in the diagram above as a plate of cells in cross section. 
For example, if we were to stand at the right of the page and look to the left, we would 
see all the cells in a layer in face-on view. Each of the columns of cells in the figure 
represents a two-dimensional array of cells, as shown for the rods and cones in the 
diagram on the next page. 

 

 
 
The initial stages of the mammalian visual system have the platelike organization often found in the central nervous 
system. The first three stages are housed in the retina; the remainder are in the brain: in the lateral geniculate bodies and 
the stages beyond in the cortex. 

 
 

To speak, as I do here, of separate stages immediately raises our problem with genealogy. 
In the retina, as we will see in Chapter 3, the minimum number of stages between 
receptors and the output is certainly three, but because of two other kinds of cells, some 
information takes a more diverted course, with four or five stages from input to output. 
For the sake of convenience, the diagram ignores these detours despite their importance, 
and makes the wiring look simpler than it really is. When I speak of the retinal ganglion 
cells as "stage 3 or 4", it's not that I have forgotten how many there are. To appreciate the 
kind of transfer of information that takes place in a network of this kind, we may begin 
by considering the behavior of a single retinal ganglion cell. We know from its anatomy 
that such a cell gets input from many bipolar cells—perhaps 12,100, or 1000—and that 
each of these cells is in turn fed by a similar number of receptors. As a general rule, all 
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• as you move along the retina, the corresponding points in the cortex
trace a continuous path

• each column represents a two-dimensional array of cells

• a translation in the input causes a translation in the representation

Hubel 1995. Eye, Brain, and Vision.



receptive fields
[Hubel and Wiesel 1962]

CAT VISUAL CORTEX

by two regions ofthe opposite type. In these fields the two flanking regions
were symmetrical, i.e. they were about equal in area and the responses
obtained from them were of about the same magnitude. In addition there
were fields with long narrow centres (excitatory or inhibitory) and asym-
metrical flanks. An example of an asymmetrical field with an inhibitory
centre is shown in Text-fig. 2E. The most effective stationary stimulus for
all of these celLs was a long narrow rectangle ('slit') of light just large

A c
4D* D

AX4

4

E FG
k~~~~

A~~~~~~~~~~~~~~At 4 A4-

Text-fig. 2. Common arrangements of lateral geniculate and cortical receptive
fields. A. 'On'-centre geniculate receptive field. B. 'Off'-centre geniculate recep-
tive field. 0-G. Various arrangements of simple cortical receptive fields. x,
areas giving excitatory responses ('on' responses); A, areas giving inhibitory re-
sponses ('off' responses). Receptive-field axes are shown by continuous lines
through field centres; in the figure these are all oblique, but each arrangement
occurs in all orientations.

enough to cover the central region without invading either flank. For
maximum centre response the orientation of the slit was critical; changing
the orientation by more than 5l10 was usually enough to reduce a re-
sponse greatly or even abolish it. Illuminating both flanks usually evoked
a strong response. If a slit having the same size as the receptive-field
centre was shone in either flanking area it evoked only a weak response,
since it covered only part of one flank. Diffuse light was ineffective, or at
most evoked only a very weak response, indicating that the excitatory and
inhibitory parts of the receptive field were very nearly balanced.

In these fields the equivalent but opposite-type regions occupied retinal

III

• A: ‘on’-center LGN; B: ‘off’-center LGN; C, D: simple cortical

• ×: excitatory (‘on’), 4: inhibitory (‘off’) responses

• localized responses, orientation selectivity

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex.



linearity

SIMPLE CELLS IN CAT STRIATE CORTEX 71

basis of their responses to gratings. The solid lines superimposed on the line-weighting
histograms represent the predicted line-weighting functions derived by Fourier
transformation of the neurones' spatial frequency tuning curves; these tuning curves
are inset beside each line-weighting histogram.
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Fig. 9. A comparison between the observed line-weighting functions of four simple
cells and the line-weighting functions predicted by inverse Fourier transformation of
their spatial frequency tuning curves. Each cell's maintained discharge has been sub-
tracted from its responses, and both the observed and predicted line-weighting functions
have been normalized. Positive values in each line-weighting histogram represent
incremental responses to the introduction of a brigt bar; negative values represent
incremental responses to the introduction of a dark bar. The width and position of the
histogram bars indicate the width and position of the bars used in testing. The con-
tinuous curves represent inverse Fourier transforms of the cells' spatial frequency
tuning curves. Even (A, B) or odd (C, D) symmetric transforms were selected to match
observed line-weighting functions; they have been translated sideways arbitrarily to
provide the best fit to these data. The spatial frequency tuning curve used to compute
the predicted line-weighting function for each neurone is inset beside each diagram.
The abscissa of these insets is spatial frequency in cycles per degree; the ordinate is
contrast sensitivity, the inverse of the threshold contrast value for each spatial fre-
quency.
Note that for some bar positions, the line-weighting function of cell A was double

valued. This cell was classified as showing non-linear spatial sumation on the basis of
its responses to gratings, and gave incremental responses to the onset of bars of both
polarities at the positions that are double valued (see Fig. 8). All the other neurones
were classified as showing linear spatial summation, and gave incremental responses
to either bright or dark bars at each position, but never to both (see Fig. 7).

It is clear that the agreement between observed and predicted line-weighting
functions for these neurones was excellent, whether or not they showed linear spatial
summation. One feature of these results is particularly interesting. When the neurone'

• simple cells perform linear spatial summation over their receptive fields

• spatial response (by oriented bars of varying position)

• frequency response (by oriented gratings of varying frequency)

Movshon, Thompson and Tolhurst. JP 1978. Spatial Summation in the Receptive Fields of Simple Cells in the Cat’s Striate
Cortex.



linear time-invariant (LTI) systems

• discrete-time signal: x[n], n ∈ Z
• translation (or shift, or delay): sk(x)[n] = x[n− k], k ∈ Z
• linear system (or filter): system commutes with linear combination

f

(∑

i

aixi
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=
∑

i

aif(xi)

• time-invariant (or translation equivariant): system commutes with
translation

f(sk(x)) = sk(f(x))
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convolution

• unit impulse δ[n] = 1[n = 0]

• every signal x expressed as

x[n] =
∑

k

x[k]δ[n− k] =
∑

k

x[k]sk(δ)[n]

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]sk(δ)

)
[n] =

∑

k

x[k]sk(f(δ))[n]

=
∑

k

x[k]h[n− k] := (x ∗ h)[n]

• Q: what is δ ∗ h for any h? what is sk(δ) ∗ h?
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continuous time

• continuous-time signal: x(t), t ∈ R
• translation (or shift, or delay): sτ (x)(t) = x(t− τ), τ ∈ R
• LTI system definition: same

• Dirac delta “function” δ: every signal x expressed as

x(t) =

∫
x(τ)δ(t− τ)dτ

• convolution: f LTI, impulse response h = f(δ) implies

f(x)(t) = (x ∗ h)(t) :=

∫
x(τ)h(t− τ)dτ



continuous time

• continuous-time signal: x(t), t ∈ R
• translation (or shift, or delay): sτ (x)(t) = x(t− τ), τ ∈ R
• LTI system definition: same

• Dirac delta “function” δ: every signal x expressed as

x(t) =

∫
x(τ)δ(t− τ)dτ

• convolution: f LTI, impulse response h = f(δ) implies

f(x)(t) = (x ∗ h)(t) :=

∫
x(τ)h(t− τ)dτ



continuous time

• continuous-time signal: x(t), t ∈ R
• translation (or shift, or delay): sτ (x)(t) = x(t− τ), τ ∈ R
• LTI system definition: same

• Dirac delta “function” δ: every signal x expressed as

x(t) =

∫
x(τ)δ(t− τ)dτ

• convolution: f LTI, impulse response h = f(δ) implies

f(x)(t) = (x ∗ h)(t) :=

∫
x(τ)h(t− τ)dτ



Fourier transform

• time (or space) → frequency

X(f) =

∫
x(t)e−j2πftdt

• frequency → time (or space)

x(t) =

∫
X(f)ej2πftdf

• measurements

bar (+) bar (−) grating
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mathematical model

RECEPTIVE FIELD

20 -

=-10

0

0.1 I.0 3
spatial frequency (c/deg)

FIG. 1. Comparison of the experimentally measured response of a simple
cell in the visual cortex [Movshon etal., Ref. 10, Fig. 9(b)] and the functional
form of the elementary signal, Eq. (la). A response measured in the spatial
domain (histogram) and in the frequency domain (inset, spatial frequency
scale in cycles/deg) is compared with a theoretical functional form (heavy
line). A symmetrical Fourier transform of the measured frequency response
is shown as a thin line (Movshon et a., Ref. 10). Both spatial response
curves have been translated sideways arbitrarily to fit the data. Least-
squares-fit parameters: fn = 2.00 cycles/deg; or = 0.15 deg (Af= 1.31
cycles/deg).

representation is close to the Gabor expansion. First, it
should be noted that Gabor elementary signals correspond to
symmetrical receptive fields and antisymmetrical receptive
fields. Such fields are experimentally found; the importance
of that fact has been emphasized by Tolhurst. 2 1

The response of cortical cells to different spatial frequencies
has been reported in a number of studies. 4' 6' 7' 22 The earlier
reports did not distinguish, or did not fully distinguish, be-
tween different cell types. Nevertheless, spatial frequency
tuning curves that come very close to the expected Gaussian
envelope of a Gabor signal have been recorded in most of the
experiments. Ikeda and Wright2 2 distinguish between sim-
ple-sustained and simple-transient cortical cells. The re-
sponses of simple-sustained cortical cells (Fig. 2 of Ref. 22) are
very well described by a Gaussian functional form.

Few recent studies where both spatial and spatial frequency
responses have been measured on the same cells are particu-
larly useful for comparison with the theory. Figures 1 and 2
show a least-squares fit of the functional form Eq. (1) to the
experimental results on simple cortical cells of the cat.10 A
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FIG. 2. Comparison of a response of a cell with an antisymmetric receptive
field [Movshon eta!., Ref. 10, Fig. 9(d)] and the elementary signal, Eq. (lb).
The notation corresponds to that in Fig. 1. Least-squares-fit parameters:
f,, = 1.27 cycles/deg; a = 0.27 deg (Af = 0.73 cycles/deg).
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FIG. 3. Comparison of the response of a simple X cell from a monkey
visual cortex (De Valois et a., Ref. 24, Fig. 4) and the functional form of
Gabor elementary signals. A least-squares-fit to the contrast sensitivity
data as a function of spatial frequency is shown on the left-hand side. A
Fourier transform of the elementary signal that fits the contrast sensitivity
data is shown on the right-hand side, together with the measurements of
a response to a narrow bar stimulus. Mean spatial frequency and width
of a Gaussian envelope are determined from the fit to the contrast sensitivity
data; normalization and horizontal translation of the transformed elementary
signal are arbitrary. Least-squares-fit parameters: f, = 1.09 cycles/deg;
a = 0.24 deg (Af = 0.61 cycles/deg).

shifted Gaussian curve was fitted to the data points in the
frequency domain, and its symmetrical or antisymmetrical
Fourier transform was plotted together with the measured
spatial response. In the case of a symmetrical receptive field
the procedure has slightly overestimated the mean spatial
frequency, but otherwise the agreement between the measured
and the theoretical functional form is excellent.

