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image classification challenges

number of instances

e scale

e viewpoint texture/color

occlusion e pose

background clutter deformability

lighting intra-class variability
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receptive fields



topographic mapping: translation equivariance

Femna Opuc Lateral Caorrex
nerve geniculate
body

e as you move along the retina, the corresponding points in the cortex
trace a continuous path

e each column represents a two-dimensional array of cells

e a translation in the input causes a translation in the representation

Hubel 1995. Eye, Brain, and Vision.



receptive fields
[Hubel and Wiesel 1962]
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e A: ‘on’-center LGN; B: ‘off’-center LGN; C, D: simple cortical
e X: excitatory (‘on"), A: inhibitory (‘off’) responses

e |ocalized responses, orientation selectivity

Hubel and Wiesel. JP 1962. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex.



linearity
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e simple cells perform linear spatial summation over their receptive fields
o spatial response (by oriented bars of varying position)

o frequency response (by oriented gratings of varying frequency)

Movshon, Thompson and Tolhurst. JP 1978. Spatial Summation in the Receptive Fields of Simple Cells in the Cat’s Striate
Cortex.



linear time-invariant (LTI) systems

o discrete-time signal: x[n], n € Z
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linear time-invariant (LTI) systems

discrete-time signal: z[n|, n € Z
translation (or shift, or delay): si(z)[n| =x[n—k|, k€ Z

linear system (or filter): system commutes with linear combination

f (Z aiwz') = Z ai f(z;)

time-invariant (or translation equivariant): system commutes with
translation

f(sk(z)) = sk(f(=))
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convolution

e unit impulse d[n] = 1[n = 0]

e every signal x expressed as

2ln) = 3" alkjsln — K] = 3 alk]s(8) ]

k k

e if fis LTI with impulse response h = f(§), then f(x) = x x h:

f (Z w[k]sk(6)> (] = a[klsk(f(5))[n]
k k

> alklhn -

k

f(@)[n]

k] := (z * h)[n]



convolution

e unit impulse d[n] = 1[n = 0]
e every signal x expressed as

2ln) = 3" alkjsln — K] = 3 alk]s(8) ]

k k

o if fis LTI with impulse response h = f(9), then f(z) = x * h:

f@)n] =1 <Z [K]sk (0 )) [n] = a[K]s(f(8))[n]

k

= a[klhln — k] := (z  h)[n]

k

e Q: what is § x h for any h? what is s;(9) * h?
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continuous time

continuous-time signal: z(t), t € R
translation (or shift, or delay): s, (z)(t) =z(t—7), 7 €R
LTI system definition: same

Dirac delta “function” §: every signal = expressed as

z(t) = /93(7)5(15 —7)dr

convolution: f LTI, impulse response h = f(J) implies

f(x)(t) = (x*xh)(t) := /.’E(T)h(t —7)dr



Fourier transform
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Fourier transform

e time (or space) — frequency

e frequency — time (or space)
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mathematical model
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e (thin) experimental: inverse Fourier of grating stimuli responses

e (thick) least-squares fit of Gabor elementary signal

Marcelja. JOSA 1980, Mathematical Description of the Responses of Simple Cortical Cells.



Gabor elementary signals

o ‘“effective duration”

At = [27(t — £)2]1/?

o ‘“effective bandwidth”

Af = [2n(f — f)2/?

e uncertainty principle

ALAf >

DN | =

e minimal solution

e [l

¢(t) _ e—aQ(t—to)erQWfo(t—to)

Gabor. JIEE 1946. Theory of Communication. Part 1: the Analysis of Information.
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convolution theorem & modulation

envelope w(x) wW(f)
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convolution theorem & modulation

envelope w(x) wW(f)

carrier s(x) S(f)

modulation w(z)s(z) (W = S)(f)
il A




2d space/frequency considerations

Spatial receptive field Fourier response area

0 1

| @
| @
e responses to gratings at different frequencies and orientations

e localized in space and frequency, in both dimensions

DeValois, DeValois and Yund. JP 1979. Responses of Striate Cortex Cells to Grating and Checkerboard Patterns.



2d space/frequency considerations

(a) Excitability profile (b) 2-D Fourier transform of profile
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e spatial frequency and orientation are separable

e by inverse Fourier, hypothesize a 2d spatial ‘receptive field profile’

Daugman. VR 1980. Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles.