In another recent work on simple cortical cells of the cat,
Andrews and Pollen23 have measured for several cells both the
amplitude and the phase of the response to a drifting grating.
In principle, such measurements contain more information
on the cell response. Unfortunately, the authors do not show
the measured phase for any of the simple-sustained cells.
Their measurements in the spatial domain are only qualita-
tive, and the comparison with their data is thus less conclu-
sive.

Spatial and spatial-frequency responses of simple cortical
cells of the monkey have been described by De Valois et al.2 4

Their data on the spatial frequency tuning and receptive field
of a simple X cell have been compared with the functional
form of Gabor elementary signals in Fig. 3. A very close
agreement suggests again the advantage of a description of the
visual cortex representation in terms of the Gabor expan-
sion.

In the most recent work, Maffei et al. 12 have measured re-
sponses of simple cortical cells to a passage of a narrow bar or
a sinusoidal grating stimulus in the presence of a visual noise.
The superimposed visual noise ensures a background activity
of a cell, which was found to lead to a linear behavior. Ex-
perimental results, which are similar to those of Ref. 10 or Ref.
24, are again in very good agreement with the functional form
of Gabor elementary signals. Maffei et al.12 also present a
compelling argument to the effect that descriptions of simple
cortical cells in terms of spatial feature detectors or in terms
of spatial frequency channels are not contradictory. This fact
is formally expressed in the Gabor representation scheme,
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scale in cycles/deg) is compared with a theoretical functional form (heavy
line). A symmetrical Fourier transform of the measured frequency response
is shown as a thin line (Movshon et a., Ref. 10). Both spatial response
curves have been translated sideways arbitrarily to fit the data. Least-
squares-fit parameters: fn = 2.00 cycles/deg; or = 0.15 deg (Af= 1.31
cycles/deg).
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visual cortex (De Valois et a., Ref. 24, Fig. 4) and the functional form of
Gabor elementary signals. A least-squares-fit to the contrast sensitivity
data as a function of spatial frequency is shown on the left-hand side. A
Fourier transform of the elementary signal that fits the contrast sensitivity
data is shown on the right-hand side, together with the measurements of
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of a Gaussian envelope are determined from the fit to the contrast sensitivity
data; normalization and horizontal translation of the transformed elementary
signal are arbitrary. Least-squares-fit parameters: f, = 1.09 cycles/deg;
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shifted Gaussian curve was fitted to the data points in the
frequency domain, and its symmetrical or antisymmetrical
Fourier transform was plotted together with the measured
spatial response. In the case of a symmetrical receptive field
the procedure has slightly overestimated the mean spatial
frequency, but otherwise the agreement between the measured
and the theoretical functional form is excellent.

In another recent work on simple cortical cells of the cat,
Andrews and Pollen23 have measured for several cells both the
amplitude and the phase of the response to a drifting grating.
In principle, such measurements contain more information
on the cell response. Unfortunately, the authors do not show
the measured phase for any of the simple-sustained cells.
Their measurements in the spatial domain are only qualita-
tive, and the comparison with their data is thus less conclu-
sive.

Spatial and spatial-frequency responses of simple cortical
cells of the monkey have been described by De Valois et al.2 4

Their data on the spatial frequency tuning and receptive field
of a simple X cell have been compared with the functional
form of Gabor elementary signals in Fig. 3. A very close
agreement suggests again the advantage of a description of the
visual cortex representation in terms of the Gabor expan-
sion.

In the most recent work, Maffei et al. 12 have measured re-
sponses of simple cortical cells to a passage of a narrow bar or
a sinusoidal grating stimulus in the presence of a visual noise.
The superimposed visual noise ensures a background activity
of a cell, which was found to lead to a linear behavior. Ex-
perimental results, which are similar to those of Ref. 10 or Ref.
24, are again in very good agreement with the functional form
of Gabor elementary signals. Maffei et al.12 also present a
compelling argument to the effect that descriptions of simple
cortical cells in terms of spatial feature detectors or in terms
of spatial frequency channels are not contradictory. This fact
is formally expressed in the Gabor representation scheme,
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• (thin) experimental: inverse Fourier of grating stimuli responses

• (thick) least-squares fit of Gabor elementary signal

Marcelja. JOSA 1980, Mathematical Description of the Responses of Simple Cortical Cells.



Gabor elementary signals

• “effective duration”

∆t = [2π(t− t)2]1/2

• “effective bandwidth”

∆f = [2π(f − f)2]1/2

• uncertainty principle

∆t∆f ≥ 1

2

• minimal solution

ψ(t) = e−a
2(t−t0)2ej2πf0(t−t0)

Gabor. JIEE 1946. Theory of Communication. Part 1: the Analysis of Information.
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2d space/frequency considerations

502 K. K. DE VALOIS, R. L. DE VALOIS AND E. W. YUND
space domain. In fact, in a linear system the space domain and the frequency domain
are just Fourier transforms of each other, and one can deal with stimuli equivalently
in either domain. To put it another way, a certain spatial-frequency and orientation
selectivity not only is consistent with but implies a certain receptive field structure,
as discussed extensively by Robson (1975).

Spatial receptive field Fourier response area

A

C

D

Fig. 13. Hypothetical spatial receptive fields and their representations in the spatial
frequency domain. For explanation, see text.

How can one best characterize the properties and functions of a cortical cell whose
receptive field has antagonistic excitatory and inhibitory areas as first described by
Hubel & Wiesel (1959, 1962)? If such a cell shows linear summation within its
receptive field (Hubel & Wiesel, 1962, stated that they showed summation but did
not test for nor claim linearity of summation), it should function as a spatial-
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in either domain. To put it another way, a certain spatial-frequency and orientation
selectivity not only is consistent with but implies a certain receptive field structure,
as discussed extensively by Robson (1975).
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How can one best characterize the properties and functions of a cortical cell whose
receptive field has antagonistic excitatory and inhibitory areas as first described by
Hubel & Wiesel (1959, 1962)? If such a cell shows linear summation within its
receptive field (Hubel & Wiesel, 1962, stated that they showed summation but did
not test for nor claim linearity of summation), it should function as a spatial-

• responses to gratings at different frequencies and orientations

• localized in space and frequency, in both dimensions

DeValois, DeValois and Yund. JP 1979. Responses of Striate Cortex Cells to Grating and Checkerboard Patterns.



2d space/frequency considerations

(a ) Excitability profile ( b) 2-D Fourier transform of profile 

‘0 

Fig. 6. (a) Model of a receptive field profile as a spatial tone-burst, and (b) its two-dimensional Fourier transform. The model captures the property of “periodic excitability” as 
described for both simple cells and complex cells by DeValois er al. (1979) and Pollen and Ronner (19753, as well as the spectral property of “localized responsiveness” in the Fourier 

plane, as described by DeValois et al. (1977, 1979). 
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• spatial frequency and orientation are separable

• by inverse Fourier, hypothesize a 2d spatial ‘receptive field profile’

Daugman. VR 1980. Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles.



2d Gabor filters

Vol. 2, No. 7/July 1985/J. Opt. Soc. Am. A 1163

Table 1. Corresponding Filter Properties in Space
and Spectral Domains

2D Space Domain 2D Frequency Domain

Modulate filter envelope by Position spectral centroid at
spatial frequency wo in Fourier plane coordinates
wave-vector orientation 00 (uo, vo), where

Uo = cwo cos(Oo),
vo = wo sin(Oo)

Position filter centroid at Modulate transform by
space-domain coordinates complex exponential
(xo, Yo) having spectral frequency

(x0
2 + yo2)1/2 and

orientation arctan(yo/xo)

Rotate filter through angle 0 Rotate transform through

around origin of angle 0 around origin of
coordinates coordinates

Stretch (compress) filter in x Compress (stretch) spectrum
direction by factor a in u direction by factor a

Stretch (compress) filter in y Compress (stretch) spectrum
direction by factor / in v direction by factor /

Set envelope aspect ratio to X Set envelope aspect ratio to
1/X

choices for the values of these parameters would center the
filter at different spatial locations (xo, yo) and give it different
preferred spatial-frequency and orientation responses cor-
responding to centroid locations (+ua, ±vo), thus paving both
2D domains; and, depending on the bandwidth parameters
a and b, a division of labor is created for favoring resolution
in either the 2D space domain (for large values of a and b) or
the 2D frequency domain (for small values of a and b), or, by
mixing these cases, for favoring spatial resolution in one di-
rection while favoring frequency or orientation resolution in
the perpendicular direction. The joint effects of these oper-
ations for paving both 2D domains simultaneously and for
specifying certain divisions of labor for resolution in the two
domains, subject to the inescapable uncertainty relations, are
summarized in Table 1.

The division of labor for different forms of resolution in the
two 2D domains, for different members of the 2D Gabor filter
family, is illustrated graphically in Fig. 2. The left-hand
column represents a bird's-eye view of three even-symmetric
filters, all having the same modulation spatial frequency and
orientation but different width/length aspect ratios as indi-
cated by the elliptical contours representing the 1/e amplitude
level of the 2D envelopes. Similarly, the right-hand column
of Fig. 2 represents the approximate 1/e amplitude contour
for the two parts of the 2D Fourier transform of each of these
filters. In the frequency domain the centroids of these filters
all have the same locations, corresponding to peak spectral
response at spatial frequency wo in the vertical orientation as
dictated by the pattern of modulation in the 2D space domain.
But there are major differences in the three filters' resolutions
for spatial frequency and orientation (the radial and angular
dimensions of the contours in the frequency domain), which
are seen to vary inversely with the two spatial dimensions.

Within the trigonometric limits of the construction in Fig.
2, approximate expressions are derived in the three right-hand
panels for the corresponding filter's orientation half-band-
width A01/2 (in radians) and spatial-frequency bandwidth AF

(in cycles/degree), in terms of the filter space-domain di-
mensions a and /3 (in degrees) and its modulation frequency
co (in cycles/degree). For simplicity, the expressions for or-
ientation bandwidth A01/2 assume that these angles are small

TWO-DIMENSIONAL GABOR OPTIMAL FILTERS
SPACE DOMAIN SPATIAL-FREQUENCY DOMAIN

A. a.

a A

at1JIW

1Ai16 AW1M

La
AF

AF=l/a

AF=1/0

Fig. 2. Bird's-eye view of three members of the set of 2D Gabor op-
timal filters, all having the same preferred spatial frequency and or-
ientation. The three pairs of panels illustrate the dependence of a
filter's spatial-frequency bandwidth and orientation bandwidth on
its space-domain envelope dimensions; its preferred frequency and
orientation are independent of those dimensions. A, A circular filter
envelope in the space domain is supported in the frequency domain
by the sum of two circular regions whose centers correspond to the
filter's modulation frequency and whose spatial-frequency bandwidth
and orientation bandwidth are inversely related to the space-domain
envelope diameter. B, Elongating the filter's receptive field in the
direction parallel to its modulation sharpens its orientation bandwidth
AO'/, but has no effect on its spatial-frequency bandwidth AF. C,
Elongating the field instead in the perpendicular direction sharpens
its spatial-frequency bandwidth AF but has no effect on its orienta-
tion bandwidth AO0Y2. Thus such filters can negotiate the inescapable
trade-offs for resolution in different ways, attaining, for example,
sharp spatial resolution in the y direction (at the expense of orien-
tation selectivity) or sharp spatial resolution in the x direction (at the
expense of spatial-frequency selectivity). Such a division of labor
among filters, or visual neurons, permits the extraction of differen-
tially resolved spatial-spectral information from the image. Always,
however, for 2D Gabor filters the product of the 2D resolutions in the
two 2D domains is the same and equals the theoretically attainable
limit.

John G. Daugman

• 2d uncertainty principle

∆x∆u ≥ 1

4

• minimal solution

f(x) = e−πwx0,A
(x)ej2πcx0,u0 (x)

F (u) = e
−πwu0,A

−1 (u)ej2πcu0,x0 (u)

• envelope & carrier signals

wx0,A(x) = (x− x0)
>A2(x− x0)

cx0,u0(x) = u>0 (x− x0)

A = diag(a, b)

Daugman. JOSA 1985. Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized By Two-
Dimensional Visual Cortical Filters.



Gabor hypothesis verified

RECEPTIVE-FIELD 2D GABOR FILTER MODEL 1255 

profile and the 2D spectral response profile both longer and wider than the original. The 
obtained from a single simple cell. A 2D predicted frequency domain profile is 
Gabor filter describes each of these profiles slightly larger than the original in all direc- 
well (see Figs. 2B and 3B). We have used the tions, and the peak is shifted toward a slightly 
parameter estimates from the space domain lower spatial frequency. However, compari- 
fit to predict the spectral response profile, son of the predicted and original response 
and the parameter estimates of the frequency profiles is quite good. 
domain fit to predict the spatial response In those cases where this reciprocal predic- 
profile, illustrated in the middle row. Not all tability was observed, 2D spatial response 
of the parameters were used: we allowed the linearity obtains. Relative response ampli- 
predicted spatial profile to reside in the same tudes to small rectangular stimuli distributed 
position as the original (shift invariance), and over 2D of space can predict relative re- 
we allowed the two predicted profiles to re- sponse amplitudes to drifting sinusoidal grat- 
tain the same relative phase as the original ings of arbitrary spatial frequency and orien- 
estimates. tation. Relative response amplitudes to drift- 

The bottom row of Fig. 14 illustrates the ing sinusoidal gratings distributed over the 
residual error of the two predictions, which is 2D spatial frequency domain can predict rel- 
everywhere small in both cases, but contains ative response amplitudes to small rectangu- 
features typical of the errors we have ob- lar stimuli of arbitrary spatial position (al- 
served. The predicted space domain profile is though a spatial phase angle must be as- 

Space Domain 

5.5O---+ 
0 

Frequency Domain 

Data 

0.84 cpd 

Prediction 

Error 

FIG. 14. In many cases, simple cell two-dimensional (2D) spatial and spectral response profiles are Fourier 
transform pairs, indistinguishable from 2D Gabor filters. Top TOW: the observed response profiles of a single cell. 
Middle TOW: the 2D spatial response profile predicted by the frequency domain data, and the 2D spectral response 
profile predicted by the space domain data, using the fitted 2D Gabor filters as intermediate steps in both cases. 
Bottom row: the error. 

• compare spatial data to Gabor fitted to inverse Fourier of frequency
data, and vice versa

• error unstructured and indistinguishable from random

Jones and Palmer. JN 1987. An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate
Cortex.



texture segmentation
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sions. However, decreasing the effective spatial area of 
the filter has the inevitable result of increasing its 
effective area in the frequency domain, thereby de- 
creasing its spatial frequency and orientation 
selectivity. 

The applicability of the Gabor model to receptive 
fields of neurons in the striate cortex has been inves- 
tiga'ted by a number of authors (Marcelja 1980; 
MacKay 1981; Kulikowski and Bishop 1981; Kuli- 
kowski et al. 1982; Pollen and Ronner 1983; Mullikin et 
al. 1984; Webster and DeValois 1985, Caelli and 
Moraglia 1985). The experiments of Jones and Palmer 
used new methods for the direct measurement and 
analysis of two dimensional receptive fields. They 
concluded that the 2D Gabor function is a good 
model for the receptive field structure of simple cells in 
the cat (Jones and Palmer 1984; Palmer and Jones 
1984; Jones et al. 1985; Jones 1985). According to 
Daugman (1984, p. 908). 

"... the visual system is concerned with extract- 
ing information jointly in the 2D space domain and in 
the 2D frequency domain, and because of the incom- 
patibility of these two demands, has evolved towards 
the optimal solution via 2D channels that roughly 
approximate 2D Gabor filters." 

4 Methods 

A series of programs has been written to evaluate the 
applicability of Gabor functions to texture analysis. All 
images are 512x 512 pixels, each pixel having a 
grayscale value between 0 and 255. Because of limita- 
tions in the display devices only the lower 480 pixels 
of each image are shown in the figures 9 The analysis 
programs are written in Pascal and run on a Data 
General MV/10000 computer. A set of Gabor func- 
tions is generated in accordance with a specification 
given to the program. These include spatial frequencies 

and orientations of the sinusoidal plane waves. Param- 
eters to control the spatial extent and orientation of 
the Gaussian envelope relative to the plane wave are 
also prescribed. For each specification a pair of filters 
with the sinusoidal waves having an approximately 
quadrature phase relationship (90 degree phase rela- 
tionship) is generated 9 Pollen and Ronner (1981) 
discovered a striking number of physically adjacent 
simple cells with receptive fields having this phase 
relationship. 

The set of filters applied to the pictures in this paper 
is shown in Fig. la. Each filter occupies a 65 x 65 pixel 
array 9 This set consists of 4 frequencies (wavelengths of 
32, 16, 8, and 4 pixels) with 4 orientations (0, 45, 90, 135 
degrees) and a circularly symmetric (unity aspect ratio) 
Gaussian having standard deviation of 12.5 pixels. If 
the 512 x 512 screen is imagined as being 16 degrees 
square then the frequencies are 1, 2, 4, and 8 cycle- 
s/degree. These frequencies compare with those of 
peak sensitivity in the human channel mechanisms 
described by Wilson and Bergen (1979) and sub- 
sequently found to provide a good model for texture 
similarity judgements (Harvey and Gervais 1981). This 
specification generates the 32 filters (4 frequencies x 4 
orientations x 2 phase pairs) shown in the figure. Along 
each horizontal row of the figure are the four pairs of 
filters of the same frequency but different orientation. 
Along the vertical columns are different frequencies, 
with the lowest frequency at the bottom and the 
highest at the top. For each frequency and orientation 
there is a pair of filters with the 90 degree phase 
relationship. 

The filters shown in Fig. la may be regarded as 
discrete realizations of the following function 
exp { - [(x - Xo) 2 + ( y -  yo)23/(2~2)} (1) 
 9 sin [co(x cos 0 -  y sin 0) + ~3, 
where Xo and Yo specify the center of the Gaussian. 

Fig. 1. a The set of Gabor filters used in this paper. The set contains 4 frequencies (32,16, 8, 4 pixel wavelengths), 4 orientations (0, 45, 90, 
/35 degrees) and 2 phase pairs for each orientation and frequency combination. The filters are shown in correct size relative to the 
images, b Filters are applied to set of overlapping regions (28 per dimension). This figure shows the amount of overlap between filters 
along one dimension. The spacing in the vertical dimension is the same. Therefore, the filters are applied to 784 (28 x 28) overlapping 
regions per image 
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Fig. 3. a Subjective contour, b Sum of values measured by full set of filters 

Fig. 4, a Texture used by Beck (1966) to determine whether line slope or similarity of texture elements has the strongest effect on 
segmentation, b Sum of measurements from filters of all frequencies, but only the 0 and 90 degree orientations, e Sum of all frequen- 
cies but only the 45 and 135 degree orientations 

different spectral components associated with the 
transition itself rather than any significant spectral 
differences between the areas on either side of the 
boundary. 

Figure 4a shows an image that was used by Beck 
(Beck 1966, 1982; Beck et al. 1983) in a set of 
experiments to determine which characteristics of 
texture elements had the strongest effect on segmenta- 
tion. Even though subjects judged an individual tilted 
T to be more similar to an upright T than to an upright 
L, when fields of these elements were generated the 
difference in the slope of the T's was more important  in 
promoting segmentation. Application of Gabor  func- 
tions to this image shows a different pattern of values 
for the tilted T field than for the rest of the texture. 
Figure 4b shows the sums of measured values for all 

frequencies but only for the filters oriented at 0 degrees 
and 90 degrees. Figure 4c shows the same thing for the 
filters of 45 and 135 degrees. 

Gabor  functions can often act as detectors of 
certain conspicuous local features. They are particular- 
ly sensitive to the presence of collinear or elongated 
segments of appropriate width for the frequency band 
of the filter when such segments fall within the effective 
area of the Gaussian envelope and are aligned parallel 
to the plane wave. This sensitivity is often sufficient to 
allow regions containing higher densities of such 
features to be distinguished from regions containing 
only noise. Gabor  functions, then, can act as detectors 
of certain texton types. 

Figure 5a shows one such example. This texture 
was introduced by Julesz (1981b) and consists ofa  4 • 4 

• sample image on spatial uniform cartesian grid

• filter each spatial cell at different frequencies and orientations

Turner. BC 1986. Texture Discrimination By Gabor Functions.
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Fig. 8. Reconstruction of the Lena picture from the complete 2-D Gabor 
transform displayed in Fig. 7, at only 2.55 bits/pixel. Dark points rep- 
resent lattice centers for the overlapping 2-D Gabor elementary func- 
tions. 

of these nonorthogonal elementaiy functions, whose coef- 
ficients can be found by the neural network. 

V.  IMAGE REPRESENTATION IN SELF-SIMILAR 2-D 
GABOR “WAVELET” SETS 

By eliminating degrees of freedom in the family of 
2-D Gabor elementary functions so that they all are dila- 
tions, rotations, and translations of each other, with the 
spectral parameters of the set distributed in a 2-D log- 
polar lattice, it is possible to represent images on a sparse 
self-similar family of primitives with advantageous re- 
ductions in complexity. In this more biologically inspired 
scheme as was illustrated in Fig. 6 ,  the different 2-D Ga- 
bor elementary functions G,,, [x, y ]  have sizes distrib- 
uted in octave steps (and hence, preferred frequencies also 
changing in octave steps). In (lo), this corresponds to set- 
ting CY and /3 proportional to U, and U , ,  thus eliminating 
two degrees of freedom which correspond to orientation 
bandwidth and spatial frequency bandwidth. (See [ 10, 
Fig. 21 for clarification.) The orientations of the elemen- 
tary functions, given by 

e, = tan-’ (:), 
are chosen from a fixed set of angles (e .g . ,  six distinct 
orientations differing in 30” steps). The spectral charac- 
teristics of one such set of log-polar parameterized 2-D 
Gabor elementary functions are illustrated in Fig. 9. All 
the elementary functions in this example have spectral en- 
velopes with a 2 : 1 aspect ratio ( a  reflection of their 30” 
orientation bandwidth and 1.5-octave spatial frequency 
bandwidth ), with center frequencies distributed on a log- 
polar radial octave grid (the defining 2-D spectra sam- 
pling rule), and with self-similarity across all scales, re- 
flecting the invariant shape of the image-domain tem- 
plates. 

Fig. 9. 2-D Fourier transforms of the Gabor elementary functions em- 
ployed in one log-polar radial octave “wavelet” scheme. Following 
physiological data 191, [ IO],  these primitives have logarithmically dis- 
persed center frequencies, + 15” orientation bandwidths, 1.5 octave spa- 
tial frequency bandwidths, and hence a constant template shape and a 
2 : 1 bandwidth aspect ratio. 