2d Gabor filters

0 e
B —— —

e 2d uncertainty principle

1
AxAu > -
XAu 2z o

e minimal solution
f(X) _ e—wwa,A(x)ejQﬂ'ch,uO (%)

F(u) = ¢ ™A= () 7270 xp (1)
e envelope & carrier signals

Wxo,A(X) = (x — xo)TA2(x — Xp)

Cx0,u9 (X) = u(")l' (X - XO)
A = diag(a,b)

Daugman. JOSA 1985. Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized By Two-

Dimensional Visual Cortical Filters.



Gabor hypothesis verified

Space Domain Frequency Domain
o
Data 314
291°
268°
———
0 0.42 0.84 cpd
Prediction

e compare spatial data to Gabor fitted to inverse Fourier of frequency
data, and vice versa

e error unstructured and indistinguishable from random

Jones and Palmer. JN 1987. An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in Cat Striate
Cortex.



texture segmentation
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e sample image on spatial uniform cartesian grid

o filter each spatial cell at different frequencies and orientations

Turner. BC 1986. Texture Discrimination By Gabor Functions.



“textons”

e see filter bank as frequency sampling on log-polar grid
o cluster filter (vector) responses into “textons”

e apply to iris recognition

Daugman. ASSP 1988. Complete Discrete 2-D Gabor Transforms By Neural Networks for Image Analysis and Compression.



visual descriptors



texture descriptors
[Manjunath and Ma 1996]
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e same frequency sampling scheme
e filtering and global pooling in space domain

e popularized as part of MPEG-7 standard

Manjunath and Ma. PAMI 1996. Texture Features for Browsing and Retrieval of Image Data.

0.6



global descriptors

power spectrum filter bank

e sampling scheme adapted to power spectrum statistics
e filtering and global pooling in frequency domain

Oliva, Torralba, Guerin-Dugue, Herault. ICCIR 1999. Global Semantic Classification of Scenes Using Power Spectrum Templates.



sampling the frequency plane

frequency space

e space (x) and frequency (u) rotate together by 6



sampling the frequency plane

N

frequency space

e space (x) and frequency (u) rotate together by 6



sampling the frequency plane

LINES

frequency space

e space (x) and frequency (u) rotate together by 6



sampling the frequency plane

IHINS=

frequency space

e space (x) and frequency (u) rotate together by 6



sampling the frequency plane

IHINS=/

frequency space

e space (x) and frequency (u) rotate together by 6



sampling the frequency plane

S~
N L
\ .

A\ 7

frequency space

e space (x) and frequency (u) rotate together by 6

« scaling envelope (A) and carrier (ug) together



sampling the frequency plane

frequency space

e space (x) and frequency (u) rotate together by 6

« scaling envelope (A) and carrier (ug) together



sampling the frequency plane

frequency space

e space (x) and frequency (u) rotate together by 6
« scaling envelope (A) and carrier (ug) together

e 4d representation: position, scale, orientation



from images to vectors

e suppose an image f(x) is represented in frequency by |F(u)|?

e suppose a template h(x) (another image or an attribute) is also
represented in frequency by

N
[HW)|> = |G ()
n=1

where {G,,} is a Gabor filter bank; let h = [hq, ..., hy]

Torralba and Oliva. ICCV 1999. Semantic Organization of Scenes Using Discriminant Structural Templates.
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e suppose an image f(x) is represented in frequency by |F(u)|?
e suppose a template h(x) (another image or an attribute) is also
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N
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where {G,,} is a Gabor filter bank; let h = [hq, ..., hy]
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from images to vectors

e suppose an image f(x) is represented in frequency by |F(u)|?

e suppose a template h(x) (another image or an attribute) is also
represented in frequency by

N
[HW)|> = |G ()
n=1

where {G,,} is a Gabor filter bank; let h = [hq, ..., hy]
e now define the vector f = [f1,..., fx] with

fnZ/\F(u)|2|Gn(u)]2du

e and measure the similarity of f, h by the inner product
N
[1P@PEWEd =3 b, = (£.1)
n=1

Torralba and Oliva. ICCV 1999. Semantic Organization of Scenes Using Discriminant Structural Templates.



global vs. local receptive fields

Global Receptive Field

e pool filter responses only locally

o next level in hierarchy can apply different spatial weights

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.



the gist descriptor

e apply filter bank to entire image in frequency domain
e partition image in 4 x 4 cells

e average pooling of filter responses per cell

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.



gist pipeline

e 3-channel RGB input — 1-channel gray-scale

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.



gist pipeline

conv

1 4 x 8

e 3-channel RGB input — 1-channel gray-scale

e apply filters at 4 scales x 8 orientations

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.



gist pipeline

— —
h conv h pool 4 \—D

4x8

1 4 x 8

e 3-channel RGB input — 1-channel gray-scale
e apply filters at 4 scales x 8 orientations

e average pooling on 4 x 4 cells — descriptor of length 512

Oliva and Torralba. VP 2006. Building the Gist of a Scene: the Role of Global Image Features in Recognition.



scale-invariant feature transform
[Lowe 1999]

o detect a sparse set of “stable” features (rectangular patches),
equivariant to translation, scale and rotation

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



scale-invariant feature transform

e for each patch

e normalize with respect to scale and orientation
e construct a histogram of gradient orientations

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



the SIFT descriptor
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Image gradients Keypoint descriptor

e votes in 8-bin orientation histograms weighted by magnitude and by
Gaussian window on patch

o histograms pooled over 4 x 4 cells, trilinear interpolation

e 128-dimensional descriptor, normalized, clipped at 0.2, normalized

Lowe. ICCV 1999. Object recognition from local scale-invariant features.



histogram of oriented gradients
[Dalal and Triggs 2005]

e applied to person detection by sliding window and SVM

e classifier learns positive and negative weights on positions and
orientations

e shifts focus back to dense features for classification

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection.



the HOG descriptor

e applied densely to adjacent cells of 8 x 8 pixels
e no scale or orientation normalization; just single-scale

e normalized by overlapping blocks of 3 x 3 cells—redundant

Dalal and Triggs. CVPR 2005. Histograms of Oriented Gradients for Human Detection



so what is a histogram?

e consider a histogram h over integers C' = {0,1,2, 3,4}, computed
from the following samples:
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0 - (1000 0 )

3 5 (00010 )
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h = (10320 ) / 6
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so what is a histogram?

e consider a histogram h over integers C' = {0,1,2, 3,4}, computed
from the following samples:

Cc = {012 3 4}

3 > (00010 )

2 - (0010 0 )

0 - (1000 0 )

3 5 (00010 )

2 - (0010 0 )

2 - (00100 ) +
h = (10320 ) / 6

o each sample is encoded (hard-assigned) into a vector in R?; all such
vectors are pooled (averaged) into one vector h € R®

e encoding is always nonlinear and pooling is orderless

e (' is a codebook or vocabulary
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e 3-channel patch (image) RGB input — 1-channel gray-scale
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SIFT (HOG) pipeline
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e 3-channel patch (image) RGB input — 1-channel gray-scale
e compute gradient magnitude & orientation

e encode into b = 8 (9) orientation bins



SIFT (HOG) pipeline
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conv enc

3-channel patch (image) RGB input — 1-channel gray-scale

compute gradient magnitude & orientation

encode into b = 8 (9) orientation bins
average poolingon ¢ =4 x4 (|w/8] x |h/8]) cells
descriptor of length ¢ x b = 128 (block-normalize — ¢ x (3 x 3) x b)



feature hierarchy



back to Gabor

e let us use the following edge pattern

e rotate it by all 6 € [0, 27]

o for each 0, filter (take dot product) with a bank of antisymmetric
Gabor filters at 5 orientations, single scale



back to Gabor

let us use the following edge pattern

rotate it by all 6 € [0, 27]

for each 0, filter (take dot product) with a bank of antisymmetric
Gabor filters at 5 orientations, single scale

turns out, the filter bank provides an encoding of 6 in R?: soft
assignment

then, spatial pooling gives nothing but an orientation histogram
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back to Gabor
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nonlinear mappings

e Q: we said convolution is linear; now, once we have a gradient
orientation measurement, why do we need a nonlinear function?

Schwartz. BC 1977. Spatial Mapping in the Primate Sensory Projection: Analytic Structure and Relevance to Perception.



nonlinear mappings

e Q: we said convolution is linear; now, once we have a gradient
orientation measurement, why do we need a nonlinear function?

e convolution is linear in the image; but if the image is rotated by 0,
itself is a nonlinear function of

Schwartz. BC 1977. Spatial Mapping in the Primate Sensory Projection: Analytic Structure and Relevance to Perception.



nonlinear mappings

e Q: we said convolution is linear; now, once we have a gradient
orientation measurement, why do we need a nonlinear function?

e convolution is linear in the image; but if the image is rotated by 0,
itself is a nonlinear function of

e what we are doing is, mapping to another space where scaling and
rotation of the image behave like translation
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Schwartz. BC 1977. Spatial Mapping in the Primate Sensory Projection: Analytic Structure and Relevance to Perception.



on manifolds

R 64,000.

e an image of resolution 320 x 200 is a vector in Z = . are all

such vectors equally likely?