In certain of these respects, this set of elementary func- 
tions resembles the ‘‘wavelet” expansions developed re- 
cently by Meyer, Daubechies, Grossmann, Morlet, and 
Mallat (see [20]-[25]) for analyzing 1-D signals into a 
self-similar family of wavelets, all of which can be gen- 
erated by dilations and shifts of a single basic wavelet. 
Families of wavelets have been recently developed which 
have strictly compact support and which constitute com- 
plete orthonormal bases for L 2 ( R )  functions ([20]). All 
wavelet schemes, including the present nonorthogonal 
one, are parameterized by a geometric scale parameter m 
and position parameter n which relate members of the 
family to each other: 

\k,,(x) = 2-”’*\k(2-”x - n ) .  (21) 
Generalizing to two dimensions and incorporating dis- 
crete rotations 0 into the generating function (2 1) together 
with shifts p ,  q and dilations m,  the present 2-D Gabor 
“wavelet” set can be generated from any given member 
by 

*mpqo(x, Y )  = 2-“*(x’, Y ’ )  (22) 
where 

X ’  = 2-,[x COS ( e )  + y sin ( e ) ]  - p (23) 

y ’  = 2-”[ -x sin ( e )  + y cos ( e ) ]  - q.  (24) 

By using the network of Fig. 3 to find optimal coeffi- 
cients on this self-similar multiresolution wavelet scheme 
in which 2-D Gabor elementary functions serve as the 
\kmpqe(x,  y ) ,  significant further factors of code compres- 
sion may be achieved as illustrated in Fig. 10. Each col- 
umn of Fig. 10 corresponds to a different choice for the 
number of distinct orientations in the wavelet set, and the 
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Fig. 10. Image compression achieved by the 2-D Gabor “wavelet” trans- 
form. Columns: different numbers of distinct wavelet orientations, rang- 
ing from six to two. Rows: different quantization depths for each Gabor 
coefficient, ranging from 8 bits to 5 bits. Overall bit/pixel rates as in- 
dicated. 

different rows reflect different degrees of quantization of 
the computed coefficients ranging from 8 bits to 5 bits per 
coefficient, with the coarsest level always having 2 bits 
higher quantization accuracy than the finest level. There 
are 6 distinct values of the scale parameter m of (22)-(24) 
employed in each decomposition scheme, producing a 
five-octave range of resolution scales in one-octave steps. 
Thus, for example, the image in Fig. 10, marked “3 ori- 
entations, 1.03 bit/pixel” was reconstructed from 2-D 
Gabor wavelets present in 3 orientations (changing in 60” 
steps), 2 quadrature phases, and a total of 2610 positions 
spanning 5 levels of resolution with variable quantization 
depth. It is remarkable that rather high image quality is 
achieved here at only 1 bit/pixel using the coefficients 
found by the network, even though as few as 3 distinct 
orientations are represented by the elementary function 
wavelets. 

VI. IMAGE SEGMENTATION 
Finally, by examining the distributions of the 2-D Ga- 

bor coefficients found by the network in different image 
regions, it is possible to achieve image segmentation on 
the basis of spectral signature [26] as demonstrated in Fig. 
11. Here the input image to the network (top left panel) 
is texture consisting of a collage of anisotropically filtered 
white noise fields, with the noise in different regions of 
the image having different 2-D bandpass principal orien- 

Fig. 11. Image segmentation of anisotropic white noise texture collage 
(upper left), by the dipole clustering of coefficients in the complete 2-D 
Gabor transform displayed in  Fig. 12. 

tations. The complete 2-D Gabor transform of this texture 
image is displayed in Fig. 12. Close inspection of the 
transform reveals that associated with each local image 
region, the 2-D Gabor coefficients amnrs have significant 
amplitudes that tend to form dipoles of distinct orienta- 

• see filter bank as frequency sampling on log-polar grid

• cluster filter (vector) responses into “textons”

• apply to iris recognition

Daugman. ASSP 1988. Complete Discrete 2-D Gabor Transforms By Neural Networks for Image Analysis and Compression.
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texture descriptors
[Manjunath and Ma 1996]

• same frequency sampling scheme

• filtering and global pooling in space domain

• popularized as part of MPEG-7 standard

Manjunath and Ma. PAMI 1996. Texture Features for Browsing and Retrieval of Image Data.



global descriptors

image pre-processing

Global Semantic Classi�cation of Scenes using Power Spectrum Templates

a) b) c) d)
fx

f y

Figure 2: This �gure shows the main steps for computing the vector of 100 components used to represent an
image. a) Original image. b) Output of the pre-processing stage. The e�ect of illuminant and shadows have
been reduced. c) Power spectrum of the pre�ltered image. It is computed as the squared of the magnitude
of the Fourier Transform. d) -3dB sections of the set of gabor �lters used to sample the power spectrum.
The highest frequency is 1/3 cycles/image and the lowest one is 1/72 cycles/image.

For most images however, the shape of the power spectrum varies gradually from one of these categories to
another. For example, a �eld scene may display a vertical dominance at low-spatial frequencies corresponding
to the horizon, and a \ring" at medium and high spatial frequencies corresponding respectively to the texture
of the trees behind and the texture of the grass in front. As a consequence, the variety of natural images and
their \intertwined" distributions of orientations is at the origin of the continuity along the semantic axes
de�ned in this paper.

Instead of searching for low-level features (e.g. red and yellow) describing a speci�c semantic category
(e.g. sunset beaches), we looked for semantic categories that would naturally emerge from the �ve major
power spectrum forms. From the �ve main power spectrum forms displayed on Figure 1, we propose a
hierarchical classi�cation procedure as follows: a �rst level of classi�cation discriminates between arti�cial
vs. natural environements. The Horizontal and the Cross shapes together represent arti�cial environements
(e.g. man-made scenes), whereas the three other shapes are typical of natural scenes 2. Following this initial
classi�cation, the second level assesses natural scenes along an axis representing scenes from Open to Closed
environments (e.g. open scenes are mainly horizontally structured with depth view {beaches, �elds{ whereas
closed scenes are bounded environments, highly textured {forests, mountains. Open environments have a
vertical spectrum shape and closed environments have circular and oblique spectrum shapes). This second
level represents also arti�cial scenes along an axis revealing the vertical dominant structure of man-made
outdoor and indoor environments that we call Expanded-Enclosed axis. This axis represents a continuum
between unbroken areas of urban scenes made with tall and large buildings (horizontal spectrum shape) and
con�ned images of indoor buildings and rooms (cross spectrum shape).

4 Computational Model

4.1 Image database

We chose 700 pictures from the Corel Image database so as to cover a large variety of real-world scenes. We
imposed the constraint that images must not be pictures of isolated objects. Examples of scenes included
beaches, �elds, forests, mountain areas, deserts, waterfalls, canyons, urban areas such as shopping centers,
streets, highways, skyscrapers and di�erent kind of rooms. Out of the 700 images, 300 were classi�ed as
arti�cial environments (man-made scenes), another 300 were classi�ed as natural, and the remaining 100

2As outlined in the previous section, classi�cation must be done on continuus axes. Thus, a panoramic view with an urban
area in the background would be located between the arti�cial and the natural poles, exhibing a power spectrum form having
both a cross form and a vertical form.

Challenge of Image Retrieval, Newcastle, 1999 4

power spectrum filter bank

• sampling scheme adapted to power spectrum statistics

• filtering and global pooling in frequency domain

Oliva, Torralba, Guerin-Dugue, Herault. ICCIR 1999. Global Semantic Classification of Scenes Using Power Spectrum Templates.



sampling the frequency plane

frequency space

• space (x) and frequency (u) rotate together by θ

• scaling envelope (A) and carrier (u0) together

• 4d representation: position, scale, orientation
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from images to vectors

• suppose an image f(x) is represented in frequency by |F (u)|2
• suppose a template h(x) (another image or an attribute) is also

represented in frequency by

|H(u)|2 =

N∑

n=1

hn|Gn(u)|2

where {Gn} is a Gabor filter bank; let h = [h1, . . . , hN ]

• now define the vector f = [f1, . . . , fN ] with

fn =

∫
|F (u)|2|Gn(u)|2du

• and measure the similarity of f, h by the inner product

∫
|F (u)|2|H(u)|2du =

N∑

n=1

fnhn = 〈f ,h〉

Torralba and Oliva. ICCV 1999. Semantic Organization of Scenes Using Discriminant Structural Templates.
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global vs. local receptive fields

8 

Figure 3: Illustration of a local receptive field and a global receptive field (RF). A local RF is tuned to a 
specific orientation and spatial scale, at a particular position in the image. A global RF is tuned to a spatial 
pattern of orientations and scales across the entire image. A global RF can be generated as a combination of 
local RFs and can, in theory, be implemented from a population of local RFs like the ones found in the early 
visual areas. Larger RFs, which can be selective to global scene properties, could be found in higher cortical 
areas (V4 or IT). The global feature illustrated in this figure is tuned to images with vertical structures at the 
top part and horizontal component at the bottom part, and will reply strongly to the scene street image. 

For instance, in a forest scene picture, the shape of a leaf can be estimated by a set of 
local receptive fields (encoding oriented edges). The shape of the whole forest picture can 
be summarized by the configuration of many small oriented contours, distributed 
everywhere in the image. In the case of the forest scene, a global features encoding "fine­
grained texture everywhere in the image" will provide a good summary of the texture 
qualities found in the image. In the case of a street scene, we will need a variety of global 
features encoding the perspective, the level of clutter, etc. Figure 3 illustrates a global 
receptive field which would respond maximally to scenes with vertical structures at the top 
part and horizontal components at the bottom part (as in the case of a street scene).  

Given the variability of layout and feature distribution in the visual world, and given the 
variability of viewpoints that an observer can have on any given scene, most real world 
scene structures will need to be estimated not only by one, but by a collection of global 
features. The number of global features that can be computed is quite high. The most 
effective global features will be those that reflect the global structures of the visual world. 
Several methods of image analysis can be used to learn a suitable basis of global features 
(Fei Fei & Perona, 2005; Oliva & Torralba, 2001; Vailaya et al., 1998; Vogel et al, 2004) 
which capture the statistical regularities of natural scene images. In the modeling presented 
here, we only consider global features of receptive fields measuring orientations and spatial 

• pool filter responses only locally

• next level in hierarchy can apply different spatial weights

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.



the gist descriptor

• apply filter bank to entire image in frequency domain

• partition image in 4× 4 cells

• average pooling of filter responses per cell

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.



gist pipeline
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4× 8
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pool
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4

4× 8

• 3-channel RGB input → 1-channel gray-scale

• apply filters at 4 scales × 8 orientations

• average pooling on 4× 4 cells → descriptor of length 512

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.
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scale-invariant feature transform
[Lowe 1999]

The input image is first convolved with the Gaussian
function using � =

p
2 to give an image A. This is then

repeated a second time with a further incremental smooth-
ing of � =

p
2 to give a new image, B, which now has an

effective smoothing of � = 2. The difference of Gaussian
function is obtained by subtracting image B from A, result-
ing in a ratio of 2=

p
2 =

p
2 between the two Gaussians.

To generate the next pyramid level, we resample the al-
ready smoothed image B using bilinear interpolation with a
pixel spacing of 1.5 in each direction. While it may seem
more natural to resample with a relative scale of

p
2, the

only constraint is that sampling be frequent enough to de-
tect peaks. The 1.5 spacing means that each new sample will
be a constant linear combination of 4 adjacent pixels. This
is efficient to compute and minimizes aliasing artifacts that
would arise from changing the resampling coefficients.

Maxima and minima of this scale-space function are de-
termined by comparing each pixel in the pyramid to its
neighbours. First, a pixel is compared to its 8 neighbours at
the same level of the pyramid. If it is a maxima or minima
at this level, then the closest pixel location is calculated at
the next lowest level of the pyramid, taking account of the
1.5 times resampling. If the pixel remains higher (or lower)
than this closest pixel and its 8 neighbours, then the test is
repeated for the level above. Since most pixels will be elim-
inated within a few comparisons, the cost of this detection is
small and much lower than that of building the pyramid.

If the first level of the pyramid is sampled at the same rate
as the input image, the highest spatial frequencies will be ig-
nored. This is due to the initial smoothing, which is needed
to provide separation of peaks for robust detection. There-
fore, we expand the input image by a factor of 2, using bilin-
ear interpolation, prior to building the pyramid. This gives
on the order of 1000 key points for a typical 512�512 pixel
image, compared to only a quarter as many without the ini-
tial expansion.

3.1. SIFT key stability
To characterize the image at each key location, the smoothed
image A at each level of the pyramid is processed to extract
image gradients and orientations. At each pixel,Aij , the im-
age gradient magnitude,Mij , and orientation,R ij, are com-
puted using pixel differences:

Mij =
q

(Aij � Ai+1;j)2 + (Aij � Ai;j+1)2

R ij = atan2 (Aij � Ai+1;j; Ai;j+1 �Aij)

The pixel differences are efficient to compute and provide
sufficient accuracy due to the substantial level of previous
smoothing. The effective half-pixel shift in position is com-
pensated for when determining key location.

Robustness to illuminationchange is enhanced by thresh-
olding the gradient magnitudes at a value of 0.1 times the

Figure 1: The second image was generated from the first by
rotation, scaling, stretching, change of brightness and con-
trast, and addition of pixel noise. In spite of these changes,
78% of the keys from the first image have a closely match-
ing key in the second image. These examples show only a
subset of the keys to reduce clutter.

maximum possible gradient value. This reduces the effect
of a change in illumination direction for a surface with 3D
relief, as an illuminationchange may result in large changes
to gradient magnitude but is likely to have less influence on
gradient orientation.

Each key location is assigned a canonical orientation so
that the image descriptors are invariant to rotation. In or-
der to make this as stable as possible against lighting or con-
trast changes, the orientation is determined by the peak in a
histogram of local image gradient orientations. The orien-
tation histogram is created using a Gaussian-weighted win-
dow with � of 3 times that of the current smoothing scale.
These weights are multiplied by the thresholded gradient
values and accumulated in the histogram at locations corre-
sponding to the orientation,R ij. The histogram has 36 bins
covering the 360 degree range of rotations, and is smoothed
prior to peak selection.

The stability of the resulting keys can be tested by sub-
jecting natural images to affine projection, contrast and
brightness changes, and addition of noise. The location of
each key detected in the first image can be predicted in the
transformed image from knowledge of the transform param-
eters. This framework was used to select the various sam-
pling and smoothing parameters given above, so that max-

The input image is first convolved with the Gaussian
function using � =
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repeated a second time with a further incremental smooth-
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only constraint is that sampling be frequent enough to de-
tect peaks. The 1.5 spacing means that each new sample will
be a constant linear combination of 4 adjacent pixels. This
is efficient to compute and minimizes aliasing artifacts that
would arise from changing the resampling coefficients.

Maxima and minima of this scale-space function are de-
termined by comparing each pixel in the pyramid to its
neighbours. First, a pixel is compared to its 8 neighbours at
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at this level, then the closest pixel location is calculated at
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1.5 times resampling. If the pixel remains higher (or lower)
than this closest pixel and its 8 neighbours, then the test is
repeated for the level above. Since most pixels will be elim-
inated within a few comparisons, the cost of this detection is
small and much lower than that of building the pyramid.
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Figure 1: The second image was generated from the first by
rotation, scaling, stretching, change of brightness and con-
trast, and addition of pixel noise. In spite of these changes,
78% of the keys from the first image have a closely match-
ing key in the second image. These examples show only a
subset of the keys to reduce clutter.

maximum possible gradient value. This reduces the effect
of a change in illumination direction for a surface with 3D
relief, as an illuminationchange may result in large changes
to gradient magnitude but is likely to have less influence on
gradient orientation.

Each key location is assigned a canonical orientation so
that the image descriptors are invariant to rotation. In or-
der to make this as stable as possible against lighting or con-
trast changes, the orientation is determined by the peak in a
histogram of local image gradient orientations. The orien-
tation histogram is created using a Gaussian-weighted win-
dow with � of 3 times that of the current smoothing scale.
These weights are multiplied by the thresholded gradient
values and accumulated in the histogram at locations corre-
sponding to the orientation,R ij. The histogram has 36 bins
covering the 360 degree range of rotations, and is smoothed
prior to peak selection.

The stability of the resulting keys can be tested by sub-
jecting natural images to affine projection, contrast and
brightness changes, and addition of noise. The location of
each key detected in the first image can be predicted in the
transformed image from knowledge of the transform param-
eters. This framework was used to select the various sam-
pling and smoothing parameters given above, so that max-

• detect a sparse set of “stable” features (rectangular patches),
equivariant to translation, scale and rotation

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



scale-invariant feature transform

• for each patch

• normalize with respect to scale and orientation
• construct a histogram of gradient orientations

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



the SIFT descriptor

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15

• votes in 8-bin orientation histograms weighted by magnitude and by
Gaussian window on patch

• histograms pooled over 4× 4 cells, trilinear interpolation

• 128-dimensional descriptor, normalized, clipped at 0.2, normalized

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



histogram of oriented gradients
[Dalal and Triggs 2005]

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 
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• applied to person detection by sliding window and SVM

• classifier learns positive and negative weights on positions and
orientations

• shifts focus back to dense features for classification

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection.



the HOG descriptor

• applied densely to adjacent cells of 8× 8 pixels

• no scale or orientation normalization; just single-scale

• normalized by overlapping blocks of 3× 3 cells—redundant

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection.



so what is a histogram?

• consider a histogram h over integers C = {0, 1, 2, 3, 4}, computed
from the following samples:

C = { 0 1 2 3 4 }
3 → ( 0 0 0 1 0 )
2 → ( 0 0 1 0 0 )
0 → ( 1 0 0 0 0 )
3 → ( 0 0 0 1 0 )
2 → ( 0 0 1 0 0 )
2 → ( 0 0 1 0 0 ) +

h = ( 1 0 3 2 0 ) / 6

• each sample is encoded (hard-assigned) into a vector in R5; all such
vectors are pooled (averaged) into one vector h ∈ R5

• encoding is always nonlinear and pooling is orderless

• C is a codebook or vocabulary
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SIFT (HOG) pipeline
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• 3-channel patch (image) RGB input → 1-channel gray-scale

• compute gradient magnitude & orientation

• encode into b = 8 (9) orientation bins

• average pooling on c = 4× 4 (bw/8c × bh/8c) cells

• descriptor of length c× b = 128 (block-normalize → c× (3× 3)× b)
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back to Gabor

• let us use the following edge pattern

• rotate it by all θ ∈ [0, 2π]

• for each θ, filter (take dot product) with a bank of antisymmetric
Gabor filters at 5 orientations, single scale

• turns out, the filter bank provides an encoding of θ in R5: soft
assignment

• then, spatial pooling gives nothing but an orientation histogram
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nonlinear mappings

• Q: we said convolution is linear; now, once we have a gradient
orientation measurement, why do we need a nonlinear function?

• convolution is linear in the image; but if the image is rotated by θ,
itself is a nonlinear function of θ

• what we are doing is, mapping to another space where scaling and
rotation of the image behave like translation

Schwartz. BC 1977. Spatial Mapping in the Primate Sensory Projection: Analytic Structure and Relevance to Perception.
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on manifolds

• an image of resolution 320× 200 is a vector in I = R64,000; are all
such vectors equally likely?

• an object seen at different scales and orientations only spans a
2-dimensional smooth manifold in I

6.1 Toy examples 183
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Fig. 6.10. A very thin slice of Swiss roll.
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Fig. 6.11. Two-dimensional embedding of a thin slice of Swiss roll by distance-
preserving methods. All methods embed 600 prototypes obtained beforehand with
vector quantization.

and we would like to express scale and orientation as two natural
coordinates

• how would we go about expressing perspective transformation?
attributes of handwritten characters? poses of a human body?
occluded surfaces? species of dogs?

Lee and Verleysen 2007. Nonlinear Dimensionality Reduction.
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feature hierarchy

• at each level, nonlinearly encode each local (e.g. pixel) representation
according to a codebook, followed by pooling

• scale and orientation are just two dimensions; a codebook is just a
dense grid

• a 3-scale, 6-orientation filter response is 18-dimensional; a dense grid
is not an option

• learn the codebook from data!
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back to textons
[Daugman 1988]
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Fig. 8. Reconstruction of the Lena picture from the complete 2-D Gabor 
transform displayed in Fig. 7, at only 2.55 bits/pixel. Dark points rep- 
resent lattice centers for the overlapping 2-D Gabor elementary func- 
tions. 

of these nonorthogonal elementaiy functions, whose coef- 
ficients can be found by the neural network. 

V.  IMAGE REPRESENTATION IN SELF-SIMILAR 2-D 
GABOR “WAVELET” SETS 

By eliminating degrees of freedom in the family of 
2-D Gabor elementary functions so that they all are dila- 
tions, rotations, and translations of each other, with the 
spectral parameters of the set distributed in a 2-D log- 
polar lattice, it is possible to represent images on a sparse 
self-similar family of primitives with advantageous re- 
ductions in complexity. In this more biologically inspired 
scheme as was illustrated in Fig. 6 ,  the different 2-D Ga- 
bor elementary functions G,,, [x, y ]  have sizes distrib- 
uted in octave steps (and hence, preferred frequencies also 
changing in octave steps). In (lo), this corresponds to set- 
ting CY and /3 proportional to U, and U , ,  thus eliminating 
two degrees of freedom which correspond to orientation 
bandwidth and spatial frequency bandwidth. (See [ 10, 
Fig. 21 for clarification.) The orientations of the elemen- 
tary functions, given by 

e, = tan-’ (:), 
are chosen from a fixed set of angles (e .g . ,  six distinct 
orientations differing in 30” steps). The spectral charac- 
teristics of one such set of log-polar parameterized 2-D 
Gabor elementary functions are illustrated in Fig. 9. All 
the elementary functions in this example have spectral en- 
velopes with a 2 : 1 aspect ratio ( a  reflection of their 30” 
orientation bandwidth and 1.5-octave spatial frequency 
bandwidth ), with center frequencies distributed on a log- 
polar radial octave grid (the defining 2-D spectra sam- 
pling rule), and with self-similarity across all scales, re- 
flecting the invariant shape of the image-domain tem- 
plates. 

Fig. 9. 2-D Fourier transforms of the Gabor elementary functions em- 
ployed in one log-polar radial octave “wavelet” scheme. Following 
physiological data 191, [ IO],  these primitives have logarithmically dis- 
persed center frequencies, + 15” orientation bandwidths, 1.5 octave spa- 
tial frequency bandwidths, and hence a constant template shape and a 
2 : 1 bandwidth aspect ratio. 