Lee and Verleysen 2007. Nonlinear Dimensionality Reduction.
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R 64,000.

e an image of resolution 320 x 200 is a vector in Z = . are all

such vectors equally likely?

e an object seen at different scales and orientations only spans a
2-dimensional smooth manifold in Z

and we would like to express scale and orientation as two natural
coordinates

Lee and Verleysen 2007. Nonlinear Dimensionality Reduction.



on manifolds

64,000.

e an image of resolution 320 x 200 is a vector in Z = R . are all

such vectors equally likely?

e an object seen at different scales and orientations only spans a
2-dimensional smooth manifold in Z

and we would like to express scale and orientation as two natural
coordinates

e how would we go about expressing perspective transformation?
attributes of handwritten characters? poses of a human body?
occluded surfaces? species of dogs?

Lee and Verleysen 2007. Nonlinear Dimensionality Reduction.
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e at each level, nonlinearly encode each local (e.g. pixel) representation
according to a codebook, followed by pooling
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e at each level, nonlinearly encode each local (e.g. pixel) representation
according to a codebook, followed by pooling

e scale and orientation are just two dimensions; a codebook is just a
dense grid

e a 3-scale, 6-orientation filter response is 18-dimensional; a dense grid
is not an option



feature hierarchy

at each level, nonlinearly encode each local (e.g. pixel) representation
according to a codebook, followed by pooling

scale and orientation are just two dimensions; a codebook is just a
dense grid

a 3-scale, 6-orientation filter response is 18-dimensional; a dense grid
is not an option

learn the codebook from datal



back to textons
[Daugman 1988]

e see filter bank as frequency sampling on log-polar grid

Daugman. ASSP 1988. Complete Discrete 2-D Gabor Transforms By Neural Networks for Image Analysis and Compression.



back to textons
[Daugman 1988]

e see filter bank as frequency sampling on log-polar grid
o cluster 3 x 6 filter (vector) responses into “textons”

e apply to iris recognition

Daugman. ASSP 1988. Complete Discrete 2-D Gabor Transforms By Neural Networks for Image Analysis and Compression.



textons
[Malik et al. 1999]

oriented filter bank

texture segmentation

o textons (re-)defined as clusters of filter responses
e regions described by texton histograms

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



textons

textons

e each pixel mapped to a filter response vector of length 3 x 12
e vectors clustered by k-means into k = 25 “texton” centroids

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



textons
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textons channels

e each pixel mapped to a filter response vector of length 3 x 12
e vectors clustered by k-means into k = 25 “texton” centroids
e each pixel assigned to a texton

o each texton has a “channel” of pixel assignments

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



texton pipeline

e 3-channel RGB input — 1-channel gray-scale

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



texton pipeline

w w
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h con h
1 3 x 12

e 3-channel RGB input — 1-channel gray-scale

e apply filters at 3 scales x 12 orientations

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



texton pipeline

w w w
e
— —
h con h enc h
1 3 x 12 k

e 3-channel RGB input — 1-channel gray-scale
e apply filters at 3 scales x 12 orientations

e point-wise encoding (hard assignment) on k = 25 textons

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation



texton pipeline

w w w w
_——
— — —
h con h enc h pool h
1 3 x 12 k k

3-channel RGB input — 1-channel gray-scale

apply filters at 3 scales x 12 orientations

e point-wise encoding (hard assignment) on k = 25 textons

stride-1 average pooling on overlapping neighborhoods

Malik, Belongie, Shi and Leung. ICCV 1999. Textons, Contours and Regions: Cue Integration in Image Segmentation.



bag of words (BoW)

[Sivic and Zisserman 2003]

e two types of sparse features detected

e SIFT descriptors extracted from a dataset of video frames

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag of words: retrieval
[Sivic and Zisserman 2003]

lmmmmmmmmm

sssamiaila mn

Harris affine
6k words

maximally stable
10k words

e ‘visual words” defined as clusters of SIFT descriptors learned from the

dataset

e images described by visual word histograms

e matching is reduced to sparse dot product — fast retrieval

Sivic and Zisserman. ICCV 2003. Video Google: A Text Retrieval Approach to Object Matching in videos.