In certain of these respects, this set of elementary func- 
tions resembles the ‘‘wavelet” expansions developed re- 
cently by Meyer, Daubechies, Grossmann, Morlet, and 
Mallat (see [20]-[25]) for analyzing 1-D signals into a 
self-similar family of wavelets, all of which can be gen- 
erated by dilations and shifts of a single basic wavelet. 
Families of wavelets have been recently developed which 
have strictly compact support and which constitute com- 
plete orthonormal bases for L 2 ( R )  functions ([20]). All 
wavelet schemes, including the present nonorthogonal 
one, are parameterized by a geometric scale parameter m 
and position parameter n which relate members of the 
family to each other: 

\k,,(x) = 2-”’*\k(2-”x - n ) .  (21) 
Generalizing to two dimensions and incorporating dis- 
crete rotations 0 into the generating function (2 1) together 
with shifts p ,  q and dilations m,  the present 2-D Gabor 
“wavelet” set can be generated from any given member 
by 

*mpqo(x, Y )  = 2-“*(x’, Y ’ )  (22) 
where 

X ’  = 2-,[x COS ( e )  + y sin ( e ) ]  - p (23) 

y ’  = 2-”[ -x sin ( e )  + y cos ( e ) ]  - q.  (24) 

By using the network of Fig. 3 to find optimal coeffi- 
cients on this self-similar multiresolution wavelet scheme 
in which 2-D Gabor elementary functions serve as the 
\kmpqe(x,  y ) ,  significant further factors of code compres- 
sion may be achieved as illustrated in Fig. 10. Each col- 
umn of Fig. 10 corresponds to a different choice for the 
number of distinct orientations in the wavelet set, and the 
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Fig. 10. Image compression achieved by the 2-D Gabor “wavelet” trans- 
form. Columns: different numbers of distinct wavelet orientations, rang- 
ing from six to two. Rows: different quantization depths for each Gabor 
coefficient, ranging from 8 bits to 5 bits. Overall bit/pixel rates as in- 
dicated. 

different rows reflect different degrees of quantization of 
the computed coefficients ranging from 8 bits to 5 bits per 
coefficient, with the coarsest level always having 2 bits 
higher quantization accuracy than the finest level. There 
are 6 distinct values of the scale parameter m of (22)-(24) 
employed in each decomposition scheme, producing a 
five-octave range of resolution scales in one-octave steps. 
Thus, for example, the image in Fig. 10, marked “3 ori- 
entations, 1.03 bit/pixel” was reconstructed from 2-D 
Gabor wavelets present in 3 orientations (changing in 60” 
steps), 2 quadrature phases, and a total of 2610 positions 
spanning 5 levels of resolution with variable quantization 
depth. It is remarkable that rather high image quality is 
achieved here at only 1 bit/pixel using the coefficients 
found by the network, even though as few as 3 distinct 
orientations are represented by the elementary function 
wavelets. 

VI. IMAGE SEGMENTATION 
Finally, by examining the distributions of the 2-D Ga- 

bor coefficients found by the network in different image 
regions, it is possible to achieve image segmentation on 
the basis of spectral signature [26] as demonstrated in Fig. 
11. Here the input image to the network (top left panel) 
is texture consisting of a collage of anisotropically filtered 
white noise fields, with the noise in different regions of 
the image having different 2-D bandpass principal orien- 

Fig. 11. Image segmentation of anisotropic white noise texture collage 
(upper left), by the dipole clustering of coefficients in the complete 2-D 
Gabor transform displayed in  Fig. 12. 

tations. The complete 2-D Gabor transform of this texture 
image is displayed in Fig. 12. Close inspection of the 
transform reveals that associated with each local image 
region, the 2-D Gabor coefficients amnrs have significant 
amplitudes that tend to form dipoles of distinct orienta- 

• see filter bank as frequency sampling on log-polar grid

• cluster 3× 6 filter (vector) responses into “textons”

• apply to iris recognition

Daugman. ASSP 1988. Complete Discrete 2-D Gabor Transforms By Neural Networks for Image Analysis and Compression.
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Gabor wavelets present in 3 orientations (changing in 60” 
steps), 2 quadrature phases, and a total of 2610 positions 
spanning 5 levels of resolution with variable quantization 
depth. It is remarkable that rather high image quality is 
achieved here at only 1 bit/pixel using the coefficients 
found by the network, even though as few as 3 distinct 
orientations are represented by the elementary function 
wavelets. 

VI. IMAGE SEGMENTATION 
Finally, by examining the distributions of the 2-D Ga- 

bor coefficients found by the network in different image 
regions, it is possible to achieve image segmentation on 
the basis of spectral signature [26] as demonstrated in Fig. 
11. Here the input image to the network (top left panel) 
is texture consisting of a collage of anisotropically filtered 
white noise fields, with the noise in different regions of 
the image having different 2-D bandpass principal orien- 

Fig. 11. Image segmentation of anisotropic white noise texture collage 
(upper left), by the dipole clustering of coefficients in the complete 2-D 
Gabor transform displayed in  Fig. 12. 

tations. The complete 2-D Gabor transform of this texture 
image is displayed in Fig. 12. Close inspection of the 
transform reveals that associated with each local image 
region, the 2-D Gabor coefficients amnrs have significant 
amplitudes that tend to form dipoles of distinct orienta- 

• see filter bank as frequency sampling on log-polar grid

• cluster 3× 6 filter (vector) responses into “textons”

• apply to iris recognition

Daugman. ASSP 1988. Complete Discrete 2-D Gabor Transforms By Neural Networks for Image Analysis and Compression.



textons
[Malik et al. 1999]

2 Filters and Textons
Since the early 1980s, many approaches have been pro-

posed in the computer vision literature that employfilter-
baseddescriptions of images [6, 10, 14]. By the termfilter-
basedwe mean that the fundamental representation for a
pixel in an image includes not only its brightness or color
information, but also the inner product of the neighborhood
centered on that pixel with a set of filters tuned to various
orientations and spatial frequencies. (See Figure 2 for an
example of such a filter set.)

Figure 2. Gaussian derivative filter set consisting of 2 phases
(even and odd), 3 scales (spaced by half-octaves), and 6 ori-
entations (equally spaced from 0 to�). The basic filter is
a difference-of-Gaussian quadrature pair with3 : 1 elonga-
tion. Each filter is divided by itsL1 norm for scale invari-
ance.

As discussed for example in [8, 11], vectors of filter re-
sponses have many appealing properties, including relation-
ships to physiological findings in the primate visual sys-
tem [3] and to the basic mathematical notion of a Taylor
series expansion.

Though the representation of textures using filter re-
sponses is extremely versatile, one might say that it is overly
redundant (each pixel values is represented byNfil filter
responses, whereNfil is usually around36). Moreover, it
should be noted that we are characterizing textures, enti-
ties with some spatially repeating properties by definition.
Therefore, we do not expect the filter responses to be totally
different at each pixel over the texture. Thus, there should
be several distinct filter response vectors and all others are
noisy variations of them.

This observation leads to our proposal of clustering the
filter responses into a small set of prototype response vec-
tors. We call these prototypestextons. Algorithmically,
each texture is analyzed using the filter bank shown in Fig-
ure 2. There are a total of36 filters. Each pixel is now
transformed to aNfil = 36 dimensional vector of filter
response These vectors are clustered using aK-means al-
gorithm. The criterion for this algorithm is to findK “cen-
ters” such that after assigning each data vector to the nearest
center, the sum of the squared distance from the centers is
minimized.K-means is a greedy algorithm that finds a lo-
cal minimum of this criterion1. In this paper, we use the

1For more discussions and variations of the K-means algorithm, the
reader is referred to [4, 7].

kmeans function in the NETLAB toolbox [15].
It is useful to visualize the resulting cluster centers in

terms of the original filter kernels. To do this, recall that
each cluster center represents a set of projections of each
filter onto a particular image patch. We can solve for the
image patch corresponding to each cluster center in a least
squares sense by premultiplying the vectors representing the
cluster centers by the pseudoinverse of the filterbank [8].
The matrix representing the filterbank is formed by con-
catenating the filter kernels into columns and placing these
columns side by side. The set of synthesized image patches
for two test images are shown in Figures 3(b) and 4(b).
These are our textons. The textons represent assemblies of
filter outputs that are characteristic of the local image struc-
ture present in the image.

(a) (b)

(c)

Figure 3. (a) Polka-dot image. (b) Textons found viaK-
means withK = 25, sorted in decreasing order by norm.
(c) Mapping of pixels to the texton channels. The dominant
structures captured by the textons are translated versions of
the dark spots. We also see textons corresponding to faint
oriented edge and bar elements. Notice that some channels
contain activity inside a textured region or along an oriented
contour and nowhere else.

Looking at the polka-dot example, we find that many of

oriented filter bank

fewer points in the neighborhood to compute the his-
togram. In that case, the histogram difference becomes
less reliable, and therefore should be discounted. We
define the reliability measure for each histogram mea-
sure at pixelp(i) = sigmoid(Z(i); thresholdp). In
our experiments, thethresholdp is set to0:05�jW(i)j.

3. In parallel to the texture computation, the intervening
contour cue gated by the texture-ness can be used to
group/segment pixels. The computation is same as in
x4.1, except the filter energy is suppressed by texture-
ness measure�(i).

W IC(i; j) = exp(� max
x2lij ;�(x)<1:0

OE(x)=�IC )

4. Let the two pair-wise feature distance functions com-
puted in the two previous steps beW tex(i; j) and
W IC(i; j), from the texture cue and intervening con-
tour cue respectively. Since the test for isotropy is
purely a local one, one expects the� and� function
to misfire sometimes. By combining the two cues, and
applying global grouping algorithm to this data, we
hope to “smooth out” these errors in the� and� es-
timates. The rule we have for combining two cues is:

W (i; j) = [W TX(i; j)]p(i;j)[W IC(i; j)]

wherep(i; j) = min(p(i); p(j)) is the significance of
the histogram comparison between pixelsi andj.

5. Applying grouping algorithm to the combined pair-
wise similarity measure to obtain the final segmenta-
tion. We used the normalized cut algorithm for this
step [18]. The global nature of the normalized cut al-
gorithm help us overcome the errors in the local� and
� computation.

5 Results

We have run our algorithm on a variety of natural images.
Figures 8 and 9 show typical segmentation results. In all
the cases, the regions are cleanly separated from each other
using combined texture and contour cues.

Grouping based on each of the cues alone would re-
sult in severe artifacts: In Figure 8a, the contours on the
penguin would form isolated groups using the texture cue.
Similar problems would occur at the intensity boundaries
in 8b and 8c. Grouping based on contour information alone
would result in over-fragmentation of the pebbles in 8a
and 9a, and the tiger body in 8c. On the other hand, in Fig-
ure 8b the lower arm can not be separated from the upper
arm without using contour information.

(a)

(b)

(c)

Figure 8. Segmentation results of three images using com-
bined texture and intervening contour cue. The image re-
gions are cleanly segmented from each other using the com-
bined cues. In all three cases, grouping by each of the cues
alone will not produce the right results.
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image texture segmentation

• textons (re-)defined as clusters of filter responses

• regions described by texton histograms

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.
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image

textons

channels

• each pixel mapped to a filter response vector of length 3× 12

• vectors clustered by k-means into k = 25 “texton” centroids

• each pixel assigned to a texton

• each texton has a “channel” of pixel assignments
Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.
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texton pipeline
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• 3-channel RGB input → 1-channel gray-scale

• apply filters at 3 scales × 12 orientations

• point-wise encoding (hard assignment) on k = 25 textons

• stride-1 average pooling on overlapping neighborhoods

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.
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bag of words (BoW)
[Sivic and Zisserman 2003]

document) in which the word occurs.
A text is retrieved by computing its vector of word

frequencies and returning the documents with the closest
(measured by angles) vectors. In addition the match on the
ordering and separation of the words may be used to rank
the returned documents.

Paper outline: Here we explore visual analogies of each
of these steps. Section 2 describes the visual descriptors
used. Section 3 then describes their vector quantization
into visual ‘words’, and section 4 weighting and indexing
for the vector model. These ideas are then evaluated on a
ground truth set of frames in section 5. Finally, a stop list
and ranking (by a match on spatial layout) are introduced in
section 6, and used to evaluate object retrieval throughout
two feature films: ‘Run Lola Run’ (‘Lola Rennt’) [Tykwer,
1999], and ‘Groundhog Day’ [Ramis, 1993].
Although previous work has borrowed ideas from the

text retrieval literature for image retrieval from databases
(e.g. [15] used the weighting and inverted file schemes) to
the best of our knowledge this is the first systematic appli-
cation of these ideas to object retrieval in videos.

2. Viewpoint invariant description
Two types of viewpoint covariant regions are computed for
each frame. The first is constructed by elliptical shape adap-
tation about an interest point. The method involves itera-
tively determining the ellipse centre, scale and shape. The
scale is determined by the local extremum (across scale) of
a Laplacian, and the shape by maximizing intensity gradient
isotropy over the elliptical region [2, 4]. The implementa-
tion details are given in [8, 13]. This region type is referred
to as Shape Adapted (SA).
The second type of region is constructed by selecting ar-

eas from an intensity watershed image segmentation. The
regions are those for which the area is approximately sta-
tionary as the intensity threshold is varied. The implemen-
tation details are given in [7]. This region type is referred to
as Maximally Stable (MS).
Two types of regions are employed because they detect

different image areas and thus provide complementary rep-
resentations of a frame. The SA regions tend to be centered
on corner like features, and the MS regions correspond to
blobs of high contrast with respect to their surroundings
such as a dark window on a gray wall. Both types of re-
gions are represented by ellipses. These are computed at
twice the originally detected region size in order for the im-
age appearance to be more discriminating. For a 720 � 576
pixel video frame the number of regions computed is typi-
cally 1600. An example is shown in Figure 1.
Each elliptical affine invariant region is represented by

a 128-dimensional vector using the SIFT descriptor devel-

Figure 1: Top row: Two frames showing the same scene from
very different camera viewpoints (from the film ‘Run Lola Run’).
Middle row: frames with detected affine invariant regions super-
imposed. ‘Maximally Stable’ (MS) regions are in yellow. ‘Shape
Adapted’ (SA) regions are in cyan. Bottom row: Final matched
regions after indexing and spatial consensus. Note that the corre-
spondences define the scene overlap between the two frames.

oped by Lowe [5]. In [9] this descriptor was shown to be su-
perior to others used in the literature, such as the response of
a set of steerable filters [8] or orthogonal filters [13], and we
have also found SIFT to be superior (by comparing scene
retrieval results against ground truth as in section 5.1). The
reason for this superior performance is that SIFT, unlike the
other descriptors, is designed to be invariant to a shift of a
few pixels in the region position, and this localization er-
ror is one that often occurs. Combining the SIFT descriptor
with affine covariant regions gives region description vec-
tors which are invariant to affine transformations of the im-
age. Note, both region detection and the description is com-
puted on monochrome versions of the frames, colour infor-
mation is not currently used in this work.

To reduce noise and reject unstable regions, information
is aggregated over a sequence of frames. The regions de-
tected in each frame of the video are tracked using a simple
constant velocity dynamical model and correlation. Any re-
gion which does not survive for more than three frames is
rejected. Each region of the track can be regarded as an

2
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• two types of sparse features detected

• SIFT descriptors extracted from a dataset of video frames

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag of words: retrieval
[Sivic and Zisserman 2003]

independent measurement of a common scene region (the
pre-image of the detected region), and the estimate of the
descriptor for this scene region is computed by averaging
the descriptors throughout the track. This gives a measur-
able improvement in the signal to noise of the descriptors
(which again has been demonstrated using the ground truth
tests of section 5.1).

3. Building a visual vocabulary
The objective here is to vector quantize the descriptors into
clusters which will be the visual ‘words’ for text retrieval.
Then when a new frame of the movie is observed each de-
scriptor of the frame is assigned to the nearest cluster, and
this immediately generates matches for all frames through-
out the movie. The vocabulary is constructed from a sub-
part of the movie, and its matching accuracy and expressive
power are evaluated on the remainder of the movie, as de-
scribed in the following sections.
The vector quantization is carried out here by K-means

clustering, though other methods (K-medoids, histogram
binning, etc) are certainly possible.

3.1. Implementation
Regions are tracked through contiguous frames, and a mean
vector descriptor x̄i computed for each of the i regions. To
reject unstable regions the 10% of tracks with the largest
diagonal covariance matrix are rejected. This generates an
average of about 1000 regions per frame.
Each descriptor is a 128-vector, and to simultaneously

cluster all the descriptors of the movie would be a gargan-
tuan task. Instead a subset of 48 shots is selected (these
shots are discussed in more detail in section 5.1) cover-
ing about 10k frames which represent about 10% of all the
frames in the movie. Even with this reduction there are still
200K averaged track descriptors that must be clustered.
To determine the distance function for clustering the Ma-

halanobis distance is computed as follows: it is assumed
that the covariance Σ is the same for all tracks, and this
is computed by estimating from all the available data, i.e.
all descriptors for all tracks in the 48 shots. The Maha-
lanobis distance enables the more noisy components of the
128–vector to be weighted down, and also decorrelates the
components. Empirically there is a small degree of correla-
tion. The distance function between two descriptors (repre-
sented by their mean track descriptors) x̄1, x̄2, is then given
by d

�
x̄1 � x̄2 � � � �

x̄1 � x̄2 � � � � 1 �
x̄1 � x̄2 � . As is standard,

the descriptor space is affine transformed by the square root
of Σ so that Euclidean distance may be used.
About 6k clusters are used for Shape Adapted regions,

and about 10k clusters for Maximally Stable regions. The
ratio of the number of clusters for each type is chosen to be
approximately the same as the ratio of detected descriptors

(a)

(b)

Figure 2: Samples from the clusters corresponding to a single vi-
sual word. (a) Two examples of clusters of Shape Adapted regions.
(b) Two examples of clusters of Maximally Stable regions.

of each type. The number of clusters is chosen empirically
to maximize retrieval results on the ground truth set of sec-
tion 5.1. The K-means algorithm is run several times with
random initial assignments of points as cluster centres, and
the best result used.
Figure 2 shows examples of regions belonging to par-

ticular clusters, i.e. which will be treated as the same vi-
sual word. The clustered regions reflect the properties of
the SIFT descriptors which penalize variations amongst re-
gions less than cross-correlation. This is because SIFT em-
phasizes orientation of gradients, rather than the position of
a particular intensity within the region.
The reason that SA and MS regions are clustered sepa-

rately is that they cover different and largely independent
regions of the scene. Consequently, they may be thought
of as different vocabularies for describing the same scene,
and thus should have their own word sets, in the same way
as one vocabulary might describe architectural features and
another the state of repair of a building.

4. Visual indexing using text retrieval
methods

In text retrieval each document is represented by a vector of
word frequencies. However, it is usual to apply a weighting
to the components of this vector [1], rather than use the fre-
quency vector directly for indexing. Here we describe the
standard weighting that is employed, and then the visual
analogy of document retrieval to frame retrieval.

3
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of each type. The number of clusters is chosen empirically
to maximize retrieval results on the ground truth set of sec-
tion 5.1. The K-means algorithm is run several times with
random initial assignments of points as cluster centres, and
the best result used.
Figure 2 shows examples of regions belonging to par-

ticular clusters, i.e. which will be treated as the same vi-
sual word. The clustered regions reflect the properties of
the SIFT descriptors which penalize variations amongst re-
gions less than cross-correlation. This is because SIFT em-
phasizes orientation of gradients, rather than the position of
a particular intensity within the region.
The reason that SA and MS regions are clustered sepa-

rately is that they cover different and largely independent
regions of the scene. Consequently, they may be thought
of as different vocabularies for describing the same scene,
and thus should have their own word sets, in the same way
as one vocabulary might describe architectural features and
another the state of repair of a building.

4. Visual indexing using text retrieval
methods

In text retrieval each document is represented by a vector of
word frequencies. However, it is usual to apply a weighting
to the components of this vector [1], rather than use the fre-
quency vector directly for indexing. Here we describe the
standard weighting that is employed, and then the visual
analogy of document retrieval to frame retrieval.
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Harris affine maximally stable
6k words 10k words

• “visual words” defined as clusters of SIFT descriptors learned from the
dataset

• images described by visual word histograms

• matching is reduced to sparse dot product → fast retrieval

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag of words: classification
[Csurka et al. 2004]

features visual words

 

Fig. 7.  Images where background clutter is in a higher percentage than interest points on the 
object. 

Fig. 8 shows some images from the database where objects from other categories 
were also present in the image and the first 3 ranked categories for each of them. 
These images were not considered as multiple labels but labeled by the main object in 
the image.  

 

   
phones, books, cars bikes, buildings, cars buildings, cars, faces 

Fig. 8.  Images where multiple objects were present and the first three ranked labels. 

Finally, Fig. 9 shows some false alarm with the first label and the true label with its 
rank. 

 

  
face(1)… book(2) trees(1)…face(5) phones(1)…cars(2) 

Fig. 9.  Examples of incorrectly ranked images. The correct label’s rank is also shown.  

 
 

3.2 SVM Results 
 
Results from applying the SVM are given in Table 2.  

• same representation, k = 1000 words, naive Bayes or SVM classifier

• features soon to be replaced dense multiscale HOG or SIFT

Csurka, Dance, Fan, Willamowski and Bray. SLCV 2004. Visual Categorization With Bags of Keypoints.
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vector of locally aggregated descriptors (VLAD)∗
[Jégou et al. 2010]
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Figure 1. Images and corresponding VLAD descriptors, for k=16 centroids (D=16×128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

words k: we consider values ranging from k=16 to k=256.
Figure 1 depicts the VLAD representations associated

with a few images, when aggregating 128-dimensional
SIFT descriptors. The components of our descriptor map
to components of SIFT descriptors. Therefore we adopt the
usual 4× 4 spatial grid representation of oriented gradients
for each vi=1..k. We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip-
tors, a component may be positive or negative, due to the
difference in Equation 1.

One can observe that the descriptors are relatively sparse
(few values have a significant energy) and very structured:
most high descriptor values are located in the same cluster,
and the geometrical structure of SIFT descriptors is observ-
able. Intuitively and as shown later, a principal component
analysis is likely to capture this structure. For sufficiently
similar images, the closeness of the descriptors is obvious.

3. From vectors to codes
This section addresses the problem of coding an image

vector. Given a D-dimensional input vector, we want to
produce a code of B bits encoding the image representa-
tion, such that the nearest neighbors of a (non-encoded)
query vector can be efficiently searched in a set of n en-
coded database vectors.