bag of words: classification
[Csurka et al. 2004]

phones, books, cars bikes, buildings, cars buildings, cars, faces

e same representation, k£ = 1000 words, naive Bayes or SVM classifier

e features soon to be replaced dense multiscale HOG or SIFT

Csurka, Dance, Fan, Willamowski and Bray. SLCV 2004. Visual Categorization With Bags of Keypoints.



bag of words pipeline

e 3-channel RGB input — 1-channel gray-scale



bag of words pipeline

w
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1 128

e 3-channel RGB input — 1-channel gray-scale
e set of ~ 1000 features x 128-dim SIFT descriptors



bag of words pipeline

w
_——

SIFT

Dﬂﬂiﬂﬂ
|

1 128 k

e 3-channel RGB input — 1-channel gray-scale
e set of ~ 1000 features x 128-dim SIFT descriptors

o element-wise encoding (hard assignment) on k ~ 10% visual words



bag of words pipeline

w
_——

SIFT

enc L ] pool k

Dﬂﬂiﬂﬂ
|
|

1 128 k

3-channel RGB input — 1-channel gray-scale
set of ~ 1000 features x 128-dim SIFT descriptors
element-wise encoding (hard assignment) on k ~ 10 visual words

global sum pooling, £2 normalization



vector of locally aggregated descriptors (VLAD)*
[Jégou et al. 2010]

e encoding yields a vector per visual word, rather than a scalar frequency
o this vector is 128-dimensional like SIFT descriptors

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD definition®

e input vectors: X = {1,...,2,} C R?
e vector quantizer: ¢: R? = C C R?, C = {c1,...,c}

_ : 2
o) = argmin |12 |

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD definition®

e input vectors: X = {1,...,2,} C R?
e vector quantizer: ¢: R? = C C R?, C = {c1,...,c}

_ : 2
o) = argmin |12 |

e residual vector
r(z) =z —q(v)

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD definition*
input vectors: X = {z1,...,2,} C R?
vector quantizer: ¢ : R4 — C C R, C = {c1,...,c1}
_ : _ A2
() = argmin |1z — |
residual vector
r(z) =z —q(x)
residual pooling per cell
ViX)= > rl@)= Y w—q(x)
zeX zeX
q(z)=c q(z)=c

VLAD vector (up to normalization)

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD geometry”

e input vectors

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD geometry”

e input vectors — codebook

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD geometry”

e input vectors — codebook — residuals

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD geometry”

e input vectors — codebook — residuals — pooling

Jégou, Douze, Schmid and Pérez. CVPR 2010. Aggregating Local Descriptors Into a Compact Image Representation.



VLAD pipeline*

e 3-channel RGB input — 1-channel gray-scale



VLAD pipeline*
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1 128

e 3-channel RGB input — 1-channel gray-scale
e set of ~ 1000 features x 128-dim SIFT descriptors



VLAD pipeline*

w
_——

SIFT

Dﬂﬂiﬂﬂ
|

1 128 128 x k

3-channel RGB input — 1-channel gray-scale
set of ~ 1000 features x 128-dim SIFT descriptors
element-wise encoding (hard assignment) on k ~ 16 visual words

encoding now yields a residual vector rather than a scalar vote



VLAD pipeline*

w
_——

enc L T T] pool 128 X k

SIFT

Dﬂﬂiﬂﬂ
|

1 128 128 x k

3-channel RGB input — 1-channel gray-scale

set of ~ 1000 features x 128-dim SIFT descriptors

element-wise encoding (hard assignment) on k ~ 16 visual words
encoding now yields a residual vector rather than a scalar vote

global sum pooling, £2 normalization



probabilistic interpretation®

o if p(X|C) is the likelihood of i.i.d observations X under a uniform
isotropic Gaussian mixture model with component means C
p(X|C) o [ el

zeX



probabilistic interpretation®

if p(X|C) is the likelihood of i.i.d observations X under a uniform
isotropic Gaussian mixture model with component means C

P(X|C) H e~ 3llz—a(@)|?

zeX

then the VLAD vector is proportional the gradient of In p(X|C') with
respect to the model parameters C'

V(X) x Velnp(X|C) = [Ve, Inp(X|C), ..., V., Inp(X|C)]

if we were to optimize C' to fit the data X, then V(X) would be the
direction in which to modify C'



Fisher kernel*

e the Fisher kernel generalizes to a non-uniform diagonal Gaussian
mixture model

order statistics parameter model
0 mixing coefficient 1 BoW
1 means /i VLAD
2 standard deviations o Fisher

Perronnin and Dance CVPR 2006. Fisher Kernels on Visual Vocabularies for Image Categorization.



embeddings in general*

xp [LLTT]

rp, [LIT]



embeddings in general®

n OIT10 ——— =DDDDDDDDDDD

embedding
(coding)

P(x1)



embeddings in general®
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2, [T o 1
aggregating
(pooling)

_anlNanalnn

P(x1)

22 (i)



embeddings in general®

1 [Emj———————»=m:um:DDDDDD

embedding
(coding) :
2 IO i 1 nr——
aggregating
(pooling)
dimension
reduction

_anl Nenalnn

o(X) [TTT]

P(z1)
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HMAX

[Riesenhuber and Poggio 1999]

View-tuned cells

) MAX  expt. suMm
Complex composite cells (C2) 1 \
- 0.8
Composite feature cells (52)
So6
Complex cells (C1) §.
o4
e simple cells (S1) 02
—— weighted sum 0
UUuidaon
hierarchical model sum vs. max pooling

e computational model consistent with psychophysical data

e advocates non-linear max pooling

Riesenhuber and Poggio. NN 1999. Hierarchical Models of Object Recognition in Cortex.



(simplified) HMAX pipeline

——

e 3-channel RGB input — 1-channel gray-scale

Serre, Wolf and Poggio. CVPR 2005. Object Recognition with Features Inspired By Visual Cortex.



(simplified) HMAX pipeline

w w
e
N
h conv h
1 16 x 4

e 3-channel RGB input — 1-channel gray-scale
e S1 apply filters at 16 scales x 4 orientations

Serre, Wolf and Poggio. CVPR 2005. Object Recognition with Features Inspired By Visual Cortex.



(simplified) HMAX pipeline

w w
e
w/8
— —
h conv h pool h/8
8 x4
1 16 x 4

e 3-channel RGB input — 1-channel gray-scale
e S1 apply filters at 16 scales x 4 orientations

e C1 max-pooling over 8 x 8 spatial cells and over 2 scales

Serre, Wolf and Poggio. CVPR 2005. Object Recognition with Features Inspired By Visual Cortex.



(simplified) HMAX pipeline

w w
= w/8 w/8
— — —
h conv h pool h/8 conv h/8
8 x4 8x k
1 16 x 4

3-channel RGB input — 1-channel gray-scale

S1 apply filters at 16 scales x 4 orientations

C1 max-pooling over 8 x 8 spatial cells and over 2 scales

S2 convolutional RBF matching of input patches X to k& = 4072
prototypes P; (n; x n; patches at 4 orientations) extracted at random
during learning: activations Y; = exp(—v|| X — Bi||?)

Serre, Wolf and Poggio. CVPR 2005. Object Recognition with Features Inspired By Visual Cortex.



(simplified) HMAX pipeline

w w
= w/8 w/8
— — — — 1
h conv h pool h/8 conv h/8 pool 1 ﬁ
k
8 x4 8x k
1 16 x 4

e 3-channel RGB input — 1-channel gray-scale
e S1 apply filters at 16 scales x 4 orientations
e C1 max-pooling over 8 x 8 spatial cells and over 2 scales

e S2 convolutional RBF matching of input patches X to k = 4072
prototypes P; (n; x n; patches at 4 orientations) extracted at random
during learning: activations Y; = exp(—v|| X — Bi||?)

e C2 global max pooling over positions and scales

Serre, Wolf and Poggio. CVPR 2005. Object Recognition with Features Inspired By Visual Cortex.



C2 Layer

global max

HMAX improvements”®

[ 72l
d feature
responses

[ry 72 rd]

<
4& d feature
22

2

x d features

Cl1 Layer

N

”&

local maz

S1 Layer

x 4 filters

responses
per location

[0oza)

4 orientations
per location
s 25

[ooza)]

S— 4 orientations
1 er location
130

P
30

Image 1 pixel
. per location
Layer 4
140
120

Mutch and Lowe. CVPR 2006. Multiclass Object Recognition With Sparse, Localized features.

[Mutch and Lowe 2006]

image pyramid

S1 inhibition: non-maxima
suppression over orientations
strided C1 max pooling (50%
overlap)

C1 sparsification: dominant
orientations kept



summary

neuroscience background, convolution, Gabor filters
texture analysis, frequency sampling, visual descriptors
dense vs. sparse features

gist, SIFT, HOG

pooling Gabor filter responses as orientation histograms
feature hierarchy, codebooks, encoding, pooling
textons, BoW, VLAD*, Fisher kernel*, HMAX

hard vs. soft encoding, max vs. sum pooling
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