We handle this problem in two steps, that must be opti-
mized jointly: 1) a projection that reduces the dimension-
ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent
approximate nearest neighbor search method of [7], which
is briefly described in the next section. We will show the
importance of the joint optimization by measuring the mean
squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,
15, 24, 27] are required to handle large databases in com-
puter vision applications [22]. One of the most popu-
lar techniques is Euclidean Locality-Sensitive Hashing [4],
which has been extended in [11] to arbitrary metrics. How-
ever, these approaches and the one of [15] are memory con-
suming, as several hash tables or trees are required. The
method of [27], which embeds the vector into a binary
space, better satisfies the memory constraint. It is, how-
ever, significantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
based approximate search method of [7]. In the following,
we use this method, as it offers better accuracy and because
the search algorithm provides an explicit approximation of
the indexed vectors. This allows us to compare the vector
approximations introduced by the dimensionality reduction
and the quantization. We use the asymmetric distance com-
putation (ADC) variant of this approach, which only en-
codes the vectors of the database, but not the query vector.
This method is summarized in the following.

• encoding yields a vector per visual word, rather than a scalar frequency

• this vector is 128-dimensional like SIFT descriptors

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD definition∗

• input vectors: X = {x1, . . . , xn} ⊂ Rd

• vector quantizer: q : Rd → C ⊂ Rd, C = {c1, . . . , ck}

q(x) = arg min
c∈C
‖x− c‖2

• residual vector
r(x) = x− q(x)

• residual pooling per cell

Vc(X) =
∑

x∈X
q(x)=c

r(x) =
∑

x∈X
q(x)=c

x− q(x)

• VLAD vector (up to normalization)

V(X) = (Vc1(X), . . . , Vck(X))
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VLAD geometry∗

• input vectors – codebook – residuals – pooling
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VLAD pipeline∗
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
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128× k

→
pool 128× k

• 3-channel RGB input → 1-channel gray-scale

• set of ∼ 1000 features × 128-dim SIFT descriptors

• element-wise encoding (hard assignment) on k ∼ 16 visual words

• encoding now yields a residual vector rather than a scalar vote

• global sum pooling, `2 normalization
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probabilistic interpretation∗

• if p(X|C) is the likelihood of i.i.d observations X under a uniform
isotropic Gaussian mixture model with component means C

p(X|C) ∝
∏

x∈X
e−

1
2
‖x−q(x)‖2

• then the VLAD vector is proportional the gradient of ln p(X|C) with
respect to the model parameters C

V(X) ∝ ∇C ln p(X|C) = [∇c1 ln p(X|C), . . . ,∇ck ln p(X|C)]

• if we were to optimize C to fit the data X, then V̂(X) would be the
direction in which to modify C
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Fisher kernel∗

• the Fisher kernel generalizes to a non-uniform diagonal Gaussian
mixture model

order statistics parameter model

0 mixing coefficient π BoW
1 means µ VLAD
2 standard deviations σ Fisher

Perronnin and Dance CVPR 2006. Fisher Kernels on Visual Vocabularies for Image Categorization.



embeddings in general∗

x1 φ(x1)

...
embedding
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...

xn φ(xn)

aggregating
(pooling)

Φ(X)

dimension
reduction ∑

i φ(xi)
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HMAX
[Riesenhuber and Poggio 1999]
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lus (unless the afferents showed no overlap in space
or scale); consequently, excitation of the ‘complex’
cell would increase along with the stimulus size,
even though the afferents show size invariance!
(This is borne out in simulations using a simplified
two-layer model25.) For the MAX mechanism, how-
ever, cell response would show little variation, even as stimulus
size increased, because the cell’s response would be determined
just by the best-matching afferent.

These considerations (supported by quantitative simulations
of the model, described below) suggest that a nonlinear MAX
function represents a sensible way of pooling responses to achieve
invariance. This would involve implicitly scanning (see Discus-
sion) over afferents of the same type differing in the parameter
of the transformation to which responses should be invariant
(for instance, feature size for scale invariance), and then select-
ing the best-matching afferent. Note that these considerations
apply where different afferent to a pooling cell (for instance, those
looking at different parts of space), are likely to respond to dif-
ferent objects (or different parts of the same object) in the visu-
al field. (This is the case with cells in lower visual areas with their
broad shape tuning.) Here, pooling by combining afferents would

mix up signals caused by different stimuli. However, if the affer-
ents are specific enough to respond only to one pattern, as one
expects in the final stages of the model, then it is advantageous
to pool them using a weighted sum, as in the RBF network15,
where VTUs tuned to different viewpoints were combined to
interpolate between the stored views.

MAX-like mechanisms at some stages of the circuitry seem
compatible with neurophysiological data. For instance, when two
stimuli are brought into the receptive field of an IT neuron, that
neuron’s response seems dominated by the stimulus that, when
presented in isolation to the cell, produces a higher firing rate24—
just as expected if a MAX-like operation is performed at the level
of this neuron or its afferents. Theoretical investigations into pos-
sible pooling mechanisms for V1 complex cells also support a
maximum-like pooling mechanism (K. Sakai and S. Tanaka, Soc.
Neurosci. Abstr. 23, 453, 1997).

articles

View-tuned cells

MAX

weighted sum

Simple cells (S1)

Complex cells (C1)

Complex composite cells (C2)

Composite feature cells (S2)

Fig. 2. Sketch of the model. The model was an extension of
classical models of complex cells built from simple cells4,
consisting of a hierarchy of layers with linear (‘S’ units in the
notation of Fukushima6, performing template matching, solid
lines) and non-linear operations (‘C’ pooling units6, perform-
ing a ‘MAX’ operation, dashed lines). The nonlinear MAX
operation—which selected the maximum of the cell’s inputs
and used it to drive the cell—was key to the model’s proper-
ties, and differed from the basically linear summation of
inputs usually assumed for complex cells. These two types of
operations provided pattern specificity and invariance to
translation, by pooling over afferents tuned to different posi-
tions, and to scale (not shown), by pooling over afferents
tuned to different scales.

Fig. 3. Highly nonlinear shape-tuning properties of the MAX mechanism. (a) Experimentally observed responses of IT cells obtained using a ‘simplifi-
cation procedure’26 designed to determine ‘optimal’ features (responses normalized so that the response to the preferred stimulus is equal to 1). In
that experiment, the cell originally responded quite strongly to the image of a ‘water bottle’ (leftmost object). The stimulus was then ‘simplified’ to its
monochromatic outline, which increased the cell’s firing, and further, to a paddle-like object consisting of a bar supporting an ellipse. Whereas this
object evoked a strong response, the bar or the ellipse alone produced almost no response at all (figure used by permission). (b) Comparison of
experiment and model. White bars show the responses of the experimental neuron from (a). Black and gray bars show the response of a model neu-
ron tuned to the stem-ellipsoidal base transition of the preferred stimulus. The model neuron is at the top of a simplified version of the model shown
in Fig. 2, where there were only two types of S1 features at each position in the receptive field, each tuned to the left or right side of the transition
region, which fed into C1 units that pooled them using either a MAX function (black bars) or a SUM function (gray bars). The model neuron was con-
nected to these C1 units so that its response was maximal when the experimental neuron’s preferred stimulus was in its receptive field.
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cell would increase along with the stimulus size,
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(This is borne out in simulations using a simplified
two-layer model25.) For the MAX mechanism, how-
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hierarchical model sum vs. max pooling

• computational model consistent with psychophysical data

• advocates non-linear max pooling

Riesenhuber and Poggio. NN 1999. Hierarchical Models of Object Recognition in Cortex.



(simplified) HMAX pipeline
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• 3-channel RGB input → 1-channel gray-scale

• S1 apply filters at 16 scales × 4 orientations

• C1 max-pooling over 8× 8 spatial cells and over 2 scales

• S2 convolutional RBF matching of input patches X to k = 4072
prototypes Pi (ni × ni patches at 4 orientations) extracted at random
during learning: activations Yi = exp(−γ‖X − Pi‖2)

• C2 global max pooling over positions and scales

Serre, Wolf and Poggio. CVPR 2005. Object Recognition with Features Inspired By Visual Cortex.
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HMAX improvements∗
[Mutch and Lowe 2006]
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Figure 1. Overview of the base model. Each layer has units cover-
ing three spatial dimensions (x/y/scale), and at each 3D location,
an additional dimension of feature type. The image layer has only
one type (pixels), layers S1 and C1 have 4 types, and the upper
layers have d (many) types per location. Each layer is computed
from the previous via convolution with template matching or max
pooling filters. Image size can vary and is shown for illustration.

both position and scale. Due to the pyramidal structure of
S1, we are able to use the same size filter for all scales.
The resulting C1 layer is smaller in spatial extent and has
the same number of feature types (orientations) as S1; see
figure 1. This layer provides a model for V1 complex cells.

Intermediate feature (S2) layer. At every position and
scale in the C1 layer, we perform template matches between
the patch of C1 units centered at that position/scale and each
of d prototype patches. These prototype patches represent
the intermediate-level features of the model.

The prototypes themselves are randomly sampled from
the C1 layers of the training images in an initial feature-
learning stage. (For the Caltech 101 dataset, we use d =
4,075 for comparison with [23].) Prototype patches are like
fuzzy templates, consisting of a grid of simpler features that
are all slightly position and scale invariant.

During the feature learning stage, sampling is performed
by centering a patch of size 4x4, 8x8, 12x12, or 16x16 (x
1 scale) at a random position and scale in the C1 layer of
a random training image. The values of all C1 units within
the patch are read out and stored as a prototype. For a 4x4
patch, this means 16 different positions, but for each posi-
tion, there are units representing each of 4 orientations (see
the “dense” prototype in figure 2). Thus a 4x4 patch actu-
ally contains 4x4x4 = 64 C1 unit values.

Preliminary tests seemed to confirm that multiple fea-
ture sizes worked somewhat better than any single size.
Smaller (4x4) features can be seen as encoding shape, while
larger features are probably more useful for texture. Since
we learn the prototype patches randomly from unsegmented
images, many will not actually represent the object of inter-
est, and others may not be useful for the classification task.
The weighting of features is left for the later SVM step. It
should be noted that while each S2 prototype is learned by
sampling from a specific image of a single category, the re-
sulting dictionary of features is shared, i.e. all features are
used by all categories.

During normal operation (after feature learning) each of
these prototypes can be seen as just another convolution fil-
ter which is run over C1. We generate an S2 pyramid with
roughly the same number of positions/scales as C1, but hav-
ing d types of units at each position/scale, each represent-
ing the response of the corresponding C1 patch to a specific
prototype patch; see figure 1. The S2 layer is intended to
correspond to cortical area V4 or posterior IT.

The response of a patch of C1 units X to a particular S2
feature/prototype P , of size n × n, is given by a Gaussian
radial basis function:

R(X, P ) = exp

(
−‖X − P‖2

2σ2α

)
(3)

Both X and P have dimensionality n × n × 4, where n ∈

• image pyramid

• S1 inhibition: non-maxima
suppression over orientations

• strided C1 max pooling (50%
overlap)

• C1 sparsification: dominant
orientations kept

Mutch and Lowe. CVPR 2006. Multiclass Object Recognition With Sparse, Localized features.



summary

• neuroscience background, convolution, Gabor filters

• texture analysis, frequency sampling, visual descriptors

• dense vs. sparse features

• gist, SIFT, HOG

• pooling Gabor filter responses as orientation histograms

• feature hierarchy, codebooks, encoding, pooling

• textons, BoW, VLAD∗, Fisher kernel∗, HMAX

• hard vs. soft encoding, max vs. sum pooling
